• Tidak ada hasil yang ditemukan

Chapter III: A Note on Flow Behavior in Axially-Dispersed Plug Flow Reac-

5.5 Supporting Information

5.5.8 Droplet Simulation

In this section, we show how to calculate the partition of PA among the gas phase, air-water interface, and the aqueous phase as functions of the droplet size, given the surface-gas (Ksg =9.62×104m) and surface-bulk (Ksb =2.01×104m) equilibrium constants. The Langmuir adsorption model is assumed to keep consistent with the model framework, so the expression is different from EQ. (2) in the manuscript, although this does not affect the conclusion that surface reaction is the largest sink of surface-active species at the air-water interface.

The overall PA concentration in the air parcel iscP = 0.5 nmol m−3air and the liquid water mixing ratio iswL =3×10−7m3water m−3air. The droplet radius (R) is in the range of 2.5−50×106m. We useg,s, andbto represent the concentration in the gas phase, surface, and the bulk aqueous phase in units of molec m3air, molec m−2area, and molec m−3water, respectively.

Based on a mass balance, there are two equations:

N4

3πR3 =wL (5.17)

g+s·N4πR2+b·N4

3πR3=10−9cPNA (5.18) whereN is the number concentration of the droplets andNAis Avogadro’s number.

From the equilibrium constant we have:

s

g(1−sσ) =Ksg (5.19)

s

b(1−sσ) =Ksb (5.20)

where σ = 30× 10−20 Å2 is the effective cross section area of PA. Combining EQs.(5.17) - (5.20), we can solve forN,g,s, andb.

Figure 5.17a shows the ratios of the fractions in the gas phase and in the bulk aqueous phase to that on the surface, as well as the number concentration of the droplet as functions of the droplet diameter. Because of the high surface activity of PA and high surface area concentration when the droplet radius is small, over 99% remains on the surface asR < 10µm. Figure 5.17b shows the simulated temporal profiles of OH uptake coefficients on the surface of droplets of 5µm and 100µm, respectively.

Figure 5.17: a) Ratios of the fractions of PA in the gas phase and in the bulk aqueous phase to that on the surface, as well as the number concentration of the droplet as functions of the droplet diameter. b) Simulated temporal profiles of OH uptake coefficients on the surface of droplets of 5 µm and 100 µm.

C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

This thesis has focused on characterizing and applying atmospheric reactors to study secondary organic aerosol (SOA) in the laboratory. The design and characterization of the Caltech PhotoOxidation flow Tube reactor (CPOT) led to the development of the advective-diffusive model (AD-PFR model). We proposed a unified theory to model the vapor-wall interaction and parameterized the processes. We also developed a multi-phase mass transport and reaction model to simulate the OH- initiated reactions occurring at the air-water interface of a droplet. Through Chapter 2 to Chapter 5, we stress that a proper interpretation of laboratory atmospheric chemistry study requires a well-characterized reactor and a well-defined model framework.

In addition to the work that has been carried out in this thesis, the methods we have developed can be applied to other aspects of SOA formation.

For example, Eq. 3.4 describing the cumulative residence time distribution in Chapter 3 can be combined with the parameterized vapor-wall interaction model in Chapter 4 to describe the signal delay in a sampling tube, which can be significant for instruments to detect those compounds with low volatilities. The Jimenez group in CU Boulder has made efforts on this topic. For example, Pagonis et al. (2017) proposed a vapor-wall interaction mechanism within a PFR model framework, simi- lar to the absorption/desorption processes in chromatography, to describe the signal delay in Teflon sampling tube. This numerical model can reproduce the experi- mental data quite well, but is possible to be simplified into a single equation. One can follow the derivation of Deemter et al. (1956) for chromatography and use one or two key parameters in a key equation to represent the signal delay by sampling tubes.

Another on-going project is based on the multi-phase mass transport and reaction model in Chapter 5, which can be extended to a new comprehensive model to simulate single particle growth/evaporation by considering especially gas-particle interfacial interactions. Different from the model in Chapter 5 that assumes no water evaporation during the reaction, the single particle growth/evaporation model has a moving boundary, i.e., a typical Stefan problem. The concept of this model

is similar to that of the Kinetic Multi-layer model of GAs-Particle interactions in aerosols and clouds (KM-GAP, by M. Shiraiwa et al., 2012), however, instead of dividing the particle into multi-layer and treating each layer as a box model, the new model is based on the diffusion-reaction partial differential equation to represent the processes within the particle. This new model can help to evaluate the equilibration time between the gas- and particle- phases. Different from the traditional definition of equilibration time of gas- and particle- phases (Mai et al., 2015), the newly defined equilibrium time will consider only the equilibrium between the gas phase and the surface, which is more intuitive and can better reflect the interaction between the vapor and the particle.

BIBLIOGRAPHY

Abraham, M. H. and J. C. McGowan (1987). “The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography”. In: Chro- matographia23.4, pp. 243–246. doi:10.1007/BF02311772.

Aljawhary, Dana, Ran Zhao, Alex K. Y. Lee, Chen Wang, and J. P. D. Abbatt (2016).

“Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-Oxidation ofα-Pinene Oxidation Products”. In: J. Phys. Chem. A 120.9, pp. 1395–1407. doi:10.1021/acs.jpca.5b06237.

Aris, Rutherford (1956). “On the dispersion of a solute in a fluid flowing through a tube”. In:Proc. Roy. Soc. Lond. A Mat.235.1200, pp. 67–77. doi: 10.1098/

rspa.1956.0065.

Atkinson, Roger and Janet Arey (2003). “Atmospheric Degradation of Volatile Organic Compounds”. In: Chem. Rev. 103.12, pp. 4605–4638. doi: 10.1021/

cr0206420.

Bagley, E. and F. A. Long (1955). “Two-stage sorption and desorption of organic vapors in cellulose acetate1,2”. In:J. Am. Chem. Soc.77.8, pp. 2172–2178. doi:

10.1021/ja01613a038.

Barraza, Kevin M. (2018). “The Study of the Stepwise Hydroxyl Radical-Mediated Oxidation of Alkyl Surfactants at the Air-Water Interface”. PhD thesis. California Institute of Technology.

Bates, Kelvin H., John D. Crounse, Jason M. St. Clair, Nathan B. Bennett, Tran B.

Nguyen, John H. Seinfeld, Brian M. Stoltz, and Paul O. Wennberg (2014). “Gas phase production and loss of isoprene epoxydiols”. In:J. Phys. Chem. A118.7, pp. 1237–1246. doi:10.1021/jp4107958.

Bates, Kelvin H., Tran B. Nguyen, Alex P. Teng, John D. Crounse, Henrik G. Kjaer- gaard, Brian M. Stoltz, John H. Seinfeld, and Paul O. Wennberg (2016). “Produc- tion and Fate of C-4 Dihydroxycarbonyl Compounds from Isoprene Oxidation”.

In:J. Phys. Chem. A120.1, 106–117. doi:10.1021/acs.jpca.5b10335.

Bean, J. K. and L. Hildebrandt Ruiz (2016). “Gas-particle partitioning and hydrol- ysis of organic nitrates formed from the oxidation of α-pinene in environmen- tal chamber experiments”. In: Atmos. Chem. Phys. 16.4, pp. 2175–2184. doi:

10.5194/acp-16-2175-2016.

Beder, E. C., C. D. Bass, and W. L. Shackleford (1971). “Transmissivity and Ab- sorption of Fused Quartz Between 0.22µand 3.5 µfrom Room Temperature to 1500°C”. In:Appl. Opt.10.10, pp. 2263–2268. doi:10.1364/AO.10.002263.

Bernard, F., R. Ciuraru, A. Boréave, and C. George (2016). “Photosensitized Forma- tion of Secondary Organic Aerosols above the Air/Water Interface”. In:Environ.

Sci. Technol.50.16, pp. 8678–8686. doi:10.1021/acs.est.6b03520.

Bian, Q., A. A. May, S. M. Kreidenweis, and J. R. Pierce (2015). “Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments”. In:Atmos. Chem. Phys.15.19, pp. 11027–11045. doi:10.5194/

acp-15-11027-2015.

Bilde, Merete and Spyros N. Pandis (2001). “Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation ofα- and β-Pinene”. In: Environ. Sci. Technol. 35.16, pp. 3344–3349. doi: 10 . 1021 / es001946b.

Bird, R Byron, Warren E Stewart, and Edwin N Lightfoot (2007). Transport Phe- nomena (revised). 2nd ed. New York: John Wiley & Sons, Inc.

Blando, James D and Barbara J Turpin (2000). “Secondary Organic Aerosol Forma- tion in Cloud and Fog Droplets: a Literature Evaluation of Plausibility”. In:Atmos.

Environ.34.10, pp. 1623–1632. doi:10.1016/S1352-2310(99)00392-1.

Boedeker (2017).PTFE, FEP, and PFA Specifications. url:http://www.boedeker.

com/feppfa_p.htm(visited on 01/23/2017).

Bonn, Boris, Gerhard Schuster, and Geert K. Moortgat (2002). “Influence of Water Vapor on the Process of New Particle Formation during Monoterpene Ozonoly- sis”. In:J. Phys. Chem. A106.12, pp. 2869–2881. doi:10.1021/jp012713p.

Bréon, Francois-Marie, Didier Tanré, and Sylvia Generoso (2002). “Aerosol Effect on Cloud Droplet Size Monitored from Satellite”. In:Science295.5556, pp. 834–

838. doi:10.1126/science.1066434.

Bruns, E. A., I. El Haddad, A. Keller, F. Klein, N. K. Kumar, S. M. Pieber, J. C.

Corbin, J. G. Slowik, W. H. Brune, U. Baltensperger, and A. S. H. Prévôt (2015).

“Inter-comparison of laboratory smog chamber and flow reactor systems on or- ganic aerosol yield and composition”. In:Atmos. Meas. Tech.8, pp. 2315–2332.

doi:10.5194/amt-8-2315-2015.

Burkholder, J. B., S. P. Sander, J. P. D. Abbatt, J. R. Barker, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, D. M. Wilmouth, and P. H. Wine (2015).Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No.

18. JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena.

Cappa, C. D., S. H. Jathar, M. J. Kleeman, K. S. Docherty, J. L. Jimenez, J. H.

Seinfeld, and A. S. Wexler (2016). “Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 2: Assessing the influence of vapor wall losses”. In:Atmos. Chem. Phys.16.5, pp. 3041–3059.

doi:10.5194/acp-16-3041-2016.

CARB (2018). California Air Resources Board. Air Quality and Meteorological Information System. url: https://www.arb.ca.gov/aqmis2/aqdselect.

php(visited on 04/07/2018).

Carslaw, Nicola (2007). “A New Detailed Chemical Model for Indoor Air Pollution”.

In:Atmos. Environ.41.6, pp. 1164–1179. doi:10.1016/j.atmosenv.2006.

09.038.

Chen, S., W. H. Brune, A. T. Lambe, P. Davidovits, and T. B. Onasch (2013).

“Modeling organic aerosol from the oxidation ofα-pinene in a Potential Aerosol Mass (PAM) chamber”. In:Atmos. Chem. Phys.13.9, pp. 5017–5031. doi: 10.

5194/acp-13-5017-2013.

CLOUD (2019). CLOUD | CERN. url: https : / / home . cern / science / experiments/cloud(visited on 2019).

Compernolle, S., K. Ceulemans, and J.-F. Müller (2011). “EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions”. In:Atmos. Chem. Phys.11.18, pp. 9431–9450.

doi:10.5194/acp-11-9431-2011.

Corner, J. and E. D. Pendlebury (1951). “The coagulation and deposition of a stirred aerosol”. In: Proc. Phys. Soc. B 64.8, p. 645. doi: 10 . 1088 / 0370 - 1301/64/8/304.

Crank, J. (1953). “A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers”. In:J. Polym. Sci.11.2, pp. 151–168.

doi:10.1002/pol.1953.120110206.

Crounse, John D., Karena A. McKinney, Alan J. Kwan, and Paul O. Wennberg (2006). “Measurement of gas-phase hydroperoxides by chemical ionization mass spectrometry”. In:Anal. Chem.78.19, pp. 6726–6732. doi:10.1021/ac0604235.

Crump, James G. and John H. Seinfeld (1981). “Turbulent deposition and gravita- tional sedimentation of an aerosol in a vessel of arbitrary shape”. In:J. Aerosol Sci.12.5, pp. 405–415. doi:10.1016/0021-8502(81)90036-7.

Danckwerts, P. V. (1953). “Continuous flow systems: Distribution of residence times”. In: Chem. Eng. Sci. 2.1, pp. 1–13. doi: 10 . 1016 / 0009 - 2509(53 ) 80001-1.

Davidovits, P., J. T. Jayne, S. X. Duan, D. R. Worsnop, M. S. Zahniser, and C. E.

Kolb (1991). “Uptake of gas molecules by liquids: a model”. In:J. Phys. Chem.

95.16, pp. 6337–6340. doi:10.1021/j100169a048.

Davis, E James (2008). “Interpretation of uptake coefficient data obtained with flow tubes”. In:J. Phys. Chem. A112.9, pp. 1922–1932. doi:10.1021/jp074939j.

Davis, Mark E and Robert J Davis (2003). Fundamentals of Chemical Reaction Engineering. Courier Corporation.

Deemter, J. J. van, F. J. Zuiderweg, and A. Klinkenberg (1956). “Longitudinal diffu- sion and resistance to mass transfer as causes of nonideality in chromatography”.

In:Chem. Eng. Sci.5.6, pp. 271–289. doi:10.1016/0009-2509(56)80003-1.

Demarque, Daniel P., Antonio E. M. Crotti, Ricardo Vessecchi, João L. C. Lopes, and Norberto P. Lopes (2016). “Fragmentation Reactions Using Electrospray Ionization Mass Spectrometry: An Important Tool for the Structural Elucidation and Characterization of Synthetic and Natural Products”. In:Nat. Prod. Rep.33.3, pp. 432–455. doi:10.1039/C5NP00073D.

Donahue, Neil M., James S. Clarke, Kenneth L. Demerjian, and James G. Anderson (1996). “Free-Radical Kinetics at High Pressure: A Mathematical Analysis of the Flow Reactor”. In:J. Phys. Chem. 100.14, pp. 5821–5838. doi: 10.1021/

jp9525503.

Enami, Shinichi and A. J. Colussi (2017). “Efficient Scavenging of Criegee Inter- mediates on Water by Surface-Activecis-pinonic Acid”. In:Phys. Chem. Chem.

Phys.19.26, pp. 17044–17051. doi:10.1039/C7CP03869K.

Enami, Shinichi and Yosuke Sakamoto (2016). “OH-Radical Oxidation of Surface- Activecis-Pinonic Acid at the Air-Water Interface”. In:J. Phys. Chem. A120.20, pp. 3578–3587. doi:10.1021/acs.jpca.6b01261.

EPA, US (2016).Particulate Matter (PM) Basics. url: https://www.epa.gov/

pm-pollution/particulate-matter-pm-basics.

Ervens, B., S. Gligorovski, and H. Herrmann (2003). “Temperature-Dependent Rate Constants for Hydroxyl Radical reactions with Organic Compounds in Aqueous Solutions”. In: Phys. Chem. Chem. Phys. 5.9, pp. 1811–1824. doi: 10.1039/

B300072A.

Ervens, B., B. J. Turpin, and R. J. Weber (2011). “Secondary Organic Aerosol Formation in Cloud Droplets and Aqueous Particles (aqSOA): A Review of Lab- oratory, Field and Model Studies”. In: Atmos. Chem. Phys. 11.21, pp. 11069–

11102. doi:10.5194/acp-11-11069-2011.

Ervens, B. and R. Volkamer (2010). “Glyoxal Processing by Aerosol Multiphase Chemistry: Towards a Kinetic Modeling Framework of Secondary Organic Aerosol Formation in Aqueous Particles”. In:Atmos. Chem. Phys.10.17, pp. 8219–8244.

doi:10.5194/acp-10-8219-2010.

Ezell, Michael J., Stanley N. Johnson, Yong Yu, Véronique Perraud, Emily A.

Bruns, M. Lizabeth Alexander, Alla Zelenyuk, Donald Dabdub, and Barbara J.

Finlayson-Pitts (2010). “A new aerosol flow system for photochemical and thermal studies of tropospheric aerosols”. In:Aerosol Sci. Tech.44.5, pp. 329–338. doi:

10.1080/02786821003639700.

Faris, G. N. and R. Viskanta (1969). “An analysis of laminar combined forced and free convection heat transfer in a horizontal tube”. In: Int. J. Heat Mass Tran.

12.10, pp. 1295–1309. doi:10.1016/0017-9310(69)90173-2.

Frezzotti, Aldo (2011). “Boundary conditions at the vapor-liquid interface”. In:

Phys. Fluids23.3, p. 030609. doi:10.1063/1.3567001.

Fried, Erwin and Isaak E Idelchik (1989). Flow Resistance: A Design Guide for Engineers. Chem/Mats-Sci/E.

Frisch, H. L. (1980). “Sorption and transport in glassy polymers - a review”. In:

Polym. Eng. Sci.20.1, pp. 2–13. doi:10.1002/pen.760200103.

Fuchs, N A (1964).The Mechanics of Aerosols. Pergamon, New York.

Galloway M. M., Loza C. L., Chhabra P. S., Chan A. W. H., Yee L. D., Seinfeld J. H., and Keutsch F. N. (2011). “Analysis of Photochemical and Dark Glyoxal Uptake:

Implications for SOA Formation”. In:Geophys. Res. Lett38.17, p. L17811. doi:

10.1029/2011GL048514.

George, I. J. and J. P. D. Abbatt (2010). “Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals”. In: Nat. Chem. 2.9, p. 713. doi: 10 . 1038/nchem.806.

George, I. J., A. Vlasenko, J. G. Slowik, K. Broekhuizen, and J. P. D. Abbatt (2007).

“Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals:

uptake kinetics, condensed-phase products, and particle size change”. In:Atmos.

Chem. Phys.7.16, pp. 4187–4201. doi:10.5194/acp-7-4187-2007.

Gormley, P. G. and M. Kennedy (1948). “Diffusion from a stream flowing through a cylindrical tube”. In:P. Roy. Irish Acad. A52, pp. 163–169.

Goss, Kai-Uwe (2009). “Predicting Adsorption of Organic Chemicals at the Air- Water Interface”. In:J. Phys. Chem. A113.44, pp. 12256–12259. doi:10.1021/

jp907347p.

Grayson, J. W., M. Song, M. Sellier, and A. K. Bertram (2015). “Validation of the poke-flow technique combined with simulations of fluid flow for determining viscosities in samples with small volumes and high viscosities”. In:Atmos. Meas.

Tech.8.6, pp. 2463–2472. doi:10.5194/amt-8-2463-2015.

Grimm, Ronald L. and J. L. Beauchamp (2003). “Field-Induced Droplet Ionization Mass Spectrometry”. In:J. Phys. Chem. B107.51, pp. 14161–14163. doi: 10.

1021/jp037099r.

– (2005). “Dynamics of Field-Induced Droplet Ionization: Time-Resolved Stud- ies of Distortion, Jetting, and Progeny Formation from Charged and Neutral Methanol Droplets Exposed to Strong Electric Fields”. In: J. Phys. Chem. B 109.16, pp. 8244–8250. doi:10.1021/jp0450540.

Grimm, Ronald L., Robert Hodyss, and J. L. Beauchamp (2006). “Probing In- terfacial Chemistry of Single Droplets with Field-Induced Droplet Ionization Mass Spectrometry: Physical Adsorption of Polycyclic Aromatic Hydrocarbons and Ozonolysis of Oleic Acid and Related Compounds”. In:Anal. Chem.78.11, pp. 3800–3806. doi:10.1021/ac0601922.

Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K.

Emmons, and X. Wang (2012). “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions”. In:Geosci. Model Dev.5.6, pp. 1471–1492. doi:

10.5194/gmd-5-1471-2012.

Hartkopf, Arleigh and Barry L. Karger (1973). “Study of the interfacial properties of water by gas chromatography”. In: Acc. Chem. Res. 6.6, pp. 209–216. doi:

10.1021/ar50066a006.

Heath, Aubrey A. and Kalliat T. Valsaraj (2015). “Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase”. In:J. Phys.

Chem. A119.31, pp. 8527–8536. doi:10.1021/acs.jpca.5b05152.

Hodas, N., A. Zuend, W. Mui, R. C. Flagan, and J. H. Seinfeld (2015). “Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols”. In: Atmos. Chem. Phys.15.9, 5027–5045. doi: 10.5194/acp- 15- 5027-2015.

Holman, Jack Philip (2010).Heat Transfer. 10th ed. McGraw-Hill.

Houle, Frances A., Aaron A. Wiegel, and Kevin R. Wilson (2018). “Changes in Re- activity as Chemistry Becomes Confined to an Interface. The Case of Free Radical Oxidation of C30H62Alkane by OH”. In:J. Phys. Chem. Lett9.5, pp. 1053–1057.

doi:10.1021/acs.jpclett.8b00172.

Howard, Carleton J. (1979). “Kinetic measurements using flow tubes”. In:J. Phys.

Chem.83.1, pp. 3–9. doi:10.1021/j100464a001.

Howell, Hilda and G. S. Fisher (1958). “The Dissociation Constants of Some of the Terpene Acids”. In: J. Am. Chem. Soc 80.23, pp. 6316–6319. doi: 10 . 1021 / ja01556a038.

Hua, Wei, Dominique Verreault, and Heather C. Allen (2015). “Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface”. In:

J. Am. Chem. Soc.137.43, pp. 13920–13926. doi:10.1021/jacs.5b08636.

Huang, Y., M. M. Coggon, R. Zhao, H. Lignell, M. U. Bauer, R. C. Flagan, and J. H. Seinfeld (2017). “The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization”. In:Atmos. Meas. Tech.10.3, pp. 839–867.

doi:10.5194/amt-10-839-2017.

IPCC (2013).Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.

Iqbal, M. and J. W. Stachiewicz (1966). “Influence of tube orientation on combined free and forced laminar convection heat transfer”. In:J. Heat Transf.88.1, pp. 109–

116. doi:10.1115/1.3691452.

Ivanov, Andrey V., Sofia Trakhtenberg, Allan K. Bertram, Yulii M. Gershenzon, and Mario J. Molina (2007). “OH, HO2, and Ozone Gaseous Diffusion Coefficients”.

In:J. Phys. Chem. A111.9, pp. 1632–1637. doi:10.1021/jp066558w.

Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H.

Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R.

Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R.

Collins, M. J. Cubison, E, J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T.

Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R.

Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, and D. R. Worsnop (2009). “Evolution of Organic Aerosols in the Atmosphere”. In:

Science326.5959, pp. 1525–1529. doi:10.1126/science.1180353.

Jones, Stephanie H., Martin D. King, Andrew D. Ward, Adrian R. Rennie, Alex C.

Jones, and Thomas Arnold (2017). “Are Organic Films from Atmospheric Aerosol and Sea Water Inert to Oxidation by Ozone at the Air-Water Interface?” In:Atmos.

Environ.161, pp. 274–287. doi:10.1016/j.atmosenv.2017.04.025.

Jonsson, Åsa M., Mattias Hallquist, and Evert Ljungström (2008). “Influence of OH Scavenger on the Water Effect on Secondary Organic Aerosol Formation from Ozonolysis of Limonene, ∆3-Carene, andα-Pinene”. In: Environ. Sci. Technol.

42.16, pp. 5938–5944. doi:10.1021/es702508y.

Kameel, F. Rifkha, M. R. Hoffmann, and A. J. Colussi (2013). “OH Radical-Initiated Chemistry of Isoprene in Aqueous Media. Atmospheric Implications”. In:J. Phys.

Chem. A117.24, pp. 5117–5123. doi:10.1021/jp4026267.

Kang, E., M. J. Root, D. W. Toohey, and W. H. Brune (2007). “Introducing the concept of Potential Aerosol Mass (PAM)”. In:Atmos. Chem. Phys.7, pp. 5727–

5744. doi:10.5194/acp-7-5727-2007.

Kang, E., D. W. Toohey, and W. H. Brune (2011). “Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies”. In:Atmos. Chem. Phys.11, pp. 1837–1852. doi: 10.5194/acp- 11- 1837-2011.

Karjalainen, P., H. Timonen, E. Saukko, H. Kuuluvainen, S. Saarikoski, P. Aakko- Saksa, T. Murtonen, M. Bloss, M. Dal Maso, P. Simonen, E. Ahlberg, B. Sven- ningsson, W. H. Brune, R. Hillamo, J. Keskinen, and T. Rönkkö (2016). “Time- resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car”. In:Atmos. Chem. Phys.16.13, pp. 8559–8570. doi:10.5194/acp-16-8559-2016.

Kavouras, Ilias G., Nikolaos Mihalopoulos, and Euripides G. Stephanou (1999).

“Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission:

In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Pho- tooxidation Products and New Particle Formation over Forests”. In:Environ. Sci.

Technol.33.7, pp. 1028–1037. doi:10.1021/es9807035.

Keller, Alejandro and Heinz Burtscher (2012). “A continuous photo-oxidation flow reactor for a defined measurement of the SOA formation potential of wood burning emissions”. In:J. Aerosol Sci.49, pp. 9–20. doi:10.1016/j.jaerosci.2012.

02.007.

Khalizov, Alexei F., Michael E. Earle, Wayde J. W. Johnson, Gordon D. Stubley, and James J. Sloan (2006). “Development and characterization of a laminar aerosol flow tube”. In:Rev. Sci. Instrum.77.3, p. 033102. doi:10.1063/1.2175958.

Kim, Hugh I., Hyungjun Kim, Young Shik Shin, Luther W. Beegle, William A.

Goddard, James R. Heath, Isik Kanik, and J. L. Beauchamp (2010a). “Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry”. In: J.

Phys. Chem. B114.29, pp. 9496–9503. doi:10.1021/jp102332g.

Kim, Hugh I., Hyungjun Kim, Young Shik Shin, Luther W. Beegle, Seung Soon Jang, Evan L. Neidholdt, William A. Goddard, James R. Heath, Isik Kanik, and J. L. Beauchamp (2010b). “Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System”. In:J. Am. Chem. Soc.132.7, pp. 2254–

2263. doi:10.1021/ja908477w.

King, Martin D., Adrian R. Rennie, Katherine C. Thompson, Fleur N. Fisher, Chu Chuan Dong, Robert K. Thomas, Christian Pfrang, and Arwel V. Hughes (2009).

“Oxidation of Oleic Acid at the Air-Water Interface and Its Potential Effects on Cloud Critical Supersaturations”. In:Phys. Chem. Chem. Phys.11.35, pp. 7699–

7707. doi:10.1039/B906517B.

Klamt, Andreas (2005).COSMO-RS From Quantum Chemistry to Fluid Phase Ther- modynamics and Drug Design. 1st ed. Elsevier: Amsterdam, The Netherlands.

Klamt, Andreas and Frank Eckert (2000). “COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids”. In:Fluid Ph. Equi- libria172.1, pp. 43–72. doi:10.1016/S0378-3812(00)00357-5.

Krechmer, Jordan E., Matthew M. Coggon, Paola Massoli, Tran B. Nguyen, John D.

Crounse, Weiwei Hu, Douglas A. Day, Geoffrey S. Tyndall, Daven K. Henze, Jean C. Rivera-Rios, John B. Nowak, Joel R. Kimmel, Roy L. Mauldin, Harald Stark, John T. Jayne, Mikko Sipilä, Heikki Junninen, Jason M. St. Clair, Xuan Zhang, Philip A. Feiner, Li Zhang, David O. Miller, William H. Brune, Frank N. Keutsch, Paul O. Wennberg, John H. Seinfeld, Douglas R. Worsnop, Jose L.

Jimenez, and Manjula R. Canagaratna (2015). “Formation of low volatility organic compounds and secondary organic aerosol from isoprene hydroxyhydroperoxide