Chapter VI: Elemental Abundances of Kepler Objects of Interest in APOGEE
6.5 Discussion
the most negative slope regions. The absence of this tail in the Nibauer et al. (2021) abundances, which are comparable to ASPCAP abundances, may again be due to evolutionary state differences in our respective stellar samples.
đđpatterns can also be examined by splitting abundances into volatile and refractory groups, and fitting individual linear trends to both sets. This was done by Bedell, Bean, et al. (2018) for a sample of solar twins (see their Figure 4). Stars with enrichment trends will exhibit steeper linear fits to abundances withđđ > 1000 K compared to abundances withđđ < 1000 K, while the opposite will be true for de- pletion trends. We carry out this analysis for our KOIs and their doppelgĂ€ngers, and provide examples of our linear trend fits in Figure 6.11. Because strong enrichment results in steeper refractory trends, the linear fits will have lower intercept values.
Thus, enrichment pattern strength can be likened to the difference in volatile and re- fractory linear fit intercepts. We plot the distributions of these intercept differences in Figure 6.12. The distribution corresponding to ASPCAP abundances exhibits a tail towards higher intercept differences that is not present in the distribution derived from predicted abundances. We examine the ASPCAPđđ trends for the KOIs with the top five largest intercept differences, and find that they have anomalously low measured [Na/H] (ranging from â0.23 dex toâ1.29 dex) that are âł0.2 dex below the other measured abundances. The associated errors on measured [Na/H] are large (0.074â0.94 dex). In addition, four out of the five KOIs with largest intercept differences overlap with the five KOIs that are outliers in predicted and ASPCAP [Na/H] space (Figure 6.5, [Na/H] KOI panel). This is further evidence that the [Na/H] intrinsic dispersion differences in the initial sample selected on [X/Fe]error
< 0.1 dex are the result of large abundance uncertainties. We conclude that if there are underlying differences in the individual abundanceđđ trends for the KOI and doppelgĂ€nger samples at fixed evolutionary state, [Fe/H], and [Mg/H], they are marginal. To be detected, these differences must exceed the sensitivity of our predicted abundances, which is typicallyđintrinsic â0.038 dex and 0.041 dex for the KOIs and doppelgĂ€ngers, respectively.
specifically, we compute model-measurement abundance residuals from ASPCAP and predicted abundances using a four-parameter model (đeff, logđ, [Fe/H], [Mg/H]), and find that there are no differences in residual structure between the KOI and dop- pelgĂ€nger samples. We calculate the median intrinsic dispersion across all analyzed elements other than (Fe, Mg) to beđintrinsic â0.038 dex and 0.041 dex for the KOI and doppelgĂ€nger samples, respectively, which can be taken as the minimum abun- dance precision required for discerning individual abundance signatures related to planet formation.
Because we do not know the planet membership of our doppelgĂ€nger sample, some doppelgĂ€nger stars may be planet hosts. This is plausible because large planet discovery surveys such as the Kepler and TESS missions have revealed that planets are common. Using Kepler DR25, Hsu et al. (2019) recently calculated an upper limit occurrence rate of 0.27 planets per star for 0.5â16 đ â planets around FGK dwarfs. Breaking occurrence rates by planet architectures reveals that the majority of these planets are small (đ = 1â4 đ â) and generally classified as super-Earths and sub-Neptunes (e.g., Burke et al. 2015; Zhu et al. 2018; Bryson et al. 2021).
If a significant fraction of our doppelgÀnger set consists of planet hosts, it makes sense that the abundance distributions of our KOI and doppelgÀnger samples are indistinguishable at fixed (Fe, Mg) and evolutionary state.
To reliably examine abundance differences between planet hosts and reference dop- pelgÀnger stars drawn from the field, none of the reference stars should host planets.
Unfortunately, constructing a sample of doppelgÀnger stars that we know lack plan- ets is difficult. This would require extensive monitoring of targets with Doppler planet search surveys to ensure that there are no RV signals indicative of planets.
Carrying out such observations for an entire reference set of stars would be time and resource intensive. However, certain planet populations can be ruled out with minimal telescope time; close-in giant planets are more easily detected in RV and transit data without long cadence compared to smaller planets on longer orbits. In addition, close-in giants are intrinsically rare. RV surveys produce hot Jupiter (đ <
10 days) occurrence rates of âŒ0.8â1.2% around solar-like stars (e.g., Mayor et al.
2011; Wright et al. 2012; Wittenmyer et al. 2020), and transit surveys yield even smaller occurrence rates ofâŒ0.4â0.6% (Howard et al., 2012; Fressin et al., 2013;
Petigura et al., 2018; Kunimoto and Matthews, 2020). These rates are still small for warm Jupiters (đ <50 days), with estimates ofâŒ1.3%. They remain small for hot and warm sub-Saturns (đ = 4â8đ â) as well, which have occurrence rate estimates
ofâŒ0.4% andâŒ2.3%, respectively (Howard et al., 2012). Thus, constructing a ref- erence sample without close-in giant hosts is feasible. We hope to examine close-in giants in future studies, but this will require another planet host sample as only 18 of our KOIs host confirmed/candidate hot/warm sub-Saturn to Jupiter-sized planets according to the standard definition (đ >4đ â andđ <100 days).
Previous studies have found interesting abundance differences between stars that host and do not host close-in giants. For example, MelĂ©ndez et al. (2009) determined that the Sun exhibits a refractory depletion trend withđđ relative to eleven solar twins from theHipparcoscatalog, as well as four solar analogs with close-in giant planets.
However, six other solar analogs lacking close-in giants as verified by RV monitoring show the solar depletion trend 50â70% of the time. One potential explanation for the solar pattern is sequestration of rocky material in the terrestrial planets, and late (10â25 Myr) accretion of dust-depleted gas once the solar convective zone began shrinking to its current mass fraction (âŒ2%, Hughes, Rosner, and Weiss 2007). Another explanation is that all solar twins and most solar analogs lacking close-in giants engulfed planetary material at late times (>25 Myr), once their convective zones were thin. This scenario would produce refractory enrichment in stellar photospheres. However, it assumes that most solar-like stars are depleted in refractories (at least in the absence of events like planet engulfment), and more recent abundance studies of larger Sun-like samples show that this is not the case (e.g., Bedell, Bean, et al. 2018). Either way, the findings of MelĂ©ndez et al. (2009) suggest that close-in giant planets play a role in altering host star abundances. While their results defy a clear explanation, a larger sample of close-in giant hosts and reference stars lacking close-in giants could be leveraged to examine these trends more closely.
The KOI and doppelgÀnger median abundance prediction intrinsic dispersions are
âŒ0.038 dex andâŒ0.041 dex, respectively. These values can be considered the upper limit of abundance precision needed to discern planet formation signatures in the elemental abundance patterns of host stars. Planet formation processes can exceed these levels in rare cases, such as the reported planet engulfment detection in the HD 240429-30 system (âŒ0.2 dex, Oh et al. 2018). Planet hosts may also be born with different abundances compared to stars without planets. The planet-metallicity correlation indicates that this is true for at least [Fe/H]. Such primordial abundance deviations must also exceed our intrinsic dispersion levels to be detectable.
Our KOI and doppelgÀnger residual abundance distributions are indistinguishable, which yields two possibilities: (1) our reference doppelgÀnger set includes too
many planet hosts, or (2) primordial or post-birth abundance patterns related to planet formation in our samples are below detectable levels. We can tackle the first possibility by focusing on more easily detectable planet architectures, namely close-in giants as discussed earlier. The second possibility could be addressed with higher-precision abundances from advances in spectral synthesis pipelines and/or line lists (e.g., Schuler, Flateau, et al. 2011; Liu et al. 2018; Bedell, Meléndez, et al.
2014), or from spectrographs with higher resolving power (e.g., Adibekyan, Sousa, et al. 2020). Many stars in our KOI and doppelgÀnger samples have abundance uncertainties that exceed our intrinsic dispersion values. Large uncertainties are the root cause of the particularly poorly measured Na abundances for the five outlier stars in our initial sample selected on [X/H]err<0.1 dex. Upgrades to the ASPCAP pipeline, such as improved line lists and advances to the spectral synthesis pipeline, may improve APOGEE abundance precisions in the years to come.
References
Abdurroâuf et al. (Apr. 2022). âThe Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Dataâ. In:
The Astrophysical Journal Supplement Series259.2, 35, p. 35. doi: 10.3847/
1538-4365/ac4414. arXiv:2112.02026 [astro-ph.GA].
Adibekyan, V., E. Delgado-Mena, et al. (June 2016). âđ2 Reticuli, its debris disk, and its lonely stellar companionđ1Ret. Different Tđtrends for different spectraâ.
In: Astronomy and Astrophysics 591, A34, A34. doi: 10.1051/0004- 6361/
201628453. arXiv:1605.01918 [astro-ph.SR].
Adibekyan, V., S. G. Sousa, et al. (Oct. 2020). âBenchmark stars, benchmark spectro- graphs. Detailed spectroscopic comparison of ESPRESSO, PEPSI, and HARPS data for Gaia benchmark starsâ. In:Astronomy and Astrophysics642, A182, A182.
doi:10.1051/0004-6361/202038793. arXiv:2008.08371 [astro-ph.SR].
Adibekyan, V. Zh., E. Delgado Mena, et al. (Nov. 2012). âExploring theđŒ-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samplesâ. In:Astron- omy and Astrophysics547, A36, A36. doi:10.1051/0004-6361/201220167.
arXiv:1209.6272 [astro-ph.EP].
Adibekyan, V. Zh., N. C. Santos, et al. (July 2012). âOverabundance ofđŒ-elements in exoplanet-hosting starsâ. In:Astronomy and Astrophysics543, A89, A89. doi:
10.1051/0004-6361/201219564. arXiv:1205.6670 [astro-ph.EP].
Alibert, Y., C. Mordasini, and W. Benz (Feb. 2011). âExtrasolar planet population synthesis. III. Formation of planets around stars of different massesâ. In:Astron- omy and Astrophysics526, A63, A63. doi:10.1051/0004-6361/201014760.
arXiv:1101.0513 [astro-ph.EP].
Bashi, Dolev and Shay Zucker (Aug. 2019). âSmall Planets in the Galactic Context:
Host Star Kinematics, Iron, and Alpha-element Enhancementâ. In: The Astro- nomical Journal 158.2, 61, p. 61. doi:10.3847/1538- 3881/ab27c9. arXiv:
1906.01982 [astro-ph.EP].
Bedell, Megan, Jacob L. Bean, et al. (Sept. 2018). âThe Chemical Homogeneity of Sun-like Stars in the Solar Neighborhoodâ. In: The Astrophysical Journal 865.1, 68, p. 68. doi: 10 . 3847 / 1538 - 4357 / aad908. arXiv: 1802 . 02576 [astro-ph.SR].
Bedell, Megan, Jorge MelĂ©ndez, et al. (Nov. 2014). âStellar Chemical Abundances:
In Pursuit of the Highest Achievable Precisionâ. In: The Astrophysical Journal 795.1, 23, p. 23. doi: 10.1088/0004- 637X/795/1/23. arXiv: 1409.1230 [astro-ph.SR].
Biazzo, K. et al. (Nov. 2015). âThe GAPS programme with HARPS-N at TNG. X.
Differential abundances in the XO-2 planet-hosting binaryâ. In:Astronomy and Astrophysics583, A135, A135. doi:10.1051/0004-6361/201526375. arXiv:
1506.01614 [astro-ph.SR].
Booth, Richard A. and James E. Owen (Apr. 2020). âFingerprints of giant planets in the composition of solar twinsâ. In:Monthly Notices of The Royal Astronomical Society493.4, pp. 5079â5088. doi:10.1093/mnras/staa578. arXiv: 2002.
11135 [astro-ph.EP].
Brewer, John M. and Debra A. Fischer (May 2017). âErratum: âC/O and Mg/Si Ra- tios of Stars in the Solar Neighborhoodâ (<A href=âhttp://doi.org/10.3847/0004- 637x/831/1/20â>2016, ApJ, 831, 20</A>)â. In:The Astrophysical Journal840.2, 121, p. 121. doi:10.3847/1538-4357/aa6d53. arXiv:1608.06286 [astro-ph.SR].
Bryson, Steve et al. (Jan. 2021). âThe Occurrence of Rocky Habitable-zone Plan- ets around Solar-like Stars from Kepler Dataâ. In: The Astronomical Journal 161.1, 36, p. 36. doi: 10 . 3847 / 1538 - 3881 / abc418. arXiv: 2010 . 14812 [astro-ph.EP].
Buchhave, Lars A. and David W. Latham (Aug. 2015). âThe Metallicities of Stars with and without Transiting Planetsâ. In:The Astrophysical Journal808.2, 187, p. 187. doi: 10 . 1088 / 0004 - 637X / 808 / 2 / 187. arXiv: 1507 . 03557 [astro-ph.EP].
Buchhave, Lars A., David W. Latham, et al. (June 2012). âAn abundance of small exoplanets around stars with a wide range of metallicitiesâ. In:Nature486.7403, pp. 375â377. doi:10.1038/nature11121.
Burke, Christopher J. et al. (Aug. 2015). âTerrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sampleâ. In:The Astrophysical Journal809.1, 8, p. 8. doi:
10.1088/0004-637X/809/1/8. arXiv:1506.04175 [astro-ph.EP].
Coughlin, Jeffrey, Susan E. Thompson, and Kepler Team (June 2017). âThe Final Kepler Planet Candidate Catalog (DR25)â. In: American Astronomical Society Meeting Abstracts #230. Vol. 230. American Astronomical Society Meeting Ab- stracts, 102.04, p. 102.04.
Feeney, Stephen M., Benjamin D. Wandelt, and Melissa K. Ness (Mar. 2021).
âSSSpaNG! stellar spectra as sparse, data-driven, non-Gaussian processesâ. In:
Monthly Notices of the Royal Astronomical Society 501.3, pp. 3258â3271. doi:
10.1093/mnras/staa3586. arXiv:1912.09498 [astro-ph.SR].
Fischer, Debra A. and Jeff Valenti (Apr. 2005). âThe Planet-Metallicity Correlationâ.
In: The Astrophysical Journal 622.2, pp. 1102â1117. doi: 10 . 1086 / 428383.
url:https://doi.org/10.1086/428383.
Fressin, François et al. (Apr. 2013). âThe False Positive Rate of Kepler and the Occurrence of Planetsâ. In: The Astrophysical Journal 766.2, 81, p. 81. doi:
10.1088/0004-637X/766/2/81. arXiv:1301.0842 [astro-ph.EP].
Galarza, Jhon Yana et al. (Nov. 2021). âEvidence of Rocky Planet Engulfment in the Wide Binary System HIP 71726/HIP 71737â. In:The Astrophysical Journal 922.2, p. 129. doi:10.3847/1538- 4357/ac2362. url: https://dx.doi.
org/10.3847/1538-4357/ac2362.
GarcĂa PĂ©rez, Ana E. et al. (2016). âASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipelineâ. In:The Astronomical Journal.
Ghezzi, L., K. Cunha, et al. (Sept. 2010). âStellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicityâ. In:The Astrophysical Journal720.2, pp. 1290â
1302. doi:10.1088/0004-637X/720/2/1290. arXiv:1007.2681 [astro-ph.SR].
Ghezzi, Luan, Cintia F. Martinez, et al. (Oct. 2021). âA Spectroscopic Analysis of the California-Kepler Survey Sample. II. Correlations of Stellar Metallicities with Planetary Architecturesâ. In: The Astrophysical Journal 920.1, 19, p. 19.
doi:10.3847/1538-4357/ac14c3. arXiv:2107.04153 [astro-ph.EP].
Ghezzi, Luan, Benjamin T. Montet, and John Asher Johnson (June 2018). âRetired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Massâ. In:The Astrophysical Journal860.2, 109, p. 109.
doi:10.3847/1538-4357/aac37c. arXiv:1804.09082 [astro-ph.SR].
Gonzalez, Guillermo (Feb. 1997). âThe stellar metallicity-giant planet connectionâ.
In: Monthly Notices of The royal 285.2, pp. 403â412. doi: 10.1093/mnras/
285.2.403.
Griffith, Emily et al. (Mar. 2021). âThe Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulgeâ. In:The Astrophysical Journal 909.1, 77, p. 77. doi: 10.3847/1538- 4357/abd6be. arXiv: 2009.
05063 [astro-ph.SR].
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.
Heiter, U. and R. E. Luck (Oct. 2003). âAbundance Analysis of Planetary Host Stars.
I. Differential Iron Abundancesâ. In:The Astronomical Journal126.4, pp. 2015â
2036. doi:10.1086/378366. arXiv:astro-ph/0307321 [astro-ph].
Howard, Andrew W. et al. (Aug. 2012). âPlanet Occurrence within 0.25 AU of Solar-type Stars from Keplerâ. In:The Astrophysical Journal Supplement Series 201.2, 15, p. 15. doi: 10.1088/0067- 0049/201/2/15. arXiv: 1103.2541 [astro-ph.EP].
Hsu, Danley C. et al. (Sept. 2019). âOccurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inferenceâ. In: The Astronomical Journal158.3, 109, p. 109. doi: 10.3847/1538-3881/ab31ab.
arXiv:1902.01417 [astro-ph.EP].
Hughes, D. W., R. Rosner, and N. O. Weiss (2007).The Solar Tachocline.
Ida, Shigeru and D. N. C. Lin (Nov. 2004). âToward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicitiesâ. In:The Astrophysical Journal616.1, pp. 567â
572. doi:10.1086/424830. url:https://doi.org/10.1086/424830.
JofrĂ©, Emiliano et al. (Dec. 2021). âThe Peculiar Chemical Pattern of the WASP- 160 Binary System: Signatures of Planetary Formation and Evolution?â In:The Astronomical Journal162.6, 291, p. 291. doi:10.3847/1538-3881/ac25ef.
arXiv:2109.04590 [astro-ph.EP].
Kunimoto, Michelle and Jaymie M. Matthews (June 2020). âSearching the Entirety of Kepler Data. II. Occurrence Rate Estimates for FGK Starsâ. In: The Astro- nomical Journal159.6, 248, p. 248. doi:10.3847/1538-3881/ab88b0. arXiv:
2004.05296 [astro-ph.EP].
Liu, F. et al. (July 2018). âDetailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formationâ. In:
Astronomy and Astrophysics 614, A138, A138. doi: 10 . 1051 / 0004 - 6361 / 201832701. arXiv:1802.09306 [astro-ph.SR].
Mack Claude E., III et al. (June 2014). âDetailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the At- mospheres of HD 20782/81?â In:The Astrophysical Journal787.2, 98, p. 98. doi:
10.1088/0004-637X/787/2/98. arXiv:1404.1967 [astro-ph.EP].
Maldonado, J., E. Villaver, and C. Eiroa (May 2018). âChemical fingerprints of hot Jupiter planet formationâ. In:Astronomy and Astrophysics612, A93, A93. doi:
10.1051/0004-6361/201732001. arXiv:1712.01035 [astro-ph.EP].
Maldonado, J., E. Villaver, C. Eiroa, and G. Micela (Apr. 2019). âConnecting sub- stellar and stellar formation: the role of the host starâs metallicityâ. In:Astronomy and Astrophysics624, A94, A94. doi:10.1051/0004-6361/201833827. arXiv:
1903.01141 [astro-ph.SR].
Mayor, M. et al. (Sept. 2011). âThe HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planetsâ. In: arXiv e-prints, arXiv:1109.2497, arXiv:1109.2497.
arXiv:1109.2497 [astro-ph.EP].
MelĂ©ndez, J. et al. (Oct. 2009). âThe Peculiar Solar Composition and Its Possi- ble Relation to Planet Formationâ. In:The Astrophysical Journal Letters704.1, pp. L66âL70. doi: 10 . 1088 / 0004 - 637X / 704 / 1 / L66. arXiv: 0909 . 2299 [astro-ph.SR].
Mordasini, C. et al. (Nov. 2012). âCharacterization of exoplanets from their forma- tion. II. The planetary mass-radius relationshipâ. In:Astronomy and Astrophysics 547, A112, A112. doi:10.1051/0004-6361/201118464. arXiv:1206.3303 [astro-ph.EP].
Mulders, GÄłs D. et al. (Dec. 2016). âA Super-solar Metallicity for Stars with Hot Rocky Exoplanetsâ. In:The Astronomical Journal 152.6, 187, p. 187. doi:10.
3847/0004-6256/152/6/187. arXiv:1609.05898 [astro-ph.EP].
Nagar, Tushar, Lorenzo Spina, and Amanda I. Karakas (Jan. 2020). âThe Chemical Signatures of Planetary Engulfment Events in Binary Systemsâ. In: The Astro- physical Journal Letters888.1, L9, p. L9. doi:10.3847/2041-8213/ab5dc6.
Narang, Mayank et al. (Nov. 2018). âProperties and Occurrence Rates for Kepler Exoplanet Candidates as a Function of Host Star Metallicity from the DR25 Catalogâ. In:The Astronomical Journal156.5, 221, p. 221. doi:10.3847/1538- 3881/aae391. arXiv:1809.08385 [astro-ph.EP].
Ness, Melissa K. et al. (Feb. 2022). âThe Homogeneity of the Star-forming En- vironment of the Milky Way Disk over Timeâ. In: The Astrophysical Journal 926.2, 144, p. 144. doi: 10.3847/1538- 4357/ac4754. arXiv: 2109.05722 [astro-ph.GA].
Nibauer, Jacob et al. (Feb. 2021). âStatistics of the Chemical Composition of Solar Analog Stars and Links to Planet Formationâ. In: The Astrophysical Journal 907.2, 116, p. 116. doi: 10.3847/1538- 4357/abd0f1. arXiv: 2010.07241 [astro-ph.SR].
Ăberg, Karin I., Ruth Murray-Clay, and Edwin A. Bergin (Dec. 2011). âThe Effects of Snowlines on C/O in Planetary Atmospheresâ. In:The Astrophysical Journal Letters 743.1, L16, p. L16. doi: 10 . 1088 / 2041 - 8205 / 743 / 1 / L16. arXiv:
1110.5567 [astro-ph.GA].
Oh, Semyeong et al. (Feb. 2018). âKronos and Krios: Evidence for Accretion of a Massive, Rocky Planetary System in a Comoving Pair of Solar-type Starsâ. In:The Astrophysical Journal854.2, 138, p. 138. doi:10.3847/1538-4357/aaab4d.
arXiv:1709.05344 [astro-ph.SR].
Petigura, Erik A. et al. (Feb. 2018). âThe California-Kepler Survey. IV. Metal- rich Stars Host a Greater Diversity of Planetsâ. In: The Astronomical Journal 155.2, 89, p. 89. doi: 10 . 3847 / 1538 - 3881 / aaa54c. arXiv: 1712 . 04042 [astro-ph.EP].
RamĂrez, I., S. Khanal, P. Aleo, et al. (July 2015). âThe Dissimilar Chemical Com- position of the Planet-hosting Stars of the XO-2 Binary Systemâ. In:The Astro- physical Journal808, 13, p. 13. doi:10.1088/0004-637X/808/1/13. arXiv:
1506.01025 [astro-ph.SR].
RamĂrez, I., S. Khanal, S. J. Lichon, et al. (Dec. 2019). âThe chemical composition of HIP 34407/HIP 34426 and other twin-star comoving pairsâ. In:Monthly Notices of The Royal Astronomical Society490.2, pp. 2448â2457. doi:10.1093/mnras/
stz2709. arXiv:1909.07460 [astro-ph.SR].
RamĂrez, I., J. MelĂ©ndez, and M. Asplund (Dec. 2009). âAccurate abundance pat- terns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation?â In:Astronomy and Astrophysics508.1, pp. L17â
L20. doi:10.1051/0004-6361/200913038.
â (Jan. 2014). âChemical signatures of planets: beyond solar-twinsâ. In:Astronomy and Astrophysics561, A7, A7. doi: 10.1051/0004-6361/201322558. arXiv:
1310.8581 [astro-ph.SR].
RamĂrez, I., J. MelĂ©ndez, D. Cornejo, et al. (Oct. 2011). âElemental Abundance Differences in the 16 Cygni Binary System: A Signature of Gas Giant Planet Formation?â In:The Astrophysical Journal740.2, 76, p. 76. doi:10.1088/0004- 637X/740/2/76. arXiv:1107.5814 [astro-ph.SR].
Rice, W. K. M. and Philip J. Armitage (Oct. 2003). âOn the Formation Timescale and Core Masses of Gas Giant Planetsâ. In:The Astrophysical Journal598.1, pp. L55â
L58. doi:10.1086/380390. url:https://doi.org/10.1086/380390.
Saffe, C., M. Flores, et al. (Apr. 2016). âTemperature condensation trend in the debris-disk binary system đ2 Reticuliâ. In: Astronomy and Astrophysics 588, A81, A81. doi: 10 . 1051 / 0004 - 6361 / 201528043. arXiv: 1602 . 01320 [astro-ph.SR].
Saffe, C., E. JofrĂ©, et al. (July 2017). âSignatures of rocky planet engulfment in HAT- P-4. Implications for chemical tagging studiesâ. In:Astronomy and Astrophysics 604, L4, p. L4. doi: 10.1051/0004- 6361/201731430. arXiv:1707.02180 [astro-ph.SR].
Santos, N. C., G. Israelian, and M. Mayor (Mar. 2004). âSpectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formationâ. In:
Astronomy and Astrophysics415, pp. 1153â1166. doi: 10.1051/0004-6361:
20034469. arXiv:astro-ph/0311541 [astro-ph].
Sayeed, Maryum et al. (Apr. 2021). âThe Swan: Data-driven Inference of Stellar Surface Gravities for Cool Stars from Photometric Light Curvesâ. In:The Astro- nomical Journal161.4, 170, p. 170. doi:10.3847/1538-3881/abdf4c. arXiv:
2011.10062 [astro-ph.SR].
Schlaufman, Kevin C. and Gregory Laughlin (Sept. 2011). âKepler Exoplanet Can- didate Host Stars Are Preferentially Metal Richâ. In:The Astrophysical Journal 738.2, 177, p. 177. doi:10.1088/0004-637X/738/2/177. arXiv:1106.6043 [astro-ph.EP].
Schuler, Simon C., Davin Flateau, et al. (May 2011). âAbundances of Stars with Planets: Trends with Condensation Temperatureâ. In:The Astrophysical Journal 732.1, 55, p. 55. doi: 10.1088/0004- 637X/732/1/55. arXiv: 1103.0757 [astro-ph.SR].
Schuler, Simon C., Zachary A. Vaz, et al. (Dec. 2015). âDetailed Abundances of Stars with Small Planets Discovered by Kepler. I. The First Sampleâ. In: The Astrophysical Journal 815.1, 5, p. 5. doi: 10 . 1088 / 0004 - 637X / 815 / 1 / 5.
arXiv:1511.00934 [astro-ph.SR].
Sousa, S. G., N. C. Santos, et al. (Aug. 2008). âSpectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunesâ. In: Astronomy and Astrophysics 487.1, pp. 373â381. doi:
10.1051/0004-6361:200809698. arXiv:0805.4826 [astro-ph].
Sousa, SĂ©rgio G., Vardan Adibekyan, et al. (May 2019). âThe metallicity-period- mass diagram of low-mass exoplanetsâ. In:Monthly Notices of the Royal Astro- nomical Society485.3, pp. 3981â3990. doi: 10.1093/mnras/stz664. arXiv:
1903.04937 [astro-ph.EP].
Souto, Diogo et al. (Mar. 2019). âChemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Starsâ. In:The Astrophysical Journal874.1, 97, p. 97. doi:10.3847/1538- 4357/ab0b43. arXiv:1902.10199 [astro-ph.SR].
Teske, Johanna K., Luan Ghezzi, et al. (Mar. 2015). âAbundance Differences be- tween Exoplanet Binary Host Stars XO-2N and XO-2SâDependence on Stel- lar Parametersâ. In:The Astrophysical Journal Letters 801.1, L10, p. L10. doi:
10.1088/2041-8205/801/1/L10. arXiv:1501.02167 [astro-ph.EP].
Teske, Johanna K., Sandhya Khanal, and Ivan RamĂrez (Mar. 2016). âThe Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP- 94A and Bâ. In:The Astrophysical Journal819.1, 19, p. 19. doi:10.3847/0004- 637X/819/1/19. arXiv:1601.01731 [astro-ph.SR].