• Tidak ada hasil yang ditemukan

Chapter VI: Elemental Abundances of Kepler Objects of Interest in APOGEE

6.5 Discussion

the most negative slope regions. The absence of this tail in the Nibauer et al. (2021) abundances, which are comparable to ASPCAP abundances, may again be due to evolutionary state differences in our respective stellar samples.

𝑇𝑐patterns can also be examined by splitting abundances into volatile and refractory groups, and fitting individual linear trends to both sets. This was done by Bedell, Bean, et al. (2018) for a sample of solar twins (see their Figure 4). Stars with enrichment trends will exhibit steeper linear fits to abundances with𝑇𝑐 > 1000 K compared to abundances with𝑇𝑐 < 1000 K, while the opposite will be true for de- pletion trends. We carry out this analysis for our KOIs and their doppelgĂ€ngers, and provide examples of our linear trend fits in Figure 6.11. Because strong enrichment results in steeper refractory trends, the linear fits will have lower intercept values.

Thus, enrichment pattern strength can be likened to the difference in volatile and re- fractory linear fit intercepts. We plot the distributions of these intercept differences in Figure 6.12. The distribution corresponding to ASPCAP abundances exhibits a tail towards higher intercept differences that is not present in the distribution derived from predicted abundances. We examine the ASPCAP𝑇𝑐 trends for the KOIs with the top five largest intercept differences, and find that they have anomalously low measured [Na/H] (ranging from −0.23 dex to−1.29 dex) that are ≳0.2 dex below the other measured abundances. The associated errors on measured [Na/H] are large (0.074−0.94 dex). In addition, four out of the five KOIs with largest intercept differences overlap with the five KOIs that are outliers in predicted and ASPCAP [Na/H] space (Figure 6.5, [Na/H] KOI panel). This is further evidence that the [Na/H] intrinsic dispersion differences in the initial sample selected on [X/Fe]error

< 0.1 dex are the result of large abundance uncertainties. We conclude that if there are underlying differences in the individual abundance𝑇𝑐 trends for the KOI and doppelgĂ€nger samples at fixed evolutionary state, [Fe/H], and [Mg/H], they are marginal. To be detected, these differences must exceed the sensitivity of our predicted abundances, which is typically𝜎intrinsic ≈0.038 dex and 0.041 dex for the KOIs and doppelgĂ€ngers, respectively.

specifically, we compute model-measurement abundance residuals from ASPCAP and predicted abundances using a four-parameter model (𝑇eff, log𝑔, [Fe/H], [Mg/H]), and find that there are no differences in residual structure between the KOI and dop- pelgĂ€nger samples. We calculate the median intrinsic dispersion across all analyzed elements other than (Fe, Mg) to be𝜎intrinsic ≈0.038 dex and 0.041 dex for the KOI and doppelgĂ€nger samples, respectively, which can be taken as the minimum abun- dance precision required for discerning individual abundance signatures related to planet formation.

Because we do not know the planet membership of our doppelgĂ€nger sample, some doppelgĂ€nger stars may be planet hosts. This is plausible because large planet discovery surveys such as the Kepler and TESS missions have revealed that planets are common. Using Kepler DR25, Hsu et al. (2019) recently calculated an upper limit occurrence rate of 0.27 planets per star for 0.5−16 𝑅⊕ planets around FGK dwarfs. Breaking occurrence rates by planet architectures reveals that the majority of these planets are small (𝑅 = 1−4 𝑅⊕) and generally classified as super-Earths and sub-Neptunes (e.g., Burke et al. 2015; Zhu et al. 2018; Bryson et al. 2021).

If a significant fraction of our doppelgÀnger set consists of planet hosts, it makes sense that the abundance distributions of our KOI and doppelgÀnger samples are indistinguishable at fixed (Fe, Mg) and evolutionary state.

To reliably examine abundance differences between planet hosts and reference dop- pelgÀnger stars drawn from the field, none of the reference stars should host planets.

Unfortunately, constructing a sample of doppelgÀnger stars that we know lack plan- ets is difficult. This would require extensive monitoring of targets with Doppler planet search surveys to ensure that there are no RV signals indicative of planets.

Carrying out such observations for an entire reference set of stars would be time and resource intensive. However, certain planet populations can be ruled out with minimal telescope time; close-in giant planets are more easily detected in RV and transit data without long cadence compared to smaller planets on longer orbits. In addition, close-in giants are intrinsically rare. RV surveys produce hot Jupiter (𝑃 <

10 days) occurrence rates of ∌0.8−1.2% around solar-like stars (e.g., Mayor et al.

2011; Wright et al. 2012; Wittenmyer et al. 2020), and transit surveys yield even smaller occurrence rates of∌0.4−0.6% (Howard et al., 2012; Fressin et al., 2013;

Petigura et al., 2018; Kunimoto and Matthews, 2020). These rates are still small for warm Jupiters (𝑃 <50 days), with estimates of∌1.3%. They remain small for hot and warm sub-Saturns (𝑅= 4−8𝑅⊕) as well, which have occurrence rate estimates

of∌0.4% and∌2.3%, respectively (Howard et al., 2012). Thus, constructing a ref- erence sample without close-in giant hosts is feasible. We hope to examine close-in giants in future studies, but this will require another planet host sample as only 18 of our KOIs host confirmed/candidate hot/warm sub-Saturn to Jupiter-sized planets according to the standard definition (𝑅 >4𝑅⊕ and𝑃 <100 days).

Previous studies have found interesting abundance differences between stars that host and do not host close-in giants. For example, MelĂ©ndez et al. (2009) determined that the Sun exhibits a refractory depletion trend with𝑇𝑐 relative to eleven solar twins from theHipparcoscatalog, as well as four solar analogs with close-in giant planets.

However, six other solar analogs lacking close-in giants as verified by RV monitoring show the solar depletion trend 50−70% of the time. One potential explanation for the solar pattern is sequestration of rocky material in the terrestrial planets, and late (10−25 Myr) accretion of dust-depleted gas once the solar convective zone began shrinking to its current mass fraction (∌2%, Hughes, Rosner, and Weiss 2007). Another explanation is that all solar twins and most solar analogs lacking close-in giants engulfed planetary material at late times (>25 Myr), once their convective zones were thin. This scenario would produce refractory enrichment in stellar photospheres. However, it assumes that most solar-like stars are depleted in refractories (at least in the absence of events like planet engulfment), and more recent abundance studies of larger Sun-like samples show that this is not the case (e.g., Bedell, Bean, et al. 2018). Either way, the findings of MelĂ©ndez et al. (2009) suggest that close-in giant planets play a role in altering host star abundances. While their results defy a clear explanation, a larger sample of close-in giant hosts and reference stars lacking close-in giants could be leveraged to examine these trends more closely.

The KOI and doppelgÀnger median abundance prediction intrinsic dispersions are

∌0.038 dex and∌0.041 dex, respectively. These values can be considered the upper limit of abundance precision needed to discern planet formation signatures in the elemental abundance patterns of host stars. Planet formation processes can exceed these levels in rare cases, such as the reported planet engulfment detection in the HD 240429-30 system (∌0.2 dex, Oh et al. 2018). Planet hosts may also be born with different abundances compared to stars without planets. The planet-metallicity correlation indicates that this is true for at least [Fe/H]. Such primordial abundance deviations must also exceed our intrinsic dispersion levels to be detectable.

Our KOI and doppelgÀnger residual abundance distributions are indistinguishable, which yields two possibilities: (1) our reference doppelgÀnger set includes too

many planet hosts, or (2) primordial or post-birth abundance patterns related to planet formation in our samples are below detectable levels. We can tackle the first possibility by focusing on more easily detectable planet architectures, namely close-in giants as discussed earlier. The second possibility could be addressed with higher-precision abundances from advances in spectral synthesis pipelines and/or line lists (e.g., Schuler, Flateau, et al. 2011; Liu et al. 2018; Bedell, Meléndez, et al.

2014), or from spectrographs with higher resolving power (e.g., Adibekyan, Sousa, et al. 2020). Many stars in our KOI and doppelgÀnger samples have abundance uncertainties that exceed our intrinsic dispersion values. Large uncertainties are the root cause of the particularly poorly measured Na abundances for the five outlier stars in our initial sample selected on [X/H]err<0.1 dex. Upgrades to the ASPCAP pipeline, such as improved line lists and advances to the spectral synthesis pipeline, may improve APOGEE abundance precisions in the years to come.

References

Abdurro’uf et al. (Apr. 2022). “The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data”. In:

The Astrophysical Journal Supplement Series259.2, 35, p. 35. doi: 10.3847/

1538-4365/ac4414. arXiv:2112.02026 [astro-ph.GA].

Adibekyan, V., E. Delgado-Mena, et al. (June 2016). “𝜁2 Reticuli, its debris disk, and its lonely stellar companion𝜁1Ret. Different T𝑐trends for different spectra”.

In: Astronomy and Astrophysics 591, A34, A34. doi: 10.1051/0004- 6361/

201628453. arXiv:1605.01918 [astro-ph.SR].

Adibekyan, V., S. G. Sousa, et al. (Oct. 2020). “Benchmark stars, benchmark spectro- graphs. Detailed spectroscopic comparison of ESPRESSO, PEPSI, and HARPS data for Gaia benchmark stars”. In:Astronomy and Astrophysics642, A182, A182.

doi:10.1051/0004-6361/202038793. arXiv:2008.08371 [astro-ph.SR].

Adibekyan, V. Zh., E. Delgado Mena, et al. (Nov. 2012). “Exploring theđ›Œ-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples”. In:Astron- omy and Astrophysics547, A36, A36. doi:10.1051/0004-6361/201220167.

arXiv:1209.6272 [astro-ph.EP].

Adibekyan, V. Zh., N. C. Santos, et al. (July 2012). “Overabundance ofđ›Œ-elements in exoplanet-hosting stars”. In:Astronomy and Astrophysics543, A89, A89. doi:

10.1051/0004-6361/201219564. arXiv:1205.6670 [astro-ph.EP].

Alibert, Y., C. Mordasini, and W. Benz (Feb. 2011). “Extrasolar planet population synthesis. III. Formation of planets around stars of different masses”. In:Astron- omy and Astrophysics526, A63, A63. doi:10.1051/0004-6361/201014760.

arXiv:1101.0513 [astro-ph.EP].

Bashi, Dolev and Shay Zucker (Aug. 2019). “Small Planets in the Galactic Context:

Host Star Kinematics, Iron, and Alpha-element Enhancement”. In: The Astro- nomical Journal 158.2, 61, p. 61. doi:10.3847/1538- 3881/ab27c9. arXiv:

1906.01982 [astro-ph.EP].

Bedell, Megan, Jacob L. Bean, et al. (Sept. 2018). “The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood”. In: The Astrophysical Journal 865.1, 68, p. 68. doi: 10 . 3847 / 1538 - 4357 / aad908. arXiv: 1802 . 02576 [astro-ph.SR].

Bedell, Megan, Jorge MelĂ©ndez, et al. (Nov. 2014). “Stellar Chemical Abundances:

In Pursuit of the Highest Achievable Precision”. In: The Astrophysical Journal 795.1, 23, p. 23. doi: 10.1088/0004- 637X/795/1/23. arXiv: 1409.1230 [astro-ph.SR].

Biazzo, K. et al. (Nov. 2015). “The GAPS programme with HARPS-N at TNG. X.

Differential abundances in the XO-2 planet-hosting binary”. In:Astronomy and Astrophysics583, A135, A135. doi:10.1051/0004-6361/201526375. arXiv:

1506.01614 [astro-ph.SR].

Booth, Richard A. and James E. Owen (Apr. 2020). “Fingerprints of giant planets in the composition of solar twins”. In:Monthly Notices of The Royal Astronomical Society493.4, pp. 5079–5088. doi:10.1093/mnras/staa578. arXiv: 2002.

11135 [astro-ph.EP].

Brewer, John M. and Debra A. Fischer (May 2017). “Erratum: “C/O and Mg/Si Ra- tios of Stars in the Solar Neighborhood” (<A href=“http://doi.org/10.3847/0004- 637x/831/1/20”>2016, ApJ, 831, 20</A>)”. In:The Astrophysical Journal840.2, 121, p. 121. doi:10.3847/1538-4357/aa6d53. arXiv:1608.06286 [astro-ph.SR].

Bryson, Steve et al. (Jan. 2021). “The Occurrence of Rocky Habitable-zone Plan- ets around Solar-like Stars from Kepler Data”. In: The Astronomical Journal 161.1, 36, p. 36. doi: 10 . 3847 / 1538 - 3881 / abc418. arXiv: 2010 . 14812 [astro-ph.EP].

Buchhave, Lars A. and David W. Latham (Aug. 2015). “The Metallicities of Stars with and without Transiting Planets”. In:The Astrophysical Journal808.2, 187, p. 187. doi: 10 . 1088 / 0004 - 637X / 808 / 2 / 187. arXiv: 1507 . 03557 [astro-ph.EP].

Buchhave, Lars A., David W. Latham, et al. (June 2012). “An abundance of small exoplanets around stars with a wide range of metallicities”. In:Nature486.7403, pp. 375–377. doi:10.1038/nature11121.

Burke, Christopher J. et al. (Aug. 2015). “Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample”. In:The Astrophysical Journal809.1, 8, p. 8. doi:

10.1088/0004-637X/809/1/8. arXiv:1506.04175 [astro-ph.EP].

Coughlin, Jeffrey, Susan E. Thompson, and Kepler Team (June 2017). “The Final Kepler Planet Candidate Catalog (DR25)”. In: American Astronomical Society Meeting Abstracts #230. Vol. 230. American Astronomical Society Meeting Ab- stracts, 102.04, p. 102.04.

Feeney, Stephen M., Benjamin D. Wandelt, and Melissa K. Ness (Mar. 2021).

“SSSpaNG! stellar spectra as sparse, data-driven, non-Gaussian processes”. In:

Monthly Notices of the Royal Astronomical Society 501.3, pp. 3258–3271. doi:

10.1093/mnras/staa3586. arXiv:1912.09498 [astro-ph.SR].

Fischer, Debra A. and Jeff Valenti (Apr. 2005). “The Planet-Metallicity Correlation”.

In: The Astrophysical Journal 622.2, pp. 1102–1117. doi: 10 . 1086 / 428383.

url:https://doi.org/10.1086/428383.

Fressin, François et al. (Apr. 2013). “The False Positive Rate of Kepler and the Occurrence of Planets”. In: The Astrophysical Journal 766.2, 81, p. 81. doi:

10.1088/0004-637X/766/2/81. arXiv:1301.0842 [astro-ph.EP].

Galarza, Jhon Yana et al. (Nov. 2021). “Evidence of Rocky Planet Engulfment in the Wide Binary System HIP 71726/HIP 71737”. In:The Astrophysical Journal 922.2, p. 129. doi:10.3847/1538- 4357/ac2362. url: https://dx.doi.

org/10.3847/1538-4357/ac2362.

GarcĂ­a PĂ©rez, Ana E. et al. (2016). “ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline”. In:The Astronomical Journal.

Ghezzi, L., K. Cunha, et al. (Sept. 2010). “Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicity”. In:The Astrophysical Journal720.2, pp. 1290–

1302. doi:10.1088/0004-637X/720/2/1290. arXiv:1007.2681 [astro-ph.SR].

Ghezzi, Luan, Cintia F. Martinez, et al. (Oct. 2021). “A Spectroscopic Analysis of the California-Kepler Survey Sample. II. Correlations of Stellar Metallicities with Planetary Architectures”. In: The Astrophysical Journal 920.1, 19, p. 19.

doi:10.3847/1538-4357/ac14c3. arXiv:2107.04153 [astro-ph.EP].

Ghezzi, Luan, Benjamin T. Montet, and John Asher Johnson (June 2018). “Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass”. In:The Astrophysical Journal860.2, 109, p. 109.

doi:10.3847/1538-4357/aac37c. arXiv:1804.09082 [astro-ph.SR].

Gonzalez, Guillermo (Feb. 1997). “The stellar metallicity-giant planet connection”.

In: Monthly Notices of The royal 285.2, pp. 403–412. doi: 10.1093/mnras/

285.2.403.

Griffith, Emily et al. (Mar. 2021). “The Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulge”. In:The Astrophysical Journal 909.1, 77, p. 77. doi: 10.3847/1538- 4357/abd6be. arXiv: 2009.

05063 [astro-ph.SR].

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Heiter, U. and R. E. Luck (Oct. 2003). “Abundance Analysis of Planetary Host Stars.

I. Differential Iron Abundances”. In:The Astronomical Journal126.4, pp. 2015–

2036. doi:10.1086/378366. arXiv:astro-ph/0307321 [astro-ph].

Howard, Andrew W. et al. (Aug. 2012). “Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler”. In:The Astrophysical Journal Supplement Series 201.2, 15, p. 15. doi: 10.1088/0067- 0049/201/2/15. arXiv: 1103.2541 [astro-ph.EP].

Hsu, Danley C. et al. (Sept. 2019). “Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inference”. In: The Astronomical Journal158.3, 109, p. 109. doi: 10.3847/1538-3881/ab31ab.

arXiv:1902.01417 [astro-ph.EP].

Hughes, D. W., R. Rosner, and N. O. Weiss (2007).The Solar Tachocline.

Ida, Shigeru and D. N. C. Lin (Nov. 2004). “Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities”. In:The Astrophysical Journal616.1, pp. 567–

572. doi:10.1086/424830. url:https://doi.org/10.1086/424830.

JofrĂ©, Emiliano et al. (Dec. 2021). “The Peculiar Chemical Pattern of the WASP- 160 Binary System: Signatures of Planetary Formation and Evolution?” In:The Astronomical Journal162.6, 291, p. 291. doi:10.3847/1538-3881/ac25ef.

arXiv:2109.04590 [astro-ph.EP].

Kunimoto, Michelle and Jaymie M. Matthews (June 2020). “Searching the Entirety of Kepler Data. II. Occurrence Rate Estimates for FGK Stars”. In: The Astro- nomical Journal159.6, 248, p. 248. doi:10.3847/1538-3881/ab88b0. arXiv:

2004.05296 [astro-ph.EP].

Liu, F. et al. (July 2018). “Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation”. In:

Astronomy and Astrophysics 614, A138, A138. doi: 10 . 1051 / 0004 - 6361 / 201832701. arXiv:1802.09306 [astro-ph.SR].

Mack Claude E., III et al. (June 2014). “Detailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the At- mospheres of HD 20782/81?” In:The Astrophysical Journal787.2, 98, p. 98. doi:

10.1088/0004-637X/787/2/98. arXiv:1404.1967 [astro-ph.EP].

Maldonado, J., E. Villaver, and C. Eiroa (May 2018). “Chemical fingerprints of hot Jupiter planet formation”. In:Astronomy and Astrophysics612, A93, A93. doi:

10.1051/0004-6361/201732001. arXiv:1712.01035 [astro-ph.EP].

Maldonado, J., E. Villaver, C. Eiroa, and G. Micela (Apr. 2019). “Connecting sub- stellar and stellar formation: the role of the host star’s metallicity”. In:Astronomy and Astrophysics624, A94, A94. doi:10.1051/0004-6361/201833827. arXiv:

1903.01141 [astro-ph.SR].

Mayor, M. et al. (Sept. 2011). “The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets”. In: arXiv e-prints, arXiv:1109.2497, arXiv:1109.2497.

arXiv:1109.2497 [astro-ph.EP].

MelĂ©ndez, J. et al. (Oct. 2009). “The Peculiar Solar Composition and Its Possi- ble Relation to Planet Formation”. In:The Astrophysical Journal Letters704.1, pp. L66–L70. doi: 10 . 1088 / 0004 - 637X / 704 / 1 / L66. arXiv: 0909 . 2299 [astro-ph.SR].

Mordasini, C. et al. (Nov. 2012). “Characterization of exoplanets from their forma- tion. II. The planetary mass-radius relationship”. In:Astronomy and Astrophysics 547, A112, A112. doi:10.1051/0004-6361/201118464. arXiv:1206.3303 [astro-ph.EP].

Mulders, Gijs D. et al. (Dec. 2016). “A Super-solar Metallicity for Stars with Hot Rocky Exoplanets”. In:The Astronomical Journal 152.6, 187, p. 187. doi:10.

3847/0004-6256/152/6/187. arXiv:1609.05898 [astro-ph.EP].

Nagar, Tushar, Lorenzo Spina, and Amanda I. Karakas (Jan. 2020). “The Chemical Signatures of Planetary Engulfment Events in Binary Systems”. In: The Astro- physical Journal Letters888.1, L9, p. L9. doi:10.3847/2041-8213/ab5dc6.

Narang, Mayank et al. (Nov. 2018). “Properties and Occurrence Rates for Kepler Exoplanet Candidates as a Function of Host Star Metallicity from the DR25 Catalog”. In:The Astronomical Journal156.5, 221, p. 221. doi:10.3847/1538- 3881/aae391. arXiv:1809.08385 [astro-ph.EP].

Ness, Melissa K. et al. (Feb. 2022). “The Homogeneity of the Star-forming En- vironment of the Milky Way Disk over Time”. In: The Astrophysical Journal 926.2, 144, p. 144. doi: 10.3847/1538- 4357/ac4754. arXiv: 2109.05722 [astro-ph.GA].

Nibauer, Jacob et al. (Feb. 2021). “Statistics of the Chemical Composition of Solar Analog Stars and Links to Planet Formation”. In: The Astrophysical Journal 907.2, 116, p. 116. doi: 10.3847/1538- 4357/abd0f1. arXiv: 2010.07241 [astro-ph.SR].

Öberg, Karin I., Ruth Murray-Clay, and Edwin A. Bergin (Dec. 2011). “The Effects of Snowlines on C/O in Planetary Atmospheres”. In:The Astrophysical Journal Letters 743.1, L16, p. L16. doi: 10 . 1088 / 2041 - 8205 / 743 / 1 / L16. arXiv:

1110.5567 [astro-ph.GA].

Oh, Semyeong et al. (Feb. 2018). “Kronos and Krios: Evidence for Accretion of a Massive, Rocky Planetary System in a Comoving Pair of Solar-type Stars”. In:The Astrophysical Journal854.2, 138, p. 138. doi:10.3847/1538-4357/aaab4d.

arXiv:1709.05344 [astro-ph.SR].

Petigura, Erik A. et al. (Feb. 2018). “The California-Kepler Survey. IV. Metal- rich Stars Host a Greater Diversity of Planets”. In: The Astronomical Journal 155.2, 89, p. 89. doi: 10 . 3847 / 1538 - 3881 / aaa54c. arXiv: 1712 . 04042 [astro-ph.EP].

Ramírez, I., S. Khanal, P. Aleo, et al. (July 2015). “The Dissimilar Chemical Com- position of the Planet-hosting Stars of the XO-2 Binary System”. In:The Astro- physical Journal808, 13, p. 13. doi:10.1088/0004-637X/808/1/13. arXiv:

1506.01025 [astro-ph.SR].

Ramírez, I., S. Khanal, S. J. Lichon, et al. (Dec. 2019). “The chemical composition of HIP 34407/HIP 34426 and other twin-star comoving pairs”. In:Monthly Notices of The Royal Astronomical Society490.2, pp. 2448–2457. doi:10.1093/mnras/

stz2709. arXiv:1909.07460 [astro-ph.SR].

RamĂ­rez, I., J. MelĂ©ndez, and M. Asplund (Dec. 2009). “Accurate abundance pat- terns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation?” In:Astronomy and Astrophysics508.1, pp. L17–

L20. doi:10.1051/0004-6361/200913038.

– (Jan. 2014). “Chemical signatures of planets: beyond solar-twins”. In:Astronomy and Astrophysics561, A7, A7. doi: 10.1051/0004-6361/201322558. arXiv:

1310.8581 [astro-ph.SR].

RamĂ­rez, I., J. MelĂ©ndez, D. Cornejo, et al. (Oct. 2011). “Elemental Abundance Differences in the 16 Cygni Binary System: A Signature of Gas Giant Planet Formation?” In:The Astrophysical Journal740.2, 76, p. 76. doi:10.1088/0004- 637X/740/2/76. arXiv:1107.5814 [astro-ph.SR].

Rice, W. K. M. and Philip J. Armitage (Oct. 2003). “On the Formation Timescale and Core Masses of Gas Giant Planets”. In:The Astrophysical Journal598.1, pp. L55–

L58. doi:10.1086/380390. url:https://doi.org/10.1086/380390.

Saffe, C., M. Flores, et al. (Apr. 2016). “Temperature condensation trend in the debris-disk binary system 𝜁2 Reticuli”. In: Astronomy and Astrophysics 588, A81, A81. doi: 10 . 1051 / 0004 - 6361 / 201528043. arXiv: 1602 . 01320 [astro-ph.SR].

Saffe, C., E. JofrĂ©, et al. (July 2017). “Signatures of rocky planet engulfment in HAT- P-4. Implications for chemical tagging studies”. In:Astronomy and Astrophysics 604, L4, p. L4. doi: 10.1051/0004- 6361/201731430. arXiv:1707.02180 [astro-ph.SR].

Santos, N. C., G. Israelian, and M. Mayor (Mar. 2004). “Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation”. In:

Astronomy and Astrophysics415, pp. 1153–1166. doi: 10.1051/0004-6361:

20034469. arXiv:astro-ph/0311541 [astro-ph].

Sayeed, Maryum et al. (Apr. 2021). “The Swan: Data-driven Inference of Stellar Surface Gravities for Cool Stars from Photometric Light Curves”. In:The Astro- nomical Journal161.4, 170, p. 170. doi:10.3847/1538-3881/abdf4c. arXiv:

2011.10062 [astro-ph.SR].

Schlaufman, Kevin C. and Gregory Laughlin (Sept. 2011). “Kepler Exoplanet Can- didate Host Stars Are Preferentially Metal Rich”. In:The Astrophysical Journal 738.2, 177, p. 177. doi:10.1088/0004-637X/738/2/177. arXiv:1106.6043 [astro-ph.EP].

Schuler, Simon C., Davin Flateau, et al. (May 2011). “Abundances of Stars with Planets: Trends with Condensation Temperature”. In:The Astrophysical Journal 732.1, 55, p. 55. doi: 10.1088/0004- 637X/732/1/55. arXiv: 1103.0757 [astro-ph.SR].

Schuler, Simon C., Zachary A. Vaz, et al. (Dec. 2015). “Detailed Abundances of Stars with Small Planets Discovered by Kepler. I. The First Sample”. In: The Astrophysical Journal 815.1, 5, p. 5. doi: 10 . 1088 / 0004 - 637X / 815 / 1 / 5.

arXiv:1511.00934 [astro-ph.SR].

Sousa, S. G., N. C. Santos, et al. (Aug. 2008). “Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes”. In: Astronomy and Astrophysics 487.1, pp. 373–381. doi:

10.1051/0004-6361:200809698. arXiv:0805.4826 [astro-ph].

Sousa, SĂ©rgio G., Vardan Adibekyan, et al. (May 2019). “The metallicity-period- mass diagram of low-mass exoplanets”. In:Monthly Notices of the Royal Astro- nomical Society485.3, pp. 3981–3990. doi: 10.1093/mnras/stz664. arXiv:

1903.04937 [astro-ph.EP].

Souto, Diogo et al. (Mar. 2019). “Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars”. In:The Astrophysical Journal874.1, 97, p. 97. doi:10.3847/1538- 4357/ab0b43. arXiv:1902.10199 [astro-ph.SR].

Teske, Johanna K., Luan Ghezzi, et al. (Mar. 2015). “Abundance Differences be- tween Exoplanet Binary Host Stars XO-2N and XO-2S−Dependence on Stel- lar Parameters”. In:The Astrophysical Journal Letters 801.1, L10, p. L10. doi:

10.1088/2041-8205/801/1/L10. arXiv:1501.02167 [astro-ph.EP].

Teske, Johanna K., Sandhya Khanal, and Ivan Ramírez (Mar. 2016). “The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP- 94A and B”. In:The Astrophysical Journal819.1, 19, p. 19. doi:10.3847/0004- 637X/819/1/19. arXiv:1601.01731 [astro-ph.SR].