• Tidak ada hasil yang ditemukan

Arthur, D. dan Vassilvitskii, S. 2006. How Slow is the k-Means Method, Stanford University, Stanford, CA.

Agusta Y. 2007. K-Means-penerapan, permasalahan dan Metode Terkait. Jurnal Sistem dan Informatika Vol.3: 47- 60.

Anindita KA. 2009. Variasi Fenotipe dan Pembentukan Warna buah Melon (Cucumis melo L.) kultivar Melodi Gama 1. Yogyakarta: Fakultas Biologi Universitas Gajah Mada. hal 1.

Anggraeny FT, Munir MS, Atmojo UW. 2019. Segmentasi K-means Clustering pada Citra Warna Daun Tunggal Menggunakan Model Warna l*a*b. ISSN:

1978-0087 - SCAN VOL. XIV NOMOR 2.

Asih NM, Sanjaya N, Badriah S, Rozikin C. 2020. Optimalisasi Metode Grabcut pada Sure dan Probable Background pada Citra Daun Melon. jurnal informatika vol 09, no 1.

Andika TH, Anisa NS. 2019. Sistem Identifikasi Citra Daun Berbasis Segmentasi dengan Menggunakan Metode K-Means Clustering. Aisyah Journal of Informatics and Electrical Engineering. Volume 2 Issue 1.

Andika TH, Hafis A. 2018. Analisis Perbandingan Segmentasi Citra Menggunakan Metode K-Means Dan Fuzzy C-Means. Seminar Nasional Teknologi dan Bisnis.

Anandita. 2007. Face Expression Recognition InTwo Dimensional Image by Using Neural Network Algorithm Backpropagation. Fakultas Ilmu Komputer, Universitas Gunadarma.

Bezdek JC.1981. Pattern Recognition with Fuzzy Objective Function Algorithm.

Plenum Press: New York. Utah State University. ISBN 978-1-4757-0450-1.

David, Lauro MD, Herwindiati DE. 2020. Sistem Prediksi Customer Loyalty dengan Metode Rfm dan Fuzzy C-Means. Journal of Computer Science and Information Systems. Volume 4, no 1.

Dunn JC. 1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3, 32- 57.

Estes JE, Simonett DS. 1975. Fundamnetals of Image Interpretation, in Manual of Remoet sensing. Falls Chruch, Virginia: The American Society of Photogrametri.

Farida. 2014. Pengklasifikasian Gender Dengan Menentukan Titik-Titik Penting Pada Sistem Pengenalan Wajah Menggunakan Matlab 6.5.

Han J, Kamber M, Pei J. 2012. Data Mining Concept and Techniques, 3rd ed.

Morgan Kaufmann-Elsevier, Amsterdam.

Hruschka ER, Ebecken NFF. 2003. A Genetic Algorithm for Cluster Analysis.

Intelligent Data Analysis 7 (2003) 15–25.

[IPB] IPB University. 2019. IPB Inaugurates Smart Urban Farming Laboratory.

[internet] tersedia : https://ipb.ac.id/news/index/2019/06/ipb-inaugurates- smart-urban-farming-laboratory/ 21465b1a2c18b484632aa177eb02dbff.

Jansen SMH. 2007. Customer Segmentation and Customer Profiling for a Mobile Telecommunications Company Based on Usage Behavior: A Vodafone Case Study. University of Maastricht: Maastricht.

28

Jiu LZ, Jiu FZ, Jian JL. 2005. Intrusion Detection Based on Clustering Genetic Algorithm. proceedings of the fourth international conference on machine learning and cybernetics, guangzhou, 18-21.

Kaufman L, Rousseeuw PJ.1990. Finding Groups in Data. an introduction to cluster analysis. New York. John Wiley & Sons. vol. 344.

Kumar A, Sabharwal Y, Sen S. 2010. Linear Time Approximation Scheme for Clustering Problem in Any Dimensions. Journal of the ACM. Article No 5.

Kuntjoro DA, Setiawan BDD, Perdana RS. 2018. Algoritme Genetika Untuk Optimasi K-Means Clustering dalam Pengelompokan Data Tsunami. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN 2548-964x Vol 2, No 10.

Kodinariya TM, Makwana PR. 2013. Review on determining number of Cluster in K-Means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no.

6, 2013.

Li Y, Wu H, 2012. A Clustering Method Based on K-Means Algorithm.

International Conference on Solid State Devices and Materials Science.

Maia DS. Trindade RMP. 2016. Face Detection and Recognition in Color Images under Matlab. International Journal of Signal Processing, Image Processing and Pattern Recognition Vol.9, No.2, pp.13-24.

Madhulatha TS. 2014. An Overview on Clustering Methods. IOSR Journal of Engineering, Vol. 2(4) Pp: 719-725.

MacQueen JB. 1967. Some Methods for Classification and Analysis of Multivariate Observations. Western Management Science Institute by office of Naval Research under contract No 233(75), Task No. 047-041, hlm 281-297.

Miyamoto S, Sadaaki, Ichihashi H, Honda K. 2008. Algorithms for Fuzzy Clustering. Japan. Publisher: Springer ISBN: 978-3-540-78736-5.

Mushtaq SF, Shamin M, Shafique MS, Haider. 2014. Effect of Whitefly Transmitted Geminiviruses on Physiology of Tomato (Lycopersicon esculentum L.) and Tobacco (Nicotiana benthamiana L.) Plants. journal of Natural Science Research 4: 2225.

Mishra SP, Sarkar U, Taraphder S, Datta S, Swain DP, Saikhom R, Panda S, Laishram M. 2017. Multivariate Statistical Data Analysis- Principal Component Analysis (PCA). International Journal of Livestock Research eISSN: 2277-1964 NAAS Score -5.36. vol.7 (5).

Nahari A. 2010. Implementasi Temu Kembali Citra Mammogram Dengan Teknik Ekstraksi Fitur Tekstur dan Fitur Bentuk. Internetwork Indonesia Jurnal.Vol 1. No1.

Nugroho MFE, Nurlana Sanjaya N, Tubagus AS, Syarif MRR, Rozikin C. 2021.

Foreground Extraction pada Citra Daun Melon dengan Bantuan Deep Neural Network. JIP (Jurnal Informatika Polinema). Volume 7, Edisi 3.

Nixon MS, Aguado AS. 2002. Feature Extraction and Image Processing. British Library Cataloguing in Publication Data. ISBN 0 7506 5078 8. Typeset at Replika Press Pvt Ltd, Delhi 110 040, India.

Nirmala AM, Subraniam P, Priya AA, Ravi M. 2013. Enriched Performance on Wireless Sensor Network using Fuzzy based Clustering Technique, IJASCSE Volume 2, Theme based issue 3.

Park Y, Guldmann JM. 2020. Measuring Continuous Landscape Patterns with Gray-Level Co-Occurrence Matrix (GLCM) Indices: An Alternative to Patch

29 Metrics. Ecological Indicators, 109 (2020) 105802, pp. 1-18.

DOI:10.1016/j.ecolind.2019.105802.

Pineda, M, Bueno PML, BarónM. 2018. Detection of bacterial infection in melon plants by classification methods based on imaging data. Frontiers in Plant Science.

Prasetyo D, Hidayat N, Afirianto T. 2018. Sistem Diagnosis Penyakit Tanaman Melon Menggunakan Metode Dempster-Shafer. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(11), pp 4532-4538.

Pracaya. 2008. Hama dan Penyakit Tanaman. Edisi Revisi. Penebar Swadaya Jakarta.

Petrou M, Sevilla P. 2006. Image Processing: Dealing with Texture.

10.1002/047003534X.ch2.

Putra D. 2010. Pengolahan Citra Digital (Edisi 1). Yogyakarta: Andi.

Purnomo MH, Muntasa A. 2010. Konsep Pengolahan Citra Digital dan Ekstraksi Fitur, Yogyakarta: Graha Ilmu.

Ramadhan A, Efendi Z, Mustakim. 2017. Perbandingan K-Means dan Fuzzy C- Means untuk Pengelompokan Data User Knowledge Modeling. Perbandingan K-Means dan Fuzzy C-Means untuk Pengelompokan Data User Knowledge Modeling.Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9. ISSN (Printed): 2579-727.

Redaksi Agromedia, 2007. Budi Daya Melon. Jakarta: PT Agromedia Pustaka.

hlm 6.

Rousseeuw PJ.1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math. 20, 53-65.

Sari YA, Dewi RK, Fatichah C. 2014. Seleksi Fitur Menggunakan Ekstraksi Fitur Bentuk, Warna, dan Tekstur dalam Sistem Temu Kembali Citra Daun.

Volume 12, Nomor 1.

Sengupta S, Won LS. 2014. Identification and determination of the number of green citrus fruit in a canopy under different ambient light condition. Biosystem Engineering of Elsevier. 51-61.

Sugiartha IGRA, Sudarma M, Widyantara MO. 2017. Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images (CLUE).

Teknologi Elektro, Vol. 16, No1.

Struyf A, Hubert PJ, Rousseeuw. 1997. Integrating Robust Clustering Techniques in S-PLUS. Journal of Computational Statistics and Data Analysis,26(1),17- 37.

Soesanto O. 2010. Pca-Rbpnn Untuk Klasifikasi Data Multivariat Dengan Orthogonal Least Square (OLS). Jurnal Matematika Murni dan Terapan Vol.

4 No.2.

Tan PN, Steinbach M, Kumar V. 2006. Introduction to Data Mining. Boston:

Pearson Education.

Turk M, Pentland A. 1991. “Eigenfaces for recognition“. Journal of Cognitive Neuroscience. 3(1): 71–86.

Wu KL, Yang MS. 2002. Alternative C-Means Clustering Algorithms. Pattern Recognition, 35(10), 2267–2278.

Wu J, 2012. Advances in K-means Clustering. Springer Theses. Recognizing Outstanding Ph.D. Research.

30

Widiyanto MTAC. 2019. Perbandingan Validitas Fuzzy Clustering pada Fuzzy C- Means dan Particle Swarms Optimazation (PSO) pada Pengelompokan Kelas.

JISKa, Vol. 4, No. 1, Pp. 22 – 3.

Xu R, Wunsch DC. 2005. Survey of clustering algorithms II, IEEE Trans. Neural Networks 16 (2005) 645–678.

Yohannes. 2016. Analisis Perbandingan Algoritma Fuzzy C-Means dan K Means.

Prosiding ANNUAL RESEARCH.

Dokumen terkait