• Tidak ada hasil yang ditemukan

Discussion on Arthur’s Truncation Operator

Chapter V: Convergence of the Spectral Side

5.4 Discussion on Arthur’s Truncation Operator

In this section we discuss Arthur’s truncation operators in our case. We will use the conventional notations on p.24-29 of [Art05]. For any parabolic subgroupP ofG, letbτP be the characteristic function of the subset{t ∈aP : $(t)> 0, ∀$ ∈b∆P}of aP.Leta+

0 be the set of positive coroots. LetT ∈a+

0,we sayT is suitably regular if α(T)is large, for each simple rootα.For any suitably regular pointT ∈a+

0 and any functionφ ∈ Bloc(ZG(AF)G(F)\G(AF)),define the truncation functionΛTφto be the function inBloc(ZG(AF)G(F)\G(AF))such that

ΛTφ(x)=Õ

P

(−1)dim(AP/AG) Õ

δ∈P(F)\G(F)

P(HP(δx) −T)

[NP]

φ(nδx)dn. (5.13)

The inner sum may be taken over a finite set depending on x,while the integrand is a bounded function ofn.

Before moving on, we still need to choose a nonnegative functionk · konG(AF)to describe properties of the truncation operatorΛT quantitatively.

Letx = (xv)v ∈G(AF).Recall thatkxvkv =maxi,j|xi,j,v|v ifv <∞; and kxvkv = h Õ

i,j

|xi,j,v|2v i1/2

, ifv | ∞.

Then kxvkv = 1 for almost all v. The height function kxk = Î

vkxvkv is therefore well defined by a finite product. Then one has kxyk ≤ kxk · kyk,∀x,y ∈ G(AF). Also one can check that there is some absolute constantsC0 and N0 such that for any x ∈G(AF),we havekxk1 ≤C0kxkN0,and

#{x ∈G(F): kxk ≤ t} ≤C0tN0, t ≥ 0. Note that the test functionϕis compactly supported. Let

kx·suppϕ· y1k := max

gsuppϕkxgy1k. Then one sees that

|K(x,y)| = |Kϕ(x,y)| ≤ Õ

γ∈ZG(F)\G(F) kγk≤kx·suppϕ·y1k

sup

g∈ZG(AF)\G(AF)

|ϕ(g)|.

Hence |K(x,y)| ϕ #{γ ∈ G(F) : kγk ≤ kx·suppϕ· y1k} ϕ kxkN00 · kykN00, whereN0

0is some absolute constant, i.e., independent of the choice of test function ϕ.Thus there exists some constantc(ϕ)such that|K(x,y)| ≤c(ϕ)kxkN00 · kykN00.

Now we consider derivatives of the kernel K(x,y).SupposeXandYare left invariant differential operators on G(AF,∞)of degrees d1 and d2. Suppose also that the test functionϕ ∈Ccr(G(AF)),for some large positiver. For any cuspidal datum χ ∈X, define the corresponding kernel function as

Kχ(x,y)= Õ

P∈P

1 kP!(2π)kP

iaP/iaG

Õ

φ∈BP,χ

E(x,IP(λ, ϕ)φ, λ)E(y, φ, λ)dλ, (5.14) which is convergent absolutely. By [Art79] there exists some function ϕX,Y ∈ Ccrd1d2(G(AF))such that its corresponding kernel function Kχ,ϕX,Y(x,y)is equal to XY Kχ(x,y), for all x,y ∈ G(AF). Then one can apply the above estimate for kernel functions to obtain

Õ

χ

XYKχ(x,y)

≤ c(ϕX,Y)kxkN00· kykN00, ∀x,y ∈G(AF). (5.15) Also, for any function H(x,y) in Bloc (G(F)\G(AF)1) × (G(F)\G(AF)1),define the partial Fourier transform ofH(x,y)with respect to thex-variable as

F1H(x,y):=∫

N(F)\N(AF)

H(n1x,y)θ(n1)dn1. (5.16) Letwbe a matrix inK,the maximal compact subgroup ofG(AF,∞),representing a Weyl element. Regardwas a matrix inKby setting its components to be the trivial matrix at finite places. Define similarly

Fw

1 H(x,y):=

N(F)\N(AF)

H(w1n1wx,y)θ(n1)dn1. (5.17) This is well defined since H(x,y) is G(F)-invariant on the x-variable, and the quotientN(F)\N(AF)is compact.

Let AF,∞ = ZG(AF,∞)\T(AF,∞), where T(AF,∞) is the AF,∞-points of the torus isomorphic to(Gm)n.For any c> 0,let Ac,∞ be set consisting of all

a=

©

­

­

­

­

­

­

­

­

«

a1a2· · ·an1

a1a2· · ·an2

. . . a1

1 ª

®

®

®

®

®

®

®

®

¬

∈ AF,∞ (5.18)

with|ai| ≥ cfor 1≤ i ≤ n−1.Clearly Ac,∞ ( ZG(AF,∞)\T(AF,∞),∀c >0. A Siegel set Sc for c > 0 is defined to be the set of elements of the form nak, n ∈Ω ⊆ N(AF),compact, such that N(F)Ω= N(AF); k ∈ K,anda ∈ Ac = {a ∈

A(AF) : |αi(a)| ≥ c, 1 ≤ i ≤ n−1}. Then from reduction theory (see [Bor69]), there exists somec0 > 0 such thatG(AF) = ZG(AF)G(F)Sc

0. Denote by S0 = Sc0, and we may assume that 0 < c0 < 1. LetRbe a function on ZG(AF)G(F)\G(AF), we say that Ris slowly increasing if there exists somer > 0 andC > 0 such that R(x) ≤ Ckxkr,∀ x ∈ G(AF); we say R is rapidly decreasing if for any positive integer N and any Siegel setSc for G(AF),there is a positive constantCsuch that

|R(x)| ≤Ckxk−N for every x ∈ Sc.

We will apply the truncation operatorΛT to thesecond variableof kernel functions Kχ(x,y)and show that it is absolutely integrable twisted by any slowing increasing functions overAh,∞Aϕ,fin·K for someh> 0,where Aϕ,finbe a compact subgroup of Afin = ZG(AF,fin)\T(AF,fin)depending on ϕ.

Lemma 42. Let notation be as above. ThenÍ

χ

F1ΛT

2Kχ(x,x)

is rapidly decreas- ing onS0.Moreover, letRbe a slowly increasing function onZG(AF)G(F)\G(AF). Then we have

S0

Õ

χ

F1ΛT

2Kχ(x,x) ·R(x)

dx < ∞, (5.19)

where χruns over all the equivalent classes of cuspidal datum and the truncation operatorΛT acts on the second variable of kernel functionsKχ. Moreover,(5.19) holds whenF1is replaced byFw

1 (defined in(5.17)), wherewis a Weyl element.

Proof. Clearly for any given x ∈ G(AF), F1Kχ(x,y) is a well defined function (with respect toy) inBloc(ZG(AF)G(F)\G(AF)).Then according to Lemma 1.4 in [Art80] (or a more explicit version given by Proposition 13.2 in [Art05], p.71) one sees that given a Siegel set S, positive integers M and M1, and an open compact subgroupK0ofG(AF,fin),one can choose a finite set{Xi}of left invariant differential operators on ZG(AF,∞)\G(AF,∞) and a positive integerr with the property that if (Ω,dω)is a measure space andφ(ω) 7→ φ(ω,x)is any measurable function fromΩ toCr(ZG(AF)G(F)\G(AF)/K0),then

sup

x∈S

kxkM

Tφ(ω,x)|dω

≤ sup

xG(AF)1

kxkM1Õ

i

|Xiφ(ω,x)|dω

! . (5.20) In particular,{Xi}isindependentof(Ω,dω).

Since our test functions lie in the Hecke algebra, we may assume thatϕis biinvariant underK0,whereK0 is an open compact subgroup ofG(AF,fin).Also, set M1 = M0

0

andM large, then we can find a finite set{Yi}of left invariant differential operators

onG(AF,∞)such that (5.20) holds for the measure space(Ω,dω)= (X,d),whereXis the set of cuspidal datum andd = dxis a discrete measure depending onx ∈G(AF). Under our current particular choices (5.20) becomes

sup

y∈S0

kykMÕ

χ

ΛT

2Kχ(x,y)

!

≤ sup

y∈G(A)

Õ

χ

kyk−M1

Õ

i

(Yi)2Kχ(x,y)

!

≤ sup

y∈G(A)

Õ

i

kyk−M1Õ

χ

(Yi)2Kχ(x,y)

! ,

where(Yi)2above indicates that the differential operator acts on the y-variable; and eachYi is independent of x.By the estimate (5.15), the right hand side of the above inequality is bounded by

sup

y∈G(A)

Õ

i

kykN1c(ϕI,Yi)kxkN00 · kykN00

!

≤ Õ

i

c(ϕI,Yi)kxkM1, (5.21) for any x ∈ S0, where I refers to the trivial identity operator. Denote by V0 = vol([N]).Then by mean value theorem there exists somen0∈ [N]such that

Õ

χ

F1ΛT

2Kχ(x,x)

≤ V0Õ

χ

ΛT

2Kχ(n0x,x)

. (5.22)

Substituting (5.21) into the right hand side of (5.22) we then obtain Õ

χ

F1ΛT

2Kχ(x,x)

≤V0Õ

i

c(ϕI,Yi)kxkM1M,

for anyx ∈ S0,where χruns over all the equivalent classes of cuspidal datum. Also, since R(x)is slowly increasing, then by taking M to be large enough we conclude thatÍ

χ

F1ΛT

2Kχ(x,x)

· |R(x)|is a bounded function onS0,hence it is integrable.

Note that the above argument still works whenF1is replaced byFw

1 .Then Lemma

42 follows.

Let Sn be the permutation group on n letters. Let σ ∈ Sn. For any a ∈ AF,∞, write it in its Iwasawa normal form given in (5.18). Let a0i = a1a2· · ·ani, 1 ≤ i ≤ n − 1; and set a0n = 1. For any 1 ≤ i ≤ n, let ai = a1

1 · · ·aσ(1n)a0i. Set aσ = diag(aσ(1),aσ(2),· · ·,aσ(n)). Clearly aσ(n) = 1, and each aσ(i) is a rational function ofa1,· · ·,an1. Moreover, eachaσ(i) is a monomial, 1 ≤ i ≤ n−1. Note thataσ is of the form in (5.18). Soσ induces a well defined map AF,∞ −→ AF,∞, a 7→aσ.Denote byισ this map. Thenισ is actually a bijection fromAF,∞to itself.

Writeaσ(i) = aσ(i)(a1,a2,· · · ,an1) to indicate thataσ(i) is a fractional function of a1,a2,· · ·an1. For anyc> 0,let

Hσc = (

(a1,a2,· · · ,an1):

aσ(i)(a1,a2,· · · ,an−1) aσ(i+1)(a1,a2,· · · ,an−1)

≥ c, 1 ≤i ≤ n−1 )

.

LetSnr eg:= {σ ∈ Sn : σ(i) ≤ σ(i+1), 3≤ i ≤ n−1}.Let 0 < c ≤ 1.Denote by ι(AF,∞)r eg=

(a1,a2,· · · ,an1) ∈Gm(AF,∞)n1: ai

≥ c, 1≤ i ≤ n−3 . Lemma 43. Let notation be as above. Letn ≥ 4.Then one has

ι(AF,∞)r eg ⊆ Ø

σ∈Sr egn

Hσc. (5.23)

Proof. For any σ ∈ Snr eg, if σ(2) < σ(3), then defineiσ = 2; if σ(i0) < σ(2) <

σ(i0+1)for some 3 ≤ i0 ≤ n−1,then defineiσ = i0; if σ(2) > σ(n),then define iσ =n.Since such ani0(if exists) is unique, theniσis well defined. It induces ann to 1 surjectionιr eg :Snr eg → {2,3,· · · ,n},given byσ 7→iσ.For 2 ≤ i ≤ n,letSn,ir eg be the fibre atiσ =i,i.e.,Sr egn,ir eg(i)1.Then

Ø

σ∈Sr egn

Hσc = Øn

i=2

Ø

σ∈Sr egn,i

Hσc. (5.24)

Let ι2(AF,∞)r eg =

(a1,a2,· · ·,an1) ∈ ι(AF,∞)r eg : an2

≥ c . Denote by ιn(AF,∞)r eg =

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg :

a1a2· · ·an2

≤ 1/c . De- fine, for any 3 ≤ i ≤ n−1, that ιi(AF,∞)r eg =

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg :

an−ian−i+1· · ·an−2

≥ c,

an−i+1an−i+2· · ·an−2

≤ 1/c . Note that, for any 2≤ i ≤ n, ιi(AF,∞)r egis well defined.

Claim 44. Let notation be as before. Then one has, for any2≤ i ≤ n,that ιi(AF,∞)r eg ⊆ Ø

σ∈Sn,ir eg

Hσc. (5.25)

A straightforward combinatorial analysis shows that ι(AF,∞)r eg is contained in the union ofιi(AF,∞)r eg over 2≤ i ≤ n. Hence (5.23) comes from (5.24) and (5.25):

ι(AF,∞)r eg

n

Ø

i=2

ιi(AF,∞)r eg

n

Ø

i=2

Ø

σ∈Sn,ir eg

Hσc = Ø

σ∈Snr eg

Hσc.

Proof of Claim 44. For any 2≤ i ≤ nand anyσ ∈Sn,ir eg,recall thatHσc is equal to (

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg :

aσ(i)(a1,a2,· · · ,an−1) aσ(i+1)(a1,a2,· · ·,an−1)

≥ c, i ≤ n−1 )

.

Case 1 Let i = 2 and σ ∈ Sn,ir eg. If σ(2) + 1 < σ(1) < n, then there exists a unique jσ such that σ(jσ) < σ(2) < σ(jσ + 1). In this case Hσc is equal to

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg : |an2| ≥ c, |anjσ · · ·an1| ≥ c, |anjσ+1· · ·an1| ≤ 1/c . Ifσ(1) = n,thenHσc =

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg : |ani· · ·an2| ≥ c, |a1· · ·an1| ≤ 1/c . If σ(1) = σ(2)+ 1, then Hσc is equal to

(a1,a2,· · ·,an−1) ∈ ι(AF,∞)r eg : |an−2an−1| ≥ c, |an−1| ≤ 1/c, |an−1an−2| ≤ 1/c . If σ(1) = σ(2) − 1, then Hσc is equal to

(a1,a2,· · ·,an−1) ∈ ι(AF,∞)r eg : |an−2| ≥ c, |an−1| ≥ c . Now one sees clearly that the union of Hσc over σ ∈ Sn,ir eg does cover the sets

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg : an−2

≥ c, |an−1| ≥ c and (a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg :

an2

≥ c, |an1| ≤ 1/c . Therefore it coversι2(AF,∞)r eg. Hence (5.25) holds in the case wherei =2.

Case 2 Let 3 ≤ i ≤ n−1 andσ ∈ Sn,ir eg. Ifσ(2)+1 < σ(1) < n,then there exists a unique jσ such thatσ(jσ)< σ(2)< σ(jσ+1).In this caseHσc is equal to (a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg : |an−i· · ·an−2| ≥ c, |an−i+1· · ·an−2| ≤ 1

c,

|anjσ· · ·an1| ≥ c,kanjσ+1· · ·an1| ≤ 1/c . Ifσ(1)= n,thenHσc is equal to

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg : |an−i· · ·an−2| ≥ c,

|ani+1· · ·an2| ≤ 1/c, |a1· · ·an1| ≤ 1/c . Ifσ(1)= σ(2)+1,thenHσc is equal to

(a1,a2,· · ·,an−1) ∈ι(AF,∞)r eg : |an−i· · ·an−2an−1| ≥ c,

|an1| ≤ 1/c, |ani+1· · ·an2| ≤ 1/c . Ifσ(1)= σ(2) −1,thenHσc is equal to

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg : |an−i· · ·an−2| ≥ c,

|an1| ≥ c, |ani+1· · ·an1| ≤ 1/c .

If 1 < σ(1) < σ(2) −1,then there exists a uniquejσsuch thatσ(jσ)< σ(2)<

σ(jσ+1).In this caseHσc is equal to

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg : |ani· · ·an2| ≥ c,|ani+1· · ·an2| ≤ c1,

|anjσ· · ·an2an1| ≥ c, |anjσ+1· · ·an1| ≤ 1/c . Ifσ(1)= 1,then

Hσc =

(a1,a2,· · ·,an1) ∈ι(AF,∞)r eg : |aniani+1· · ·an2| ≥ c,

|an−i+1· · ·an−2| ≤ c1, c ≤ |an−2an−1| . Now one sees clearly that the union ofHσc overσ ∈Sr egn,i does cover the sets

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg:

an−ian−i+1· · ·an−2 ≥ c,

ani+1ani+2· · ·an2

≤ 1/c, |an1| ≥ c and

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg :

an−ian−i+1· · ·an−2

≥ c,

ani+1ani+2· · ·an2

≤ 1/c, |an1| ≤ 1/c . Therefore, it coversιi(AF,∞)r eg.Hence (5.25) holds.

Case 3 Leti = nandσ ∈ Sn,ir eg. Ifσ(1)= σ(2)+1,thenHσc =

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg : |an1| ≤ 1/c, |a1a2· · ·an2| ≤ 1/c .Ifσ(1)= σ(2) −1,then Hσc is equal to

(a1,a2,· · · ,an−1) ∈ ι(AF,∞)r eg: |an−1| ≥ c, |a1a2· · ·an−1| ≤ 1/c . If 1 < σ(1) < σ(2) −1, then there exists a unique jσ such that σ(jσ) <

σ(2) < σ(jσ+1). In this caseHσc is equal to

(a1,· · ·,an−1) ∈ ι(AF,∞)r eg :

|a1· · ·an−2| ≤ 1/c, |an−jσ · · ·an−1| ≥ c, |an−jσ+1· · ·an−1| ≤ 1/c . If σ(1) = 1,thenHσc =

(a1,a2,· · ·,an1) ∈ ι(AF,∞)r eg : |ani+1· · ·an2| ≤ 1/c, |a1a2· · ·an2an1| ≥ c . Now one sees clearly that the union of Hσc over σ ∈ Sn,ir eg does cover the sets

(a1,a2,· · · ,an1) ∈ ι(AF,∞)r eg :

a1a2· · ·an2

≤ 1/c, |an1| ≥ c and

(a1,a2,· · ·,an1) ∈ ι(AF,∞)r eg :

a1a2· · ·an−2

≤ 1/c, |an−1| ≤ 1/c . Therefore, it covers ιn(AF,∞)r eg. Hence (5.25) holds fori= n.

Therefore, Claim 44 follows from the above discussions.

Proposition 45. Let notation be as before. Let ι : AF,∞ −→ Gm(AF,∞)n1 be the isomorphism given bya 7→ (a1,a2,· · ·,an1).Then for any0< c ≤ 1,one has

ι(AF,∞) ⊆ Ø

σ∈Sn

Hσc. (5.26)

Proof. When n = 2, (5.26) is immediate. When n = 3, there are six different Hσc’s. In this case, one can verify by brute force computation that the union of these hyperboloids does cover ι(AF,∞). Hence (5.26) holds for n = 3. From now on, we may assume n ≥ 4. For any m ∈ Z, let τm : Z → Z be the shifting map defined by j 7→ j +m,∀ j ∈ Z. Set Sn2[2] := {τ2◦σ ◦τ2 : σ ∈ Sn2} as a set of bijections from the set{3,4,· · · ,n} to itself. Regard naturallySn2[2]as the stabilizer of{1,2}ofSn.Then clearlySn2[2]is isomorphic toSn2.Denote by%the natural isomorphismSn2

−→ Sn2[2], σ 7→ τ2◦σ◦τ2.Note that #Sr egn =n(n−1), then we have a bijection:

Sn−2×Sr egn −−→1:1 Sn, (σ, σ0) 7→ %(σ) ◦σ0. (5.27) Assume that (5.26) holds for any n0 ≤ n− 2. Let (a1,a2,· · · ,an−1) ∈ ι(AF,∞). Let a ∈ AF,∞ be such that ι(a) = (a1,a2,· · · ,an−1). Then (a1,a2,· · ·,an−3) ∈ ι≤n−2(AF,∞), where ι≤n−2 : AF,∞ −→ Gm(AF,∞)n−3 is the map given by a 7→

(a1,a2,· · · ,an−3). Then by our induction assumption, there exists some σ ∈ Sn−2 such that (a1,a2,· · ·,an−3) ∈ Hσc%, where σ% := %1(σ). Note that for each 1 ≤ i ≤ n −3, aσ%(i)(a1,a2,· · · ,an1) is independent of an2 and an1, we may write aσ%(i)(a1,a2,· · · ,an1)=aσ%(i)(a1,a2,· · ·,an3),1 ≤i ≤ n−3.Letb2 =a1a2· · ·an2· aσ%(1)(a1,a2,· · · ,an3)1, b1 = a1a2· · ·an2an1 · b1

2 , and bn = 1. Let bi+2 = aσ%(i)(a1,a2,· · · ,an3), 1 ≤ i ≤ n− 3. Set b = diag(b1,b2,· · · ,bn). Then clearly b = aσ%. Hence b ∈ AF,∞ and ι(b) = (b1,b2,· · ·,bn−1), where bi = bn−i ·bn−i+11 , 1 ≤ i ≤ n−1. By our definition of b, one sees that ι(b) ∈ ι(AF,∞)r eg. Then by Lemma 43 there exists someσ0∈Snr egsuch thatι(b) ∈ Hσc0.Therefore,

|bσ0(i)(b1,b2,· · · ,bn−1)| ≥ c· |bσ0(i+1)(b1,b2,· · · ,bn−1)|, 1≤ i ≤ n−1. Sinceb =aσ%,the above system of inequalities becomes, for 1≤ i ≤ n−1,that

|a%(σ)◦σ0(i)(a1,a2,· · · ,an−1)| ≥ c· |a%(σ)◦σ0(i+1)(a1,a2,· · ·,an−1)|. Then according to (5.27),ι(a) ∈ Hc

σ˜ for ˜σ = %(σ) ◦σ0∈ Sn.Hence (5.26) holds for n0= n.Since it holds forn0= 2 andn0= 3,Proposition 45 follows by induction on

initial cases.

Proposition 46. Let notation be as above. Let Aϕ,fin be a compact subgroup of ZG(AF,fin)\T(AF,fin) depending only on ϕ and F. Let R(x) be a slowly increasing function onS0.Then we have

K

[N]

AF,∞Aϕ,fin

Õ

χ

F1ΛT

2Kχ(nak,nak) ·R(nak)

d×adndk < ∞, (5.28) where χruns over all the equivalent classes of cuspidal datum.

Proof. LetAσF,∞= {a ∈ AF,∞ : ι(a) ∈ Hσc}.Then Proposition 45 implies that AF,∞ = Ø

σ∈Sn

AσF,∞. (5.29)

The decomposition (5.29) implies that the left hand side of (5.28) is not more than Jc := Õ

σ∈Sn

K

[N]

AσF,∞Aϕ,fin

Õ

χ

F1ΛT

2Kχ(nak,nak) ·R(nak)

d×adndk.

Note that for any σ ∈ Sn, leta ∈ AσF,∞,thenaσ ∈ Sc. Let w ∈ K be the matrix representation of the Weyl element corresponding toσ so thataσ =w1aw. Then

F1ΛT

2Kχ(nak,nak)= Fw

1 ΛT

2Kwχ(w1nwaσafinw1kw,w1nwaσafinw1kw), where Kwχ refers to the kernel function relative to the test function ϕw defined by ϕw(x)= ϕ(wxw1).

Let ι(a) = (a1,a2,· · ·,an1),and ι(aσ) = (aσ,1,aσ,2,· · · ,aσ,n1),then a straightfor- ward computation shows that each ai is a rational monomial Pσ of the variables aσ,1,aσ,2,· · · ,aσ,n1.Since such a monomial is at most polynomially increasing on Sc,one then changes variables to see

K

[N]

AσF,∞Aϕ,fin

Õ

χ

F1ΛT

2Kχ(nak,nak) ·R(nak)

d×adndk

is bounded by the integral overK,N(F)\N(AF)of

AσF,∞Aϕ,fin

Õ

χ

Fw

1 ΛT

2Kwχ(X,X) ·R(naσafink)Pσ(aσ)

d×aσd×afin, (5.30) where X = w1nwaσafinw1kw,w1nwaσafinw1kw. Note that (5.30) is bounded by the integral over Aϕ,finofGσ(n,a,k),whereGσ(n,a,k)is defined to be

AF,∞∩Sc

Õ

χ

Fw

1 ΛT

2Kwχ(X0,X0) ·R(naafink)Pσ(a) d×a,

where X0 = w1nwaafinw1kw. Since the functiona 7→ R(naafink)Pσ(a)is slowly increasing onAF,∞∩ Sc,Lemma 42 implies thatGσ(n,a,k)is well defined and thus it is continuous. So

K

[N]

Aϕ,fin

Gσ(n,a,k)d×afindndk < ∞, ∀σ ∈Sn.

Therefore, (5.28) follows from the estimate below:

Jc ≤ Õ

σ∈Sn

K

N(F)\N(AF)

Aϕ,fin

Gσ(n,a,k)d×afindndk < ∞.

Then Proposition 46 follows.

Corollary 47. Let notation be as above. Let R(x)be a slowly increasing function onZG(AF)N(F)\G(AF). Then we have

ZG(AF)N(F)\G(AF)

Õ

χ

F1ΛT

2Kχ(x,x) ·R(x)

dx < ∞, (5.31) where χruns over all the equivalent classes of cuspidal data.

Proof. To handleF1ΛT

2Kχ(x,y)we can substitute the definitions ofF1andΛT into the expansion of Kχ (cf. (5.14)). Note that (5.14) is convergent absolutely andΛT is a finite sum for givenx andy.One can thus apply the operatorsF andΛT inside the integral overiaP/iaG to obtain explicitly that

F1ΛT

2Kχ(x,y)= Õ

P∈P

1 cP

iaP/iaG

Õ

φ∈BP,χ

FE(x,IP(λ, ϕ)φ, λ)ΛTE(y, φ, λ)dλ.

This an easier analogue of Lemma 37. Then as before, the non-constant Fourier coefficient FE(x,IP(λ, ϕ)φ, λ)of E(x,IP(λ, ϕ)φ, λ) becomes a Whittaker function W(x;λ).

Recall that our test function ϕ is K-finite. Hence there is some compact sub- group K0 ⊂ G(AF,fin)1 such that ϕ is right K0-invariant. Then for φ ∈ BP,χ, FE(x,IP(λ, ϕ)φ, λ)ΛTE(y, φ, λ) = 0 unless φ is right K0-invariant. Let K0 = Îv<∞K0,v.Note that the Whittaker functions are decomposable, i.e.,

W(x;λ)= Ö

v∈ΣF

Wv(x;λ).

Then for each finite placev,Wv(x;λ)is rightK0,v-invariant. So there exists a compact subgroupN0,v ⊆ K0,v∩N(Fv),depending only onϕ,such that

Wv(tvuv;λ)=Wv(tv;λ), for alltv ∈T(Fv)anduv ∈ N0,v.

On the other hand, Wv(tvuv;λ) = θtv(uv)Wv(tv;λ), where θtv(nv) = θ(tvnvtv1), for any nv ∈ N(Fv). But then, there exists a constantCv depending only on N0,v andθ (hence not onλ) such thatθtv(uv)=1 if and only if|αi(tv)| ≤Cv,whereαi’s are the simple roots ofG(F). Note that for all but finitely manyv < ∞,K0,v = GLn(OF,v), thus we can take the correspondingCv =1. Hence for anytv ∈T(Fv),Wv(tv;λ),0 implies that|αi(tv)| ≤ Cv,1 ≤ i ≤ n−1,andCv = 1 for all but finitely many finite placesv. Set A= ZG\T,and

Aϕ,fin = n

a= (av) ∈ A(AF,fin): |αi(av)| ≤Cv, 1≤ i ≤ n−1 o.

Then suppW(x;λ) |A(AF)⊆ A(AF,∞)Aϕ,fin, ∀ λ ∈ iaP/iaG, 1 ≤ i ≤ 2. So after applying Iwasawa decomposition, we see that the integrand in (5.31) are supported in[N]·A(AF,∞)Aϕ,fin·K,independent of χ.Therefore, (5.31) follows from (5.28).

C h a p t e r 6

RANKIN-SELBERG CONVOLUTIONS FOR GENERIC REPRESENTATIONS

By Theorem G, we see that when Re(s)> 1,IWhi(s, τ)is equal to Õ

χ

Õ

P∈P

1 cP

Õ

φ1∈BP,χ

Õ

φ2∈BP,χ

Λ

hIP(λ, ϕ)φ2, φ1P,χ(s,W1,W2;λ)dλ, (6.1)

where ΨP,χ(s,W1,W2;λ) = ∫

ZG(AF)N(AF)\G(AF)W1(x;λ)W2(x;λ)f(x,s)dx, and the Whittaker functionWi(x, λ)=∫

N(AF)φi(w0nx)e+ρP)HP(w0nx)θ(n)dn,1≤ i ≤ 2,and w0is the longest Weyl element.

For our purpose, we need to show thatIWhi(s, τ)is a holomorphic multiple ofL(s, τ). So we have to compute (6.1) explicitly (up to an entire factor), then continue it to a meromorphic function which is a holomorphic multiple of L(s, τ)as we desired.

To achieve that, we start with computing each ΨP,χ(s,W1,W2;λ) associated to a standard parabolic subgroupPand a cuspidal datum χ=(MP, σ) ∈X.

Let P be a standard parabolic subgroup of G of type (n1,n2,· · ·,nr), 1 ≤ r ≤ n, with n1+n2+ · · ·nr = n. Let χ ∈ X be represented by (MP, σ). Let BP,χ be an orthonormal basis of the Hilbert spaceHP,χ. Forφi ∈ BP,χ,1 ≤ i ≤ 2,define the Whittaker function associated toφiparameterized byλ∈iaP/iaG by

WP,χ,i(x, λ)=W(x, φi, λ):=

N(AF)

φi(w0nx)e+ρP)HP(w0nx)θ(n)dn,

wherew0is the longest element in the Weyl groupWn. Define ΨP,χ(s,W1,W2;λ,Φ)=∫

ZG(AF)N(AF)\G(AF)

WP,χ,1(x;λ)WP,χ,2(x;λ)f(x,s)dx.

From now on, we fix such a standard parabolic subgroup P of type (n1,· · · ,nr) and a cuspidal datum χ = (MP, σ) ∈ X,whereσ is a unitary representation of M of central characterω.Then there existr cuspidal representations πi of GLni(AF), 1 ≤ i ≤ r,such that σ ' π1⊕ π2⊕ · · · ⊕πr. Letπ = IndG(P(AAFF))1, π2 · · ·, πr).For anyλ=(λ1, λ2,· · · , λr) ∈iaP/iaG,denote by

πλ =IndGP((AF)

AF)

π1⊗ | · |λ1

AF, π2⊗ | · |λ2

AF,· · · , πr ⊗ | · |λr

AF

. (6.2)

Thenπλ is also a unitary automorphic representation ofG(AF). Fixφ1, φ2 ∈ BP,χ and a point λ = (λ1, λ2,· · ·, λr) ∈ iaP/iaG. Write Wi(x, λ) = WP,χ,i(x, λ), and Ψ(s,W1,W2;λ,Φ)= ΨP,χ(s,W1,W2;λ,Φ).Sinceλ ∈iaP/iaG, λ= −λ,¯ one has

Ψ(s,W1,W2;λ,Φ)= ∫

ZG(AF)N(AF)\G(AF)

W1(x;λ)W2 x;−λ¯

f(x,s)dx. (6.3) SinceW1(x;λ)andW2 x;−λ¯

are dominant by some gauge, and f(x,s)is slowly in- creasing when Re(s)> 1,thenΨ(s,W1,W2;λ,Φ)converges absolutely and normally when Re(s)> 1.Note thatπi = ⊗0vπi,v, 1≤ i ≤ r,where, for eachv ∈ ΣF, πi,vis a uni- tary irreducible representation of GLni(Fv),of Whittaker tape. Then for eachv ∈ ΣF and λ = (λ1, λ2,· · · , λr) ∈ iaP/iaG, denote by πv = IndG(FMP(Fv)v) π1,v, π2,v,· · · , πr,v and

πλ,v =IndG(FMP(Fv)v)

π1,v ⊗ | · |λ1

Fv, π2,v ⊗ | · |λ2

Fv,· · ·, πr,v ⊗ | · |λr

Fv

.

Thenπ = ⊗0vπv andπλ = ⊗0vπλ,v.Recall that f(x,s)= Î

v fv(xv,s),where fv(xv,s)=τv(detxv)|detxv|Fs

v

ZG(Fv)

Φv[(0,· · · ,tv)xvvn(tv)|tv|nsF

vd×tv, ifΦ= ⊗0vΦv.Sinceφ1andφ2both have central characterωλ =ω,which is unitary.

So isW1(x;λ)andW2(x;λ).Hence one can rewriteΨ(s,W1,W2;λ,Φ)as

N(AF)\G(AF)

W1(x;λ)W2 x;−λ¯Φ(ηx)τ(detx)|detx|s

AFdx, (6.4) whereη= (0,· · · ,0,1) ∈ Fn. According to the definition we can writeφi = ⊗0vφi,v, 1≤ i ≤ 2. Thus one can factorWi(x;λ)asÎ

v∈ΣFWi,v(xv;λ),where Wi,v(xv;λ)=∫

N(Fv)

φi,v(w0nxv)e+ρP)HP(w0nxv)θ(n)dn, xv ∈ Fv, 1 ≤i ≤ 2. We may assumeΦ= ⊗0vΦv andφi = ⊗0vφi,v,i =1,2. Then one has

Ψ s,W1,v,W2,v;λ,Φ = Ö

v∈ΣF

Ψv s,W1,v,W2,v;λ,Φv, where each local factorΨv s,W1,v,W2,v;λ,Φv

is defined to be

N(Fv)\G(Fv)

W1,v(xv;λ)W2,v xv;−λ¯

Φv(ηxv)τ(detxv)|detxv|Fs

vdxv, (6.5) where Wi,v(xv;λ) = ∫

N(Fv)φi,v(w0nx)e+ρP)HP,v(w0nx)θ(n)dn, 1 ≤ i ≤ 2. Since W1,v(x;λ)andW2,v x;−λ¯

are dominant by some local gauge, and fv(xv,s)is slowly increasing when Re(s) > 1, then Ψ s,W1,v,W2,v;λ,Φv

converges absolutely and normally when Re(s)> 1,for anyv ∈ΣF.

6.1 Local Theory forΨv s,W1,v,W2,v;λ,Φv

In this section, we shall compute each local integral representationΨv s,W1,v,W2,v;λ,Φv defined via (6.5). Letv ∈ ΣF be a place of F. Note thatv may be archimedean or nonarchimedean. Letu = (uj,l)1j,l≤n ∈ N(Fv),the unipotent of GLn,we denote by N0j(u)the matrix

©

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

«

1 u12 · · · u1,n−j+2 u1,n−j+3 · · · u1,n

1 · · · u2,n−j+2 u2,n−j+3 · · · u2,n

. . . ... ... ... ... ... ...

1 unj+1,nj+2 unj+1,nj+3 · · · unj+1,n

1 0 · · · 0

1 · · · unj+3,n

. . . ... ...

1 un−1,n 1

ª

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

¬ associated tou.Denote byN1j(u)the matrix

©

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

«

1 u12 · · · u1

1,nj+2 u1,n−j+3 · · · u1,n

1 · · · u1

2,nj+2 u2,n−j+3 · · · u2,n

. . . ... ... ... ... ... ...

1 0 unj+1,nj+3 · · · unj+1,n

1 0 · · · 0

1 · · · unj+3,n

. . . ... ...

1 un−1,n 1

ª

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

¬

associated tou,whereu1l,nj+2 = ul,nj+2−ul,nj+1unj1,nj+2,1 ≤ l ≤ n− j.For any 2≤ j ≤ n,we denote byNj0(u)the matrix

©

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

«

1 u12 · · · u1,n−j+1 u1,n u1,n−j+2 · · · u1,n−1

1 · · · u2,nj+1 u2,n u2,nj+2 · · · u2,n1

. . . ... ... ... ... ... ...

1 unj+1,n unj+1,nj+2 · · · unj+1,n1

1 0 · · · 0

1 · · · un−j+2,n−1

. . . ... ...

1 un−2,n−1

1 ª

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

¬

;

and foru =(uj,l)1j,ln ∈ N(Fv),we letN0j+2(u00)represent the matrix

©

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

­

«

1 u12 · · · u1,nj1 u1,n u0

1,nj · · · u1,n1

1 · · · u2,nj1 u2,n u0

2,nj · · · u2,n1

. . . ... ... ... ... ... ...

1 unj1,n u0n−j−

1,n−j · · · unj1,n1

1 0 · · · 0

1 · · · un−j,n−1

. . . ... ...

1 un−2,n−1

1 ª

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

¬ ,

withu0k,n−j =uk,nj+snj,nuk,nj1,1≤ k ≤ n− j−1.

Let wj be the simple root of GLn corresponding to the permutation (j,j + 1), 1 ≤ j ≤ n−1.Letτnbe the longest element in the Weyl groupWnof GLn,n ≥ 2. Thenτn =wn−1wn−2wn−1w· · ·w1w2· · ·wn−1,for anyn ≥ 2.Recall that we writew0 for the longest element forG; when we highlight the ranknwe then useτninstead.

Theτnis only used in this section.

Fix a nontrivial additive character θ = θv on Fv. This notation in only used in this section and should not be thought as a local version of notations in Sec. 3.1.

Let α = (α1, α2,· · ·, αn−1) ∈ Fvn−1. Denote by θα the character on Fvn−1 such that θα(x1,· · · ,xn−1)= θ(α1x1+· · ·+αn−1xn−1).Extendingθα to a character onN(Fv) byθα(u)=θ(α1u122u23+· · ·+αn−1un−1,n),whereu =(uk,l)1≤k,l≤n ∈N(Fv).Let

φv ∈πv. Define the Whittaker function associated toφandαby Wv(α, λ)= ∫

N(Fv)

φvnu)e+ρ)HBnu)θα(u)du.

Let πv,λ = IndGLB(Fnv(F)v) χv,1| · |λ1,· · ·, χv,n| · |λn

be a principal series. Let un1 = (u1,u2,· · ·,cn1) ∈ Fvn−1.For anyα= (α1, α2,· · · , αn1) ∈ Fvn−1,we set

Wv,j(

n1;eλ)=

Nn−1(Fv)

φvn1u)e+ρ)HBn−1n1u)θ

eαn−1(u)du,

witheαn−1 = (a(u1)1a(u21,· · ·,a(un−2)1a(un−1n−2) ∈ Fvn−2. Hence the func- tionWv,j(eαn−1;λ)e is a Whittaker function on GLn−1associated to the principal series representation IndGLB n1(Fv)

n1(Fv) χv,2| · |λ2,· · · , χv,n| · |λn

and parameter eαn−1 ∈ Fvn2. Let χv,lur = | · |vl, νl ∈ R, 1 ≤ l ≤ n. Denote by zk,l = λk − λl +iνk −iνl ∈ C, 1≤ k < l ≤ n.

Letxv ∈Fv.Ifvis an archimedean place, then define the functionsaandsonFvas follows:

a(xv)=





(1+|xv|v2)1/2, s(xv)= xva(xv), ifFv 'R;

(1+|xv|v)1/2, s(xv)= xva(xv), ifFv 'C.

Ifvis a nonarchimedean place, then define the functionsaandsonFv as follows:

a(xv)=





1, if xv ∈ OFv; xv1, otherwise;

s(xv)=





0, if xv ∈ OFv; 1, otherwise.

Lemma 48. Let notation be as above. Assume thatπvis rightKv-finite. Letv ∈ ΣF be an arbitrary place and letπv = IndGLB(Fnv(F)v) χv,1,· · · , χv,n

be a principal series.

Then the Whittaker functionWv(α;λ)is equal to Õ

j∈J

Fvn1

Wv,j(eαn−1;λ)eeθn(u1,· · · ,un−1) Ön

l=2

|a(un−l+1)|v1+z1,l

n1

Ö

j=1

duj, (6.6) where jruns over a finite index set depending only on theKv-type ofφv;and

n(u1,· · · ,un−1)=θ(αn−1un−1−αn−2c(un−1)un−2−αn−3c(un−2)un−3

− · · · −αnjc(unj+1)unj− · · · −α1c(u2)u1).

Proof. Assume thatvis an archimedean place. Letr ∈Randβ ∈ [0,2π).Then by a straightforward computation we have the Iwasawa decomposition

1 r e 1

!

= 1

r e 1+r2 1

! e

√ 1+r2

e

1+r2

! e

1+r2

r e2iβ

1+r2

r e2iβ

1+r2 e

1+r2

!

. (6.7)

Ifvis a nonarchimedean place ofF.We then fix an uniformizer$v ofFv×. For any u ∈ Fv,one can writeu = u$vm,for some m ∈ Z,whereu ∈ O×

Fv. If m ≥ 0,then u ∈ OFv,implying that 1 u

1

!

∈GL(n,OFv).Ifm< 0,then one has that

1 u 1

!

= 1 u1 1

! u

u1

! u1 1

1 0

!

. (6.8)

Letvbe arbitrary andu ∈ Fv. For any 2 ≤ j ≤ n,1 ≤ l ≤ 4,letMl(u) = Ml,j(u)be the matrix defined by

M1(u)=

©

­

­

­

­

­

« In−j

1 u 1

Ij2

ª

®

®

®

®

®

¬

, M2(u)=

©

­

­

­

­

­

« In−j

a(u)1 s(u) a(u)

Ij2

ª

®

®

®

®

®

¬

;

M3(u)=

©

­

­

­

­

­

« Inj

a(u)1 a(u)

Ij−2 ª

®

®

®

®

®

¬

, M4(u)=

©

­

­

­

­

­

« Inj

1 c(u) 1

Ij−2 ª

®

®

®

®

®

¬ ,

wherec(u)= a(u)s(u). Letτn,j = wn−1· · ·wn−j+1,2 ≤ j ≤ n.

Denote by w0 = I dn, the identity element. Then one has N0

2(u) = u, and for any j ≥ 2, Nj0(u) = N1j(u)M1(un−j+1,n−j+2) and wn−j+1Nj1(u)wn−j+1 = Nj+10 (u0), where u0 = (u0k,l)1k,ln ∈ N(Fv) is defined by u0k,l = uk,l1 if l = n − j + 2;

u0k,l = uk,l+1 ifl = n− j+1; u0k,l = uk+1,l if k = n− j +2; and u0k,l = uk,l,other- wise. Now applying (6.8) one then has thatM1(un+1j,nj+2)= M2(un+1j,nj+2)k = M4(un+1j,nj+2)M3(un+1j,nj+2)k, where k ∈ K(Fv), the maximal compact sub- group of GL(n,Fv). Consequently, we have τnNj0(u) = τnNj1(u)M1(unj+1,nj+2) = τnwn−j+1N0j+1(u0)wn−j+1M1(un−j+1,n−j+2),which is equal to

τnwn−j+1N0j+1(u0)wn−j+1M4(un+1j,n−j+2)M3(un+1j,n−j+2)k.

Note that we havewnj+1M4(un+1j,nj+2)= M1(un+1j,nj+2)wnj+1and N0j+1(u0)M1(un+1j,nj+2)= M1(un+1j,nj+2)N0j+1(u)˜ ,

where ˜u = (u˜k,l)1k,ln ∈ N(Fv) is defined by ˜uk,l = u0k,l + un+1j,nj+2u0k+1,l if k =n−j+1; ˜uk,l = u0k,l+un+1j,n−j+2u0k,l−

1ifl =n−j+2; and ˜uk,l =u0k,lotherwise.

Therefore,

τnN0j(u)= τnwn−j+1M1(un+1j,n−j+2)N0j+1(u)w˜ n−j+1M3(un+1j,n−j+2)k

= M0

1(un+1j,n−j+2nwn−j+1N0j+1(u)M˜ 3(un+1j,n−j+2)1wn−j+1k, where M0

1(un+1j,n−j+2) = τnwn−j+1M1(un+1j,n−j+2)wn−j+1τn1. Then one has that M0

1(un+1j,n−j+2) ∈ N(Fv).Let 2 ≤ j ≤ nandφv,λ = φve+ρ)HB(·)).Then Wv(α;λ)= ∫

N(Fv)

φv τnN0

2(u)

e+ρ)HBnN20(u))θα(u)du

=

N(Fv)

φv,λ

M10(un1,nnwn1N0

3(u)˜ M3(un1,n)1wn1k

θα(u)du

=

N(Fv)

φv,λ

Mτn

3 (un−1,nnwn−1N30(u)wn−1k

θ(α2)(u)du,

where Mτn

3 (un1,n) = diag(a(un1,n),a(un1,n)1,In2); θ(α2)(u) = θ(α1u12 + · · · + αn3un3,n2n2a(un1,n)un2,n1n1un1,n) ·θ(−αn2c(un1,n)un2,n).

Denote by Mτn

2 (u) = In. Let j ≥ 3 and Ml, 3 ≤ l ≤ j, be matrices. Denote by Îj

l=2Mlthe matrixM2· · ·Mj.Define the matrix

Mjτn(u)=

j

Ö

l=3

©

­

­

­

­

­

«

a(un−l+2,n) Il3

a(unl+2,n)1

Inl+1

ª

®

®

®

®

®

¬ .

Write ak,l for a(uk,l); and ck,l for c(uk,l). Let βk(u) = ak,n1ak+1,n. Denote byθ(αj)(u) the product of

θ(α1u12+· · ·+αn−j−1un−j−1,n−jn−jan−j+1,nun−j,n−j+1

n−j+1βn−j+1(u)un−j+1,n−j+2+· · ·+αn−2βn−2(u)un−2,n−1)

andθ(αn1un1,n−αn2cn1,nun2,n−αn3cn2,nun3,n− · · · −αnjcnj+1,nunj,n),for any 2 ≤ j ≤ n− 1; and θ(αn)(u) = θ(α1β1(u)u12 + · · ·+ αn−jβn−j(u)un−j,n−j+1 +

· · ·+αn−2βn−2(u)un−2,n−1) ·θ(αn−1un−1,n−αn−2cn−1,nun−2,n−αn−3cn−2,nun−3,n− · · · − αn−jcn−j+1,nun−j,n− · · · −α1c2,nu1,n).Let

Wv(j)(α;λ)=∫

N(Fv)

φv,λ

Mj+1τn (u)τnτn,jNj+10 (u)kj+1(u)

θ(αj)(u)

j

Ö

l=2

a2nll+1,ndu.

where kj+1(u) = τn,j1kj(u) and k2(u) = k. Then Wv(α;λ) = Wv(2)(α;λ). Let Nj+1(u) = (u00k,l)1k,ln such that u00k,l = 0 if (k,l) = (n− j +1,n); and u00k,l = uk,l

otherwise. LetM4= M4(unj+1,n),M3= M3(unj+1,n).Then a changing of variables leads to thatWv(j)(α;λ)is equal to

N(Fv)

φv,λ

Mτj+1n (u)τnτn,jNj+1(u)M4M3kj+1(u)

θ(αj)(u)

j

Ö

l=2

a2n−l+1l ,ndu =

N(Fv)

φv,λ

Mτj+1n (u)M40τnτn,j+1N0j+2(u00)wn−jM3kj+1(u)

θα(j)(u)

j

Ö

l=2

an−l2−l+1,ndu,

where W0

4 ∈ N(Fv). Since φv,λ is left N(Fv)-invariant, the right hand side of the above equality is equal to

N(Fv)

φv,λ

Mj+1τn (u)τnM3τn,j+1Nj+20 (u)wn−jkj+1(u)

θ(αj+1)(u)

j

Ö

l=2

a2n−l+1−l ,ndu,

implying that for any 2 ≤ j ≤ n−2, one hasWv(j)(α;λ) = Wv(j+1)(α;λ). By our definition of θ(αn), a similar computation to the above shows that Wv(n1)(α;λ) = Wv(n)(α;λ),namely, one has thatWv(α;λ)is equal to

N(Fv)

φv,λ

Mnτ+1n (u)τnτn,nNn0+1(u)kn+1(u)

θ(αn)(u) Ön

l=2

a2n−l−l+1,ndu. (6.9) By definition, one has, for anyφv,λ ∈πv,λ,that

φv(tvxv)= Ön

j=1

χv,j(tv,j)|tv,j|vn+12 j+λj ·φv(xv), xv ∈GL(n,Fv). (6.10) Substituting (6.10) into (6.9) one then sees thatWv(α;λ)is equal to

N(Fv)

φv,λ

τnτn,nNn+10 (u)kn+1(u)

θ(n)α (u)

n

Ö

l=2

χ1,l(anl+1,n)an1+l+1λ1−λ,nldu, (6.11) where χ1,l(an−l+1,n) = χv,1(an−l+1,nv,l(an−l+1,n)1. Since πv is rightKv-finite, one then sees, according to (6.11), thatWv(α;λ)is equal to

Õ

j∈J

N(Fv)

φ(v,λj)

τnτn,nNn0+1(u)

θ(αn)(u) Ön

l=2

χ1,l(an−l+1,n)a1+n−lλ+11−λ,nldu, (6.12) whereJis a finite set of indexes, whose cardinality depends only on theKv-finite type ofπv; and each φ(v,λj) ∈πv,λ.LetWv,j(α;λ)be the summand of (6.12) corresponding to the index j ∈ J.Leteλjj1/(n−1),2 ≤ j ≤ n.Denote byBn1the standard Borel subgroup of GLn1andNn1the unipotent ofBn1.Then a change of variables implies thatWv,j(α;λ)is equal to

Fvn−1

Wv,j(eαn−1;eλ)eθn(u1,· · · ,un−1) Ön

l=2

χ1,l(an−l+1)|an−l+1|v1+λ1−λl

n1

Ö

j=1

duj.

Then Lemma 48 follows.

Letv ∈ΣF be a fixed nonarchimedean place, leteπλ,v be the contragredient of πλ,v. Let $v be a uniformizer of OF,v, the ring of integers of Fv. Let qv = NFv/Qp($v), wherepis the rational prime such thatvis abovep.Denote by

Rv(s,W1,v,W2,v;λ):= Ψv s,W1,v,W2,v;λ,Φv Lv(s, πλ,v ⊗τv×

−λ,v), Re(s)> 1.

Proposition 49(Nonarchimedean Case). Let notation be as before. Let s ∈ Cbe such thatRe(s) >1.Then we have

(a) Rv(s,W1,v,W2,v;λ)is a polynomial in{qvs,q−sv ,qλvi,qv−λi : 1 ≤ i ≤ r}. (b) We have the local functional equation

Ψv s,W1,v,W2,v;λ,Φv Lv(s, πλ,v ⊗τv×

−λ,v) = ε(s, πλ,v ×

−λ,v, θ) · Ψv(1−s,We1,v,We2,v;−λ,¯ bΦv) Lv(1−s,eπλ,v¯ ⊗τ¯v×πλ,v), whereε(s, πλ,v ×eπ−λ,v, θ)is a polynomial in{qsv,q−sv ,qλvi,qv−λi : 1 ≤ i ≤ r}. Proof. We shall only prove Part (a), since Part (b) will follow form [JS81].

LetT(Fv) be the maximal torus ofG(Fv), and for any m ∈ Z,letT(m)(Fv) = {t ∈ T(Fv) : |dett|Fv = qv−m}. Using Iwasawa decomposition and the fact thatWi,v and Φv are rightG(OF,v)-finite, we can rewriteΨv s,W1,v,W2,v;λ,Φv

as Õ

j∈J

T(Fv)

W(j)

1,v(av;λ)W(j)

2,v av;−λ¯

Φj,v(ηavv(detavT1(av)|detav|sF

vdav,

where the sum over a finite set J, Wi,v(j)(av;λ) is a Whittaker function associated to some smooth functions in HP,χ, 1 ≤ i ≤ 2, andΦj,v is some Schwartz-Bruhat function. Note that for 1 ≤ i ≤ 2 and j ∈ J,Wi,v(j)(xv;λ)is rightG(OF,v)-finite. So there exists a compact subgroupN0,v ⊆ G(OF,v) ∩N(Fv),depending only onϕ,such thatWi,v(j)(tvuv;λ)= Wi,v(j)(tv;λ),for alltv ∈T(Fv)anduv ∈ N0,v.On the other hand, Wi,v(j)(tvuv;λ) = θtv(uv)Wi,v(j)(tv;λ),where θtv(nv) = θ(tvnvtv1), for any nv ∈ N(Fv).

But then, there exists a constantCv depending only onN0,v andθ (hence not onλ) such that θtv(uv) = 1 if and only if |αi(tv)| ≤ Cv, where αi’s are the simple roots of G(F). Thus each Wi,v(j)(xv;λ) is compactly supported for a fixed λ ∈ iaP/iaG. Therefore, for a fixed λ, Ψv s,W1,v,W2,v;λ,Φv

is a formal Laurent series in qv−s. Indeed, one can chose some nonnegative integerMindependent ofλ(but depending onπandϕ), such that

Ψv s,W1,v,W2,v;λ,Φv

= Õ

m≥−M

Ψ(m)v W1,v,W2,v;λ,Φv

·qvms,

Dokumen terkait