• Tidak ada hasil yang ditemukan

Derivations for non-bursty promoter models

Chapter IV: An efficient representation for statistical mechanics of multi-

A.1 Derivations for non-bursty promoter models

In this section we detail the calculation of mean mRNA levels, fold-changes in expression, and Fano factors for nonequilibrium promoter models 1 through 4 in Figure 2.1. These are the results that were quoted but not derived in Sections 2.3 and 2.4 of the main text. In each of these four models, the natural mathematicization of their cartoons is as a chemical master equation such as Eq. 2.12 for model 1.

Before jumping into the derivations of the general computation of the mean mRNA level and the Fano factor we will work through the derivation of an example master equation. In particular we will focus on model 1 from Figure 2.1(C). The general steps are applicable to all other chemical master equations in this work.

Derivation of chemical master equation

(A)

(B)

mRNA count mRNA count promoter state

promoter state

0 1 2 ... โˆž

0 1 2 ... โˆž

Figure A.1: Two-state promoter chemical master equation. (A) Schematic of the two state promoter simple repression model. Rates๐‘˜+

๐‘…and๐‘˜โˆ’

๐‘…are the association and dissociation rates of the transcriptional repressor, respectively,๐‘Ÿ is the transcription initiation rate, and๐›พ is the mRNA degradation rate. (B) Schematic depiction of the mRNA count state transitions. The model in (A) only allows for jumps in mRNA of size 1. The production of mRNA can only occur when the promoter is in the transcriptionally active state.

The chemical master equation describes the continuous time evolution of a contin- uous or discrete probability distribution function. In our specific case we want to describe the time evolution of the discrete mRNA distribution. What this means is that we want to compute the probability of having ๐‘š mRNA molecules at time ๐‘ก+ฮ”๐‘ก, whereฮ”๐‘ก is a sufficiently small time interval such that only one of the pos- sible reactions take place during that time interval. For the example that we will work out here in detail we chose the two-state stochastic simple repression model schematized in Figure A.1(A). To derive the master equation we will focus more on the representation shown in Figure A.1(B), where the transitions between different mRNA counts and promoter states is more explicitly depicted. Given that the DNA promoter can exist in one of two states โ€“ transcriptionally active state, and with repressor bound โ€“ we will keep track not only of the mRNA count, but on which state the promoter is. For this we will keep track of two probability distributions:

The probability of having ๐‘š mRNAs at time๐‘ก when the promoter is in the tran- scriptionally active state ๐ด, ๐‘๐ด(๐‘š, ๐‘ก), and the equivalent probability but when the promoter is in the repressor bound state๐‘…, ๐‘๐‘…(๐‘š, ๐‘ก).

Since mRNA production can only take place in the transcriptionally active state we will focus on this function for our derivation. The repressor bound state will have an equivalent equation without terms involving the production of mRNAs. We begin by listing the possible state transitions that can occur for a particular mRNA count with the promoter in the active state. For state changes in a small time windowฮ”๐‘ก that โ€œjump intoโ€ state๐‘šin the transcriptionally active state we have

โ€ข Produce an mRNA, jumping from๐‘šโˆ’1 to๐‘š.

โ€ข Degrade an mRNA, jumping from๐‘š+1 to๐‘š.

โ€ข Transition from the repressor bound state๐‘…with๐‘šmRNAs to the active state ๐ดwith๐‘š mRNAs.

Likewise, for state transitions that โ€œjump outโ€ of state ๐‘š in the transcriptionally inactive state we have

โ€ข Produce an mRNA, jumping from๐‘što๐‘š+1.

โ€ข Degrade an mRNA, jumping from๐‘što๐‘šโˆ’1.

โ€ข Transition from the active state๐ดwith๐‘šmRNAs to the repressor bound state ๐‘…with๐‘šmRNAs.

The mRNA production does not depend on the current number of mRNAs, therefore these state transitions occur with probability๐‘Ÿฮ”๐‘ก. The same is true for the promoter state transitions; each occurs with probability๐‘˜ยฑ

๐‘…ฮ”๐‘ก. As for the mRNA degradation events, these transitions depend on the current number of mRNA molecules since the more molecules of mRNA there are, the more will decay during a given time interval. Each molecule has a constant probability ๐›พฮ”๐‘ก of being degraded, so the total probability for an mRNA degradation event to occur is computed by multiplying this probability by the current number of mRNAs.

To see these terms in action let us compute the probability of having๐‘š mRNA at time๐‘ก+ฮ”๐‘กin the transcriptionally active state. This takes the form

๐‘๐ด(๐‘š, ๐‘ก +ฮ”๐‘ก) = ๐‘๐ด(๐‘š, ๐‘ก) +

๐‘šโˆ’1โ†’๐‘š

z }| { (๐‘Ÿฮ”๐‘ก)๐‘๐ด(๐‘šโˆ’1, ๐‘ก) โˆ’

๐‘šโ†’๐‘š+1

z }| { (๐‘Ÿฮ”๐‘ก)๐‘๐ด(๐‘š, ๐‘ก)

+

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1) (๐›พฮ”๐‘ก)๐‘๐ด(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐‘š(๐›พฮ”๐‘ก)๐‘๐ด(๐‘š, ๐‘ก) +

z }| {๐‘…โ†’๐ด

(๐‘˜โˆ’

๐‘…ฮ”๐‘ก)๐‘๐‘…(๐‘š, ๐‘ก) โˆ’

z }| {๐ดโ†’๐‘…

(๐‘˜+

๐‘…ฮ”๐‘ก)๐‘๐ด(๐‘š, ๐‘ก),

(A.1)

where the overbrace indicates the corresponding state transitions. Notice that the second to last term on the right-hand side is multiplied by ๐‘๐‘…(๐‘š, ๐‘ก) since the transition from state ๐‘… to state ๐ด depends on the probability of being in state ๐‘… to begin with. It is through this term that the dynamics of the two probability distribution functions (๐‘๐‘…(๐‘š, ๐‘ก)and๐‘๐ด(๐‘š, ๐‘ก)) are coupled. An equivalent equation can be written for the probability of having ๐‘š mRNA at time๐‘ก +ฮ”๐‘ก while in the repressor bound state, the only difference being that the mRNA production rates are removed, and the sign for the promoter state transitions are inverted. This is

๐‘๐‘…(๐‘š, ๐‘ก+ฮ”๐‘ก) = ๐‘๐‘…(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1) (๐›พฮ”๐‘ก)๐‘๐‘…(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐‘š(๐›พฮ”๐‘ก)๐‘๐‘…(๐‘š, ๐‘ก)

โˆ’

z }| {๐‘…โ†’๐ด

(๐‘˜โˆ’

๐‘…ฮ”๐‘ก)๐‘๐‘…(๐‘š, ๐‘ก) +

z }| {๐ดโ†’๐‘…

(๐‘˜+

๐‘…ฮ”๐‘ก)๐‘๐ด(๐‘š, ๐‘ก).

(A.2)

All we have to do now are simple algebraic steps in order to simplify the equations.

Let us focus on the transcriptionally active state ๐ด. First we will send the term

๐‘๐ด(๐‘š, ๐‘ก) to the right-hand side, and then we will divide both sides of the equation byฮ”๐‘ก. This results in

๐‘๐ด(๐‘š, ๐‘ก+ฮ”๐‘ก) โˆ’ ๐‘๐ด(๐‘š, ๐‘ก) ฮ”๐‘ก

=๐‘Ÿ ๐‘๐ด(๐‘šโˆ’1, ๐‘ก) โˆ’๐‘Ÿ ๐‘๐ด(๐‘š, ๐‘ก)

+ (๐‘š+1)๐›พ ๐‘๐ด(๐‘š+1, ๐‘ก) โˆ’๐‘š ๐›พ ๐‘๐ด(๐‘š, ๐‘ก) +๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) โˆ’๐‘˜+

๐‘…๐‘๐ด(๐‘š, ๐‘ก).

(A.3)

Upon taking the limit when ฮ”๐‘ก โ†’ 0 we can transform the left-hand side into a derivative, obtaining the chemical master equation

๐‘‘ ๐‘๐ด(๐‘š, ๐‘ก) ๐‘‘ ๐‘ก

=๐‘Ÿ ๐‘๐ด(๐‘šโˆ’1, ๐‘ก) โˆ’๐‘Ÿ ๐‘๐ด(๐‘š, ๐‘ก)

+ (๐‘š+1)๐›พ ๐‘๐ด(๐‘š+1, ๐‘ก) โˆ’๐‘š ๐›พ ๐‘๐ด(๐‘š, ๐‘ก) +๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) โˆ’๐‘˜+

๐‘…๐‘๐ด(๐‘š, ๐‘ก).

(A.4)

Doing equivalent manipulations for the repressor bound state gives an ODE of the form

๐‘‘ ๐‘๐‘…(๐‘š, ๐‘ก) ๐‘‘ ๐‘ก

=(๐‘š+1)๐›พ ๐‘๐‘…(๐‘š+1, ๐‘ก) โˆ’๐‘š ๐›พ ๐‘๐‘…(๐‘š, ๐‘ก)

โˆ’๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) +๐‘˜+

๐‘…๐‘๐ด(๐‘š, ๐‘ก).

(A.5) In the next section we will write these coupled ODEs in a more compact form using matrix notation.

Matrix form of the multi-state chemical master equation

Having derived an example chemical master equation we now focus on writing a general matrix form for the kinetic models 1-4 shown in Figure 2.1(C) in the main text. In each of these four models, the natural mathematicization of their cartoons is as a chemical master equation such as Eq. 2.12 for model 1, which for completeness we reproduce here as

๐‘‘ ๐‘‘ ๐‘ก

๐‘๐‘…(๐‘š, ๐‘ก) =โˆ’

๐‘…โ†’๐‘ˆ

z }| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) +

z ๐‘ˆโ†’๐‘…}| { ๐‘˜+

๐‘…๐‘๐‘ˆ(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘…(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘…(๐‘š, ๐‘ก) ๐‘‘

๐‘‘ ๐‘ก

๐‘๐‘ˆ(๐‘š, ๐‘ก) =

z ๐‘…โ†’๐‘ˆ}| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) โˆ’

z ๐‘ˆโ†’๐‘…}| { ๐‘˜+

๐‘…๐‘๐‘ˆ(๐‘š, ๐‘ก) +

๐‘šโˆ’1โ†’๐‘š

z }| { ๐‘Ÿ ๐‘๐‘ˆ(๐‘šโˆ’1, ๐‘ก) โˆ’

๐‘šโ†’๐‘š+1

z }| { ๐‘Ÿ ๐‘๐‘ˆ(๐‘š, ๐‘ก)

+

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘ˆ(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘ˆ(๐‘š, ๐‘ก).

(A.6) Here๐‘๐‘…(๐‘š, ๐‘ก)and๐‘๐‘ˆ(๐‘š, ๐‘ก)are the probabilities of finding the system with๐‘šmRNA molecules at time๐‘ก either in the repressor bound or unbound states, respectively. ๐‘Ÿ

is the probability per unit time that a transcript will be initiated when the repressor is unbound, and๐›พis the probability per unit time for a given mRNA to be degraded.

๐‘˜โˆ’

๐‘…is the probability per unit time that a bound repressor will unbind, while๐‘˜+

๐‘…is the probability per unit time that an unbound operator will become bound by a repressor.

Assuming mass action kinetics,๐‘˜+

๐‘… is proportional to repressor copy number๐‘…. Next consider the cartoon for nonequilibrium model 2 in Figure 2.1(C). Now we must track probabilities ๐‘๐‘…, ๐‘๐‘ƒ, and ๐‘๐ธ for the repressor bound, empty, and polymerase bound states, respectively. By analogy to Eq. A.6, the master equation for model 2 can be written

๐‘‘ ๐‘‘ ๐‘ก

๐‘๐‘…(๐‘š, ๐‘ก) =โˆ’

๐‘…โ†’๐‘ˆ

z }| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) +

z ๐‘ˆโ†’๐‘…}| { ๐‘˜+

๐‘…๐‘๐ธ(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘…(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘…(๐‘š, ๐‘ก) ๐‘‘

๐‘‘ ๐‘ก

๐‘๐ธ(๐‘š, ๐‘ก) =

z ๐‘…โ†’๐‘ˆ}| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) โˆ’

๐‘ˆโ†’๐‘…

z }| { ๐‘˜+

๐‘…๐‘๐ธ(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐ธ(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐ธ(๐‘š, ๐‘ก).

+

z }| {๐ดโ†’๐‘ˆ

๐‘˜โˆ’

๐‘ƒ๐‘๐‘ƒ(๐‘š, ๐‘ก) โˆ’

๐‘ˆโ†’๐ด

z }| { ๐‘˜+

๐‘ƒ๐‘๐ธ(๐‘š, ๐‘ก) +

๐‘šโˆ’1โ†’๐‘š, ๐ดโ†’๐‘ˆ

z }| { ๐‘Ÿ ๐‘๐‘ƒ(๐‘šโˆ’1, ๐‘ก) ๐‘‘

๐‘‘ ๐‘ก

๐‘๐‘ƒ(๐‘š, ๐‘ก) = โˆ’

๐ดโ†’๐‘ˆ

z }| { ๐‘˜โˆ’

๐‘ƒ๐‘๐‘ƒ(๐‘š, ๐‘ก) +

๐‘ˆโ†’๐ด

z }| { ๐‘˜+

๐‘ƒ๐‘๐ธ(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘ƒ(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘ƒ(๐‘š, ๐‘ก).

โˆ’

๐‘šโ†’๐‘š+1, ๐ดโ†’๐‘ˆ

z }| { ๐‘Ÿ ๐‘๐‘ƒ(๐‘š, ๐‘ก) .

(A.7) ๐‘˜+

๐‘ƒ and ๐‘˜โˆ’

๐‘ƒ are defined in close analogy to ๐‘˜+

๐‘… and ๐‘˜โˆ’

๐‘…, except for RNAP binding and unbinding instead of repressor. Similarly ๐‘๐‘ƒ(๐‘š, ๐‘ก) is defined for the active (RNAP-bound) state exactly as are ๐‘๐‘…(๐‘š, ๐‘ก) and ๐‘๐ธ(๐‘š, ๐‘ก) for the repressor bound and unbound states, respectively. The new subtlety Eq. A.7 introduces compared to Eq. A.6 is that when mRNAs are produced, the promoter state also changes. This is encoded by the terms involving๐‘Ÿ, the last term in each of the equations for ๐‘๐ธ and ๐‘๐‘ƒ. The former accounts for arrivals in the unbound state and the latter accounts for departures from the RNAP-bound state.

To condense and clarify the unwieldy notation of Eq. A.7, it can be rewritten in matrix form. We define the column vector ๐‘ยฎ(๐‘š, ๐‘ก)as

ยฎ

๐‘(๐‘š, ๐‘ก)=ยฉ

ยญ

ยญ

ยซ

๐‘๐‘…(๐‘š, ๐‘ก) ๐‘๐ธ(๐‘š, ๐‘ก) ๐‘๐‘ƒ(๐‘š, ๐‘ก) ยช

ยฎ

ยฎ

ยฎ

ยฌ

(A.8)

to gather, for a given๐‘š, the probabilities of finding the system in the three possible promoter states. Then all the transition rates may be condensed into matrices which multiply this vector. The first matrix is

K=ยฉ

ยญ

ยญ

ยซ

โˆ’๐‘˜โˆ’

๐‘… ๐‘˜+

๐‘… 0

๐‘˜โˆ’

๐‘… โˆ’๐‘˜+

๐‘…โˆ’๐‘˜+

๐‘ƒ

๐‘˜โˆ’

๐‘ƒ

0 ๐‘˜+

๐‘ƒ โˆ’๐‘˜โˆ’

๐‘ƒ

ยช

ยฎ

ยฎ

ยฎ

ยฌ

, (A.9)

which tracks all promoter state changes in Eq. A.7 that arenot accompanied by a change in the mRNA copy number. The two terms accounting for transcription, the only transition that increases mRNA copy number, must be handled by two separate matrices given by

RA =ยฉ

ยญ

ยญ

ยซ

0 0 0 0 0 ๐‘Ÿ 0 0 0 ยช

ยฎ

ยฎ

ยฎ

ยฌ

, RD =ยฉ

ยญ

ยญ

ยซ

0 0 0 0 0 0 0 0 ๐‘Ÿ ยช

ยฎ

ยฎ

ยฎ

ยฌ

. (A.10)

RA accounts for transitions arriving in a given state while RD tracks departing transitions. With these definitions, we can condense Eq. A.7 into the single equation

๐‘‘ ๐‘‘ ๐‘ก

ยฎ

๐‘(๐‘š, ๐‘ก)= (Kโˆ’RDโˆ’๐›พ ๐‘šI) ยฎ๐‘(๐‘š, ๐‘ก) +RA๐‘ยฎ(๐‘šโˆ’1, ๐‘ก) +๐›พ(๐‘š+1)I๐‘ยฎ(๐‘š+1, ๐‘ก), (A.11) which is just Eq. 2.15 in the main text. Straightforward albeit tedious algebra verifies that Eqs. A.7 and A.11 are in fact equivalent.

Although we derived Eq. A.11 for the particular case of nonequilibrium model 2 in Figure 2.1, in fact the chemical master equations for all of the nonequilibrium models in Figure 2.1 except for model 5 can be cast in this form. (We treat model 5 separately in Appendix A.2.) Model 3 introduces no new subtleties beyond model 2 and Eq. A.11 applies equally well to it, simply with different matrices of dimension four instead of three. Models 1 and 4 are both handled by Eq. 2.12 in the main text, which is just Eq. A.11 except in the special case ofRD = RA โ‰ก R, since in these two models transcription initiation events do not change promoter state.

Recalling that our goal in this section is to derive expressions for mean mRNA and Fano factor for nonequilibrium models 1 through four in Figure 2.1, and since all four of these models are described by Eq. A.11, we can save substantial effort by deriving general formulas for mean mRNA and Fano factor from Eq. A.11 once and for all. Then for each model we can simply plug in the appropriate matrices forK, RD, andRA and carry out the remaining algebra.

For our purposes it will suffice to derive the first and second moments of the mRNA distribution from this master equation, similar to the treatment in [1], but we refer the interested reader to [2] for an analogous treatment demonstrating an analytical solution for arbitrary moments.

General forms for mean mRNA and Fano factor

Our task now is to derive expressions for the first two moments of the steady-state mRNA distribution from Eq. A.11. Our treatment of this is analogous to that given in Refs. [1] and [2]. We first obtain the steady-state limit of Eq. A.11 in which the time derivative vanishes, giving

0= (Kโˆ’RDโˆ’๐›พ ๐‘šI) ยฎ๐‘(๐‘š) +RA๐‘ยฎ(๐‘šโˆ’1) +๐›พ(๐‘š+1)I๐‘ยฎ(๐‘š+1), (A.12) From this, we want to compute

h๐‘ši =ร•

๐‘†

โˆž

ร•

๐‘š=0

๐‘š ๐‘๐‘†(๐‘š) (A.13)

and

h๐‘š2i=ร•

๐‘†

โˆž

ร•

๐‘š=0

๐‘š2๐‘๐‘†(๐‘š) (A.14)

which define the average values of๐‘š and๐‘š2 at steady state, where the averaging is over all possible mRNA copy numbers and promoter states ๐‘†. For example, for model 1 in Figure 2.1(C), the sum on ๐‘†would cover repressor bound and unbound states (๐‘… and๐‘ˆ respectively), for model 2, the sum would cover repressor bound, polymerase bound, and empty states (๐‘…,๐‘ƒ, and๐ธ), and so on for the other models.

Along the way it will be convenient to define the followingconditionalmoments as h ยฎ๐‘ši=

โˆž

ร•

๐‘š=0

๐‘š๐‘ยฎ(๐‘š), (A.15)

and

h ยฎ๐‘š2i=

โˆž

ร•

๐‘š=0

๐‘š2๐‘ยฎ(๐‘š). (A.16)

These objects are vectors of the same size as ๐‘ยฎ(๐‘š), and each component can be thought of as the expected value of the mRNA copy number, or copy number squared, conditional on the promoter being in a certain state. For example, for model 1 in Figure 2.1 which has repressor bound and unbound states labeled ๐‘… and๐‘ˆ, h ยฎ๐‘š2i would be

h ยฎ๐‘š2i= รโˆž

๐‘š=0๐‘š2๐‘๐‘…(๐‘š) รโˆž

๐‘š=0๐‘š2๐‘๐‘ˆ(๐‘š)

!

. (A.17)

Analogously toh ยฎ๐‘šiandh ยฎ๐‘š2i, it is convenient to define the vector h ยฎ๐‘š0i=

โˆž

ร•

๐‘š=0

ยฎ

๐‘(๐‘š), (A.18)

whose elements are simply the probabilities of finding the system in each of the possible promoter states. It will be convenient to denote byยฎ1โ€ a row vector of the same length as ๐‘ยฎwhose elements are all 1, such that, for instance, ยฎ1โ€ ยท h ยฎ๐‘š0i = 1,

ยฎ1โ€ ยท h ยฎ๐‘ši= h๐‘ši, etc.

Promoter state probabilitiesh ยฎ๐‘š0i

To begin, we will find the promoter state probabilities h ยฎ๐‘š0i from Eq. A.12 by summing over all mRNA copy numbers๐‘š, producing

0=

โˆž

ร•

๐‘š=0

[(Kโˆ’RDโˆ’๐›พ ๐‘šI) ยฎ๐‘(๐‘š) +RA๐‘ยฎ(๐‘šโˆ’1) +๐›พ(๐‘š+1)I๐‘ยฎ(๐‘š+1)] (A.19) Using the definitions ofh ยฎ๐‘š0iand h ยฎ๐‘ši, and noting the matricesK, RD, andRA are all independent of๐‘šand can be moved outside the sum, this simplifies to

0= (Kโˆ’RD) h ยฎ๐‘š0i โˆ’๐›พh ยฎ๐‘ši +RA

โˆž

ร•

๐‘š=0

ยฎ

๐‘(๐‘šโˆ’1) +๐›พ

โˆž

ร•

๐‘š=0

(๐‘š+1) ยฎ๐‘(๐‘š+1). (A.20) The last two terms can be handled by reindexing the summations, transforming them to match the definitions ofh ยฎ๐‘š0iandh ยฎ๐‘ši. For the first, noting๐‘ยฎ(โˆ’1) =0 since negative numbers of mRNA are nonsensical, we have

โˆž

ร•

๐‘š=0

ยฎ

๐‘(๐‘šโˆ’1)=

โˆž

ร•

๐‘š=โˆ’1

ยฎ ๐‘(๐‘š) =

โˆž

ร•

๐‘š=0

ยฎ

๐‘(๐‘š)= h ยฎ๐‘š0i. (A.21) Similarly for the second,

โˆž

ร•

๐‘š=0

(๐‘š+1) ยฎ๐‘(๐‘š+1) =

โˆž

ร•

๐‘š=1

๐‘š๐‘ยฎ(๐‘š) =

โˆž

ร•

๐‘š=0

๐‘š๐‘ยฎ(๐‘š)= h ยฎ๐‘ši, (A.22) which holds since in extending the lower limit from๐‘š =1 to๐‘š =0, the extra term we added to the sum is zero. Substituting these back in Eq. A.20, we have

0=(Kโˆ’RD) h ยฎ๐‘š0i โˆ’๐›พh ยฎ๐‘ši +RAh ยฎ๐‘š0i +๐›พh ยฎ๐‘ši, (A.23) or simply

0=(Kโˆ’RD+RA) h ยฎ๐‘š0i. (A.24)

So given matrices K, RD, and RA describing a promoter, finding h ยฎ๐‘š0i simply amounts to solving this set of linear equations, subject to the normalization con- straint1ยฎโ€ ยท h ยฎ๐‘š0i=1. It will turn out to be the case that, if the matrixKโˆ’RD +RA

is๐‘›dimensional, it will always have only๐‘›โˆ’1 linearly independent equations. In- cluding the normalization condition provides the๐‘›-th linearly independent equation, ensuring a unique solution. So when using this equation to solve for h ยฎ๐‘š0i, we may always drop one row of the matrix equation at our convenience and supplement the system with the normalization condition instead. The reader may find it illuminating to skip ahead and see Eq. A.24 in use with concrete examples, e.g., Eq. A.52 and what follows it, before continuing on through the general formulas for moments.

First momentsh ยฎ๐‘šiandh๐‘ši

By analogy to the above procedure for finding h ยฎ๐‘š0i, we may find h ยฎ๐‘ši by first multiplying Eq. A.12 by๐‘šand then summing over๐‘š. Carrying out this procedure we have

0=

โˆž

ร•

๐‘š=0

๐‘š[(Kโˆ’RDโˆ’๐›พ ๐‘šI) ยฎ๐‘(๐‘š) +RA๐‘ยฎ(๐‘šโˆ’1) +๐›พ(๐‘š+1)I๐‘ยฎ(๐‘š+1)], (A.25) and now identifyingh ยฎ๐‘šiandh ยฎ๐‘š2igives

0=(Kโˆ’RD) h ยฎ๐‘ši โˆ’๐›พh ยฎ๐‘š2i +RA

โˆž

ร•

๐‘š=0

๐‘š๐‘ยฎ(๐‘šโˆ’1) +๐›พ

โˆž

ร•

๐‘š=0

๐‘š(๐‘š+1) ยฎ๐‘(๐‘š+1). (A.26) The summations in the last two terms can be reindexed just as we did forh ยฎ๐‘š0i, freely adding or removing terms from the sum which are zero. For the first term we find

โˆž

ร•

๐‘š=0

๐‘š๐‘ยฎ(๐‘šโˆ’1) =

โˆž

ร•

๐‘š=โˆ’1

(๐‘š+1) ยฎ๐‘(๐‘š)=

โˆž

ร•

๐‘š=0

(๐‘š+1) ยฎ๐‘(๐‘š) =h ยฎ๐‘ši + h ยฎ๐‘š0i, (A.27) and similarly for the second,

โˆž

ร•

๐‘š=0

๐‘š(๐‘š+1) ยฎ๐‘(๐‘š+1) =

โˆž

ร•

๐‘š=1

(๐‘šโˆ’1)๐‘š๐‘ยฎ(๐‘š) =

โˆž

ร•

๐‘š=0

(๐‘šโˆ’1)๐‘š๐‘ยฎ(๐‘š) =h ยฎ๐‘š2i โˆ’ h ยฎ๐‘ši. (A.28) Substituting back in Eq. A.26 then produces

0=(Kโˆ’RD) h ยฎ๐‘ši โˆ’๐›พh ยฎ๐‘š2i +RA(h ยฎ๐‘ši + h ยฎ๐‘š0i) +๐›พ(h ยฎ๐‘š2i โˆ’ h ยฎ๐‘ši), (A.29) or after simplifying

0= (Kโˆ’RD+RAโˆ’๐›พ) h ยฎ๐‘ši +RAh ยฎ๐‘š0i. (A.30)

So likeh ยฎ๐‘š0i,h ยฎ๐‘šiis also found by simply solving a set of linear equations after first solving forh ยฎ๐‘š0ifrom Eq. A.24.

Next we can find the mean mRNA copy numberh๐‘šifromh ยฎ๐‘šiaccording to

h๐‘ši=1ยฎโ€ ยท h ยฎ๐‘ši, (A.31) where ยฎ1โ€  is a row vector whose elements are all 1. Eq. A.31 holds since the ๐‘–๐‘ก โ„Ž element of the column vector h ยฎ๐‘ši is the mean mRNA value conditional on the system occupying the ๐‘–๐‘ก โ„Ž promoter state, so the dot product with 1ยฎโ€  amounts to simply summing the elements of h ยฎ๐‘ši. Rather than solving Eq. A.30 for h ยฎ๐‘ši and then computing1ยฎโ€ ยท h ยฎ๐‘ši, we may take a shortcut by multiplying Eq. A.30 byยฎ1โ€ first.

The key observation that makes this useful is that

ยฎ1โ€ ยท (Kโˆ’RD+RA) =0. (A.32) Intuitively, this equality holds because each column of this matrix represents transi- tions to and from a given promoter state. In any given column, the diagonal encodes all departing transitions and off-diagonals encode all arriving transitions. Conser- vation of probability means that each column sums to zero, and summing columns is exactly the operation that multiplying byยฎ1โ€ carries out.

Proceeding then in multiplying Eq. A.30 by1ยฎโ€ produces

0=โˆ’๐›พยฎ1โ€ ยท h ยฎ๐‘ši + ยฎ1โ€ ยทRAh ยฎ๐‘š0i, (A.33) or simply

h๐‘ši= 1 ๐›พ

ยฎ1โ€ ยทRAh ยฎ๐‘š0i. (A.34) We note that the in equilibrium models of transcription such as in Figure 2.1, it is usually assumed that the mean mRNA level is given by the ratio of initiation rate ๐‘Ÿ to degradation rate ๐›พ multiplied by the probability of finding the system in the RNAP-bound state. Reassuringly, we have recovered exactly this result from the master equation picture: the product1ยฎโ€  ยทRAh ยฎ๐‘š0ipicks out the probability of the active promoter state fromh ยฎ๐‘š0iand multiplies it by the initiation rate๐‘Ÿ.

Second momenth๐‘š2iand Fano factor๐œˆ

Continuing the pattern of the zeroth and first moments, we now find h ยฎ๐‘š2i by multiplying Eq. A.12 by๐‘š2and then summing over๐‘š, which explicitly is

0=

โˆž

ร•

๐‘š=0

๐‘š2[(Kโˆ’RDโˆ’๐›พ ๐‘šI) ยฎ๐‘(๐‘š) +RA๐‘ยฎ(๐‘šโˆ’1) +๐›พ(๐‘š+1)I๐‘ยฎ(๐‘š+1)]. (A.35)

Identifying the moments h ยฎ๐‘š2iandh ยฎ๐‘š3iin the first term simplifies this to 0=(Kโˆ’RD) h ยฎ๐‘š2i โˆ’๐›พh ยฎ๐‘š3i +RA

โˆž

ร•

๐‘š=0

๐‘š2๐‘ยฎ(๐‘šโˆ’1) +๐›พ

โˆž

ร•

๐‘š=0

๐‘š2(๐‘š+1) ยฎ๐‘(๐‘š+1). (A.36) Reindexing the sums of the last two terms proceeds just as it did for the zeroth and first moments. Explicitly, we have

โˆž

ร•

๐‘š=0

๐‘š2๐‘ยฎ(๐‘šโˆ’1) =

โˆž

ร•

๐‘š=โˆ’1

(๐‘š+1)2๐‘ยฎ(๐‘š) =

โˆž

ร•

๐‘š=0

(๐‘š+1)2๐‘ยฎ(๐‘š)= h ยฎ๐‘š2i +2h ยฎ๐‘ši + h ยฎ๐‘š0i, (A.37) for the first sum and

โˆž

ร•

๐‘š=0

๐‘š2(๐‘š+1) ยฎ๐‘(๐‘š+1) =

โˆž

ร•

๐‘š=1

(๐‘šโˆ’1)2๐‘š๐‘ยฎ(๐‘š)=

โˆž

ร•

๐‘š=0

(๐‘šโˆ’1)2๐‘š๐‘ยฎ(๐‘š) =h ยฎ๐‘š3iโˆ’2h ยฎ๐‘š2i+h ยฎ๐‘ši (A.38) for the second. Substituting the results of the sums back in Eq. A.36 gives

0=(Kโˆ’RD) h ยฎ๐‘š2i โˆ’๐›พh ยฎ๐‘š3i +RA(h ยฎ๐‘š2i +2h ยฎ๐‘ši + h ยฎ๐‘š0i) +๐›พ(h ยฎ๐‘š3i โˆ’2h ยฎ๐‘š2i + h ยฎ๐‘ši), (A.39) and after grouping like powers of๐‘šwe have

0=(Kโˆ’RD+RA โˆ’2๐›พ) h ยฎ๐‘š2i + (2RA +๐›พ) h ยฎ๐‘ši +RAh ยฎ๐‘š0i. (A.40) As we found when computingh๐‘šifromh ยฎ๐‘ši, we can spare ourselves some algebra by multiplying Eq. A.40 by1ยฎโ€ , which then reduces to

0=โˆ’2๐›พh๐‘š2i + ยฎ1โ€ ยท (2RA+๐›พ) h ยฎ๐‘ši + ยฎ1โ€ ยทRAh ยฎ๐‘š0i, (A.41) and noting from Eq. A.34 that1ยฎโ€ ยทRAh ยฎ๐‘š0i=๐›พh๐‘ši, we have the tidy result

h๐‘š2i =h๐‘ši + 1 ๐›พ

1ยฎโ€ ยทRAh ยฎ๐‘ši. (A.42)

Finally we have all the preliminary results needed to write a general expression for the Fano factor๐œˆ. The Fano factor is defined as the ratio of variance to mean, which can be written as

๐œˆ = h๐‘š2i โˆ’ h๐‘ši2 h๐‘ši =

h๐‘ši + 1

๐›พ

1ยฎโ€ ยทRAh ยฎ๐‘ši โˆ’ h๐‘ši2

h๐‘ši (A.43)

and simplified to

๐œˆ =1โˆ’ h๐‘ši +

1ยฎโ€ ยทRAh ยฎ๐‘ši

๐›พh๐‘ši . (A.44)

Note a subtle notational trap here: h๐‘ši = ๐›พ11ยฎโ€ ยทRAh ยฎ๐‘š0irather than the by-eye similar but wrong expression h๐‘šiโ‰  ๐›พ1ยฎ1โ€ ยทRAh ยฎ๐‘ši, so the last term in Eq. A.44 is in general quite nontrivial. For a generic promoter, Eq. A.44 may be greater than, less than, or equal to one, as asserted in Section 2.4. We have not found the general form Eq. A.44 terribly intuitive and instead defer discussion to specific examples.

Summary of general results

For ease of reference, we collect and reprint here the key results derived in this section that are used in the main text and subsequent subsections. Mean mRNA copy number and Fano factor are given by Eqs. A.34 and A.44, which are

h๐‘ši= 1 ๐›พ

1ยฎโ€ ยทRAh ยฎ๐‘š0i (A.45) and

๐œˆ =1โˆ’ h๐‘ši +

ยฎ1โ€ ยทRAh ยฎ๐‘ši

๐›พh๐‘ši , (A.46)

respectively. To compute these two quantities, we need the expressions forh ยฎ๐‘š0iand h ยฎ๐‘šigiven by solving Eqs. A.24 and A.30, respectively, which are

(Kโˆ’RD+RA) h ยฎ๐‘š0i=0 (A.47) and

(Kโˆ’RD +RAโˆ’๐›พI) h ยฎ๐‘ši =โˆ’RAh ยฎ๐‘š0i. (A.48) Some comments are in order before we consider particular models. First, note that to obtain h ยฎ๐‘ši and๐œˆ, we need not bother solving for all components of the vectors h ยฎ๐‘š0iand h ยฎ๐‘ši, but only the components which are multiplied by nonzero elements ofRA. The only component ofh ยฎ๐‘š0ithat ever survives is the transciptionally active state, and for the models we consider here, there is only ever one such state. This will save us some amount of algebra below.

Also note that we are computing Fano factors to verify the results of Section 2.4, concerning the constitutive promoter models in Figure 2.2 which are analogs of the simple repression models in Figure 2.1. We can translate the matrices from the sim- ple repression models to the constitutive case by simply substituting all occurrences of repressor rates by zero and removing the row and column corresponding to the repressor bound state. The results for h๐‘ši computed in the repressed case can be easily translated to the constitutive case, rather than recalculating from scratch, by

taking the limit ๐‘˜+

๐‘… โ†’ 0, since this amounts to sending repressor copy number to zero.

Finally, we point out that it would be possible to computeh ยฎ๐‘š0imore simply using the diagram methods from King and Altman [3] (also independently discovered by Hill [4]). But to our knowledge this method cannot be applied to computeh ยฎ๐‘šior๐œˆ, so since we would need to resort to solving the matrix equations anyways for h ยฎ๐‘ši, we choose not to introduce the extra conceptual burden of the diagram methods simply for computingh ยฎ๐‘š0i.

Nonequilibrium Model One - Poisson Promoter Mean mRNA

For nonequilibrium model 1 in Figure 2.1, we have already shown the full master equation in Eq. 2.10 and Eq. A.6, but for completeness we reprint it again as

๐‘‘ ๐‘‘ ๐‘ก

๐‘๐‘…(๐‘š, ๐‘ก) =โˆ’

๐‘…โ†’๐‘ˆ

z }| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) +

๐‘ˆโ†’๐‘…

z }| { ๐‘˜+

๐‘…๐‘๐‘ˆ(๐‘š, ๐‘ก) +

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘…(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘…(๐‘š, ๐‘ก) ๐‘‘

๐‘‘ ๐‘ก

๐‘๐‘ˆ(๐‘š, ๐‘ก) =

๐‘…โ†’๐‘ˆ

z }| { ๐‘˜โˆ’

๐‘…๐‘๐‘…(๐‘š, ๐‘ก) โˆ’

z ๐‘ˆโ†’๐‘…}| { ๐‘˜+

๐‘…๐‘๐‘ˆ(๐‘š, ๐‘ก) +

๐‘šโˆ’1โ†’๐‘š

z }| { ๐‘Ÿ ๐‘๐‘ˆ(๐‘šโˆ’1, ๐‘ก) โˆ’

๐‘šโ†’๐‘š+1

z }| { ๐‘Ÿ ๐‘๐‘ˆ(๐‘š, ๐‘ก)

+

๐‘š+1โ†’๐‘š

z }| { (๐‘š+1)๐›พ ๐‘๐‘ˆ(๐‘š+1, ๐‘ก) โˆ’

๐‘šโ†’๐‘šโˆ’1

z }| { ๐›พ ๐‘š ๐‘๐‘ˆ(๐‘š, ๐‘ก).

(A.49) This is a direct transcription of the states and rates in Figure 2.1. This may be converted to the matrix form of the master equation shown in Eq. A.11 with matrices

ยฎ

๐‘(๐‘š) = ๐‘๐‘…(๐‘š) ๐‘๐‘ˆ(๐‘š)

!

, K= โˆ’๐‘˜โˆ’

๐‘… ๐‘˜+

๐‘…

๐‘˜โˆ’

๐‘… โˆ’๐‘˜+

๐‘…

!

, R= 0 0 0 ๐‘Ÿ

!

, (A.50)

whereRAandRDare equal, so we drop the subscript and denote both simply byR.

Since our interest is only in steady-state we dropped the time dependence as well.

First we needh ยฎ๐‘š0i. Label its components as๐‘๐‘…and๐‘๐‘ˆ, the probabilities of finding the system in either promoter state, and note that only๐‘๐‘ˆ survives multiplication by R, since

Rh ยฎ๐‘š0i= 0 0 0 ๐‘Ÿ

! ๐‘๐‘… ๐‘๐‘ˆ

!

= 0 ๐‘Ÿ ๐‘๐‘ˆ

!

, (A.51)

so we need not bother finding ๐‘๐‘…. Then we have (Kโˆ’RD +RA) h ยฎ๐‘š0i= โˆ’๐‘˜โˆ’

๐‘… ๐‘˜+

๐‘…

๐‘˜โˆ’

๐‘… โˆ’๐‘˜+

๐‘…

! ๐‘๐‘… ๐‘๐‘ˆ

!

=0. (A.52)

As mentioned earlier in Section A.1, the two rows are linearly dependent, so taking only the first row and using normalization to set ๐‘๐‘… =1โˆ’ ๐‘๐‘ˆ gives

โˆ’๐‘˜โˆ’

๐‘…(1โˆ’ ๐‘๐‘ˆ) +๐‘˜+

๐‘…๐‘๐‘ˆ =0, (A.53)

which is easily solved to find

๐‘๐‘ˆ = ๐‘˜โˆ’

๐‘…

๐‘˜โˆ’

๐‘…+๐‘˜+

๐‘…

. (A.54)

Substituting this into Eq. A.51, and the result of that into Eq. A.45, we have h๐‘ši= ๐‘Ÿ

๐›พ ๐‘˜โˆ’

๐‘…

๐‘˜โˆ’

๐‘…+๐‘˜+

๐‘…

(A.55) as asserted in Eq. 2.13 of the main text.

Fano factor

To verify that the Fano factor for model 1 in Figure 2.2(A) is in fact 1 as claimed in the main text, note that in this limit ๐‘๐‘ˆ =1 andh๐‘ši =๐‘Ÿ/๐›พ. All elements ofKare zero, andRAโˆ’RD =0, so Eq. A.48 reduces to

โˆ’๐›พh ยฎ๐‘ši =โˆ’๐‘Ÿ , (A.56)

or, in other words, since there is only one promoter state,h ยฎ๐‘ši=h๐‘ši. Then it follows that

๐œˆ =1โˆ’ ๐‘Ÿ ๐›พ

+ ๐‘Ÿh๐‘ši

๐›พh๐‘ši =1 (A.57)

as claimed.