• Tidak ada hasil yang ditemukan

Using the vielbein, we can convert between base-space and tangent-space coordinates. In particular, by writing the four-form eld strength in equation (5.1c) in tangent-space coordinates, one nds that

FABCD= 6k

R2ABCD, (E.8)

where 0123 = 1 and all other non-zero components are related by antisymmetry. Furthermore, if one takes the exterior derivative of equation (E.5), plugs this into equation (5.1d), and converts to tangent-space coordinates, one nds that

FAB= 2k

R2AB, (E.9)

where45=67=89= 1and all other non-zero components are related by antisymmetry. Equations (5.1b), (E.8), and (E.9) then imply that

eφΓ·F2 = 2

R Γ45+ Γ67+ Γ89 , eφΓ·F4 = 6

0123. Plugging these expressions into equation (5.12) then gives

Γ·F = 1 4R

−Γ11 Γ45+ Γ67+ Γ89

+ 3Γ0123

. (E.10)

Bibliography

[1] J. M. Maldacena, The large N limit of superconformal eld theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231252, [hep-th/9711200].

[2] J. Plefka, Spinning strings and integrable spin chains in the AdS/CFT correspondence, Living Rev. Rel. 8 (2005) 9, [hep-th/0507136].

[3] A. A. Tseytlin, Semiclassical strings and AdS/CFT, in String theory: From gauge interactions to cosmology (L. Baulieu, J. de Boer, B. Pioline, & E. Rabinovici, ed.), p. 265, 2006. hep-th/0409296.

[4] A. A. Tseytlin, Spinning strings and AdS/CFT duality, hep-th/0311139.

[5] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, Strings in at space and pp waves fromN = 4super Yang Mills, JHEP 04 (2002) 013, [hep-th/0202021].

[6] N. Beisert and M. Staudacher, TheN = 4 SYM integrable super spin chain, Nucl. Phys.

B670 (2003) 439463, [hep-th/0307042].

[7] J. A. Minahan and K. Zarembo, The Bethe-ansatz forN = 4super Yang-Mills, JHEP 03 (2003) 013, [hep-th/0212208].

[8] H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain, Z. Phys. 71 (1931) 205.

[9] N. Beisert et. al., Review of AdS/CFT integrability: An overview, arXiv:1012.3982.

[10] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D77 (2008) 065008, [arXiv:0711.0955].

[11] J. Bagger and N. Lambert, Comments On multiple M2-branes, JHEP 02 (2008) 105, [arXiv:0712.3738].

[12] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B811 (2009) 6676, [arXiv:0709.1260].

[13] J. H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078, [hep-th/0411077].

[14] O. Aharony, O. Bergman, D. L. Jaeris, and J. Maldacena, N = 6superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091, [arXiv:0806.1218].

[15] D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, arXiv:1007.4861.

[16] J. Bagger and N. Lambert, Modeling multiple M2's, Phys. Rev. D75 (2007) 045020, [hep-th/0611108].

[17] E. A. Ivanov, Chern-Simons matter systems with manifestN = 2supersymmetry, Phys.

Lett. B268 (1991) 203208.

[18] S. J. Gates, Jr. and H. Nishino, Remarks on the N = 2supersymmetric Chern-Simons theories, Phys. Lett. B281 (1992) 7280.

[19] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056, [arXiv:0704.3740].

[20] Y. Nambu, Generalized hamiltonian dynamics, Phys. Rev. D7 (1973) 24052414.

[21] T. Curtright and C. K. Zachos, Classical and quantum Nambu mechanics, Phys. Rev. D68 (2003) 085001, [hep-th/0212267].

[22] S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Ann. Phys.

140 (1982) 372411.

[23] A. Achucarro and P. K. Townsend, A Chern-Simons action for three-dimensional antide Sitter supergravity Theories, Phys. Lett. B180 (1986) 89.

[24] E. Witten, (2+1)-Dimensional gravity as an exactly soluble system, Nucl. Phys. B311 (1988) 46.

[25] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359.

[26] A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083, [arXiv:0802.3456].

[27] M. A. Bandres, A. E. Lipstein, and J. H. Schwarz, N = 8superconformal Chern-Simons theories, JHEP 05 (2008) 025, [arXiv:0803.3242].

[28] G. Papadopoulos, M2-branes, 3-Lie algebras and plucker relations, JHEP 05 (2008) 054, [arXiv:0804.2662].

[29] J. P. Gauntlett and J. B. Gutowski, Constraining maximally supersymmetric membrane actions, JHEP 06 (2008) 053, [arXiv:0804.3078].

[30] S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085, [arXiv:0803.3218].

[31] J. Distler, S. Mukhi, C. Papageorgakis, and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038, [arXiv:0804.1256].

[32] J. Gomis, G. Milanesi, and J. G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP 06 (2008) 075, [arXiv:0805.1012].

[33] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni, and H. Verlinde, N = 8superconformal gauge theories and M2-branes, JHEP 01 (2009) 078, [arXiv:0805.1087].

[34] P.-M. Ho, Y. Imamura, and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003, [arXiv:0805.1202].

[35] A. Morozov, From simplied BLG action to the rst-quantized M-theory, JETP Lett. 87 (2008) 659662, [arXiv:0805.1703].

[36] Y. Honma, S. Iso, Y. Sumitomo, and S. Zhang, Janus eld theories from multiple M2-branes, Phys. Rev. D78 (2008) 025027, [arXiv:0805.1895].

[37] H. Fuji, S. Terashima, and M. Yamazaki, A newN = 4membrane action via orbifold, Nucl. Phys. B810 (2009) 354368, [arXiv:0805.1997].

[38] P.-M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, M5-brane in three-form ux and multiple M2-branes, JHEP 08 (2008) 014, [arXiv:0805.2898].

[39] C. Krishnan and C. Maccaferri, Membranes on calibrations, JHEP 07 (2008) 005, [arXiv:0805.3125].

[40] Y. Song, Mass deformation of the multiple M2-dranes theory, Eur. Phys. J. C71 (2011) 1599, [arXiv:0805.3193].

[41] I. Jeon, J. Kim, N. Kim, S.-W. Kim, and J.-H. Park, Classication of the BPS states in Bagger-Lambert theory, JHEP 07 (2008) 056, [arXiv:0805.3236].

[42] H. Lin, Kac-Moody extensions of 3-algebras and M2-branes, JHEP 07 (2008) 136, [arXiv:0805.4003].

[43] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, N = 4superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091, [arXiv:0805.3662].

[44] S. Banerjee and A. Sen, Interpreting the M2-brane action, Mod. Phys. Lett. A24 (2009) 721724, [arXiv:0805.3930].

[45] M. Li and T. Wang, M2-branes coupled to antisymmetric uxes, JHEP 07 (2008) 093, [arXiv:0805.3427].

[46] P. De Medeiros, J. M. Figueroa-O'Farrill, and E. Mendez-Escobar, Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space, JHEP 07 (2008) 111, [arXiv:0805.4363].

[47] M. A. Bandres, A. E. Lipstein, and J. H. Schwarz, Ghost-free superconformal action for multiple M2-branes, JHEP 07 (2008) 117, [arXiv:0806.0054].

[48] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk, and H. Verlinde, Supersymmetric Yang-Mills theory from Lorentzian three-algebras, JHEP 08 (2008) 094, [arXiv:0806.0738].

[49] B. Ezhuthachan, S. Mukhi, and C. Papageorgakis, D2 to D2, JHEP 07 (2008) 041, [arXiv:0806.1639].

[50] M. Benna, I. Klebanov, T. Klose, and M. Smedback, Superconformal Chern-Simons theories andAdS4/CF T3correspondence, JHEP 09 (2008) 072, [arXiv:0806.1519].

[51] J. Bhattacharya and S. Minwalla, Superconformal indices forN = 6Chern-Simons theories, JHEP 01 (2009) 014, [arXiv:0806.3251].

[52] T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons theories, JHEP 08 (2008) 001, [arXiv:0806.3391].

[53] Y. Honma, S. Iso, Y. Sumitomo, and S. Zhang, Scaling limit ofN = 6superconformal Chern-Simons theories and Lorentzian Bagger-Lambert theories, Phys. Rev. D78 (2008) 105011, [arXiv:0806.3498].

[54] Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509523, [arXiv:0806.3727].

[55] J. A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040, [arXiv:0806.3951].

[56] A. Armoni and A. Naqvi, A non-supersymmetric large-N 3D CFT and its gravity dual, JHEP 09 (2008) 119, [arXiv:0806.4068].

[57] D. Gaiotto, S. Giombi, and X. Yin, Spin chains inN = 6superconformal Chern-Simons-Matter theory, JHEP 04 (2009) 066, [arXiv:0806.4589].

[58] G. Grignani, T. Harmark, and M. Orselli, TheSU(2)×SU(2)sector in the string dual of N = 6superconformal Chern-Simons theory, Nucl. Phys. B810 (2009) 115134,

[arXiv:0806.4959].

[59] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, N = 5, 6superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002, [arXiv:0806.4977].

[60] A. Hanany, N. Mekareeya, and A. Zaaroni, Partition functions for membrane theories, JHEP 09 (2008) 090, [arXiv:0806.4212].

[61] J. Bagger and N. Lambert, Three-algebras and N = 6Chern-Simons gauge theories, Phys.

Rev. D79 (2009) 025002, [arXiv:0807.0163].

[62] S. Terashima, On M5-branes in N = 6membrane action, JHEP 08 (2008) 080, [arXiv:0807.0197].

[63] G. Grignani, T. Harmark, M. Orselli, and G. W. Semeno, Finite size giant magnons in the string dual ofN = 6 superconformal Chern-Simons theory, JHEP 12 (2008) 008,

[arXiv:0807.0205].

[64] D. Gaiotto and E. Witten, Janus congurations, Chern-Simons couplings, and the theta-angle in N = 4super Yang-Mills theory, JHEP 06 (2010) 097, [arXiv:0804.2907].

[65] A. S. Cattaneo, P. Cotta-Ramusino, J. Frohlich, and M. Martellini, Topological BF theories in three-dimensions and four-dimensions, J. Math. Phys. 36 (1995) 61376160,

[hep-th/9505027].

[66] N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602, [arXiv:0804.1114].

[67] B. I. Zwiebel, Two-loop integrability of planarN = 6superconformal Chern-Simons theory, J. Phys. A42 (2009) 495402, [arXiv:0901.0411].

[68] J. A. Minahan, W. Schulgin, and K. Zarembo, Two loop integrability for Chern-Simons theories withN = 6supersymmetry, JHEP 03 (2009) 057, [arXiv:0901.1142].

[69] D. Bak, H. Min, and S.-J. Rey, Generalized dynamical spin chain and 4-Loop integrability in N = 6superconformal Chern-Simons theory, Nucl. Phys. B827 (2010) 381405, [arXiv:0904.4677].

[70] I. Bena, J. Polchinski, and R. Roiban, Hidden symmetries of the AdS5×S5superstring, Phys. Rev. D69 (2004) 046002, [hep-th/0305116].

[71] B. Stefanski, jr, Green-Schwarz action for type IIA strings onAdS4×CP3, Nucl. Phys.

B808 (2009) 8087, [arXiv:0806.4948].

[72] G. Arutyunov and S. Frolov, Superstrings on AdS4×CP3 as a coset sigma-model, JHEP 09 (2008) 129, [arXiv:0806.4940].

[73] R. D'Auria, P. Fre, P. A. Grassi, and M. Trigiante, Superstrings on AdS4×CP3 from supergravity, Phys. Rev. D79 (2009) 086001, [arXiv:0808.1282].

[74] J. Gomis, D. Sorokin, and L. Wul, The complete AdS4×CP3 superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015, [arXiv:0811.1566].

[75] P. Fre and P. A. Grassi, Pure spinor formalism for Osp(N|4) backgrounds, arXiv:0807.0044.

[76] G. Bonelli, P. A. Grassi, and H. Safaai, Exploring pure spinor string theory on AdS4×CP3, JHEP 10 (2008) 085, [arXiv:0808.1051].

[77] S. Schafer-Nameki, The algebraic curve of 1-loop planar N = 4SYM, Nucl. Phys. B714 (2005) 329, [hep-th/0412254].

[78] V. A. Kazakov, A. Marshakov, J. A. Minahan, and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024, [hep-th/0402207].

[79] N. Beisert, V. A. Kazakov, K. Sakai, and K. Zarembo, The algebraic curve of classical superstrings onAdS5×S5, Commun. Math. Phys. 263 (2006) 659710, [hep-th/0502226].

[80] N. Gromov and P. Vieira, The AdS4/CF T3 algebraic curve, JHEP 02 (2009) 040, [arXiv:0807.0437].

[81] N. Gromov and P. Vieira, The all loop ads4/cf t3bethe ansatz, JHEP 2009 (2009), no. 01 016.

[82] C. Ahn and R. I. Nepomechie, N = 6super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations, JHEP 09 (2008) 010, [arXiv:0807.1924].

[83] K. Zarembo, Worldsheet spectrum inAdS4/CF T3 correspondence, arXiv:0903.1747.

[84] P. Sundin, On the worldsheet theory of the type IIAAdS4×CP3superstring, arXiv:0909.0697.

[85] O. Bergman and S. Hirano, Anomalous radius shift in AdS4/CF T3, JHEP 07 (2009) 016, [arXiv:0902.1743].

[86] C. Krishnan, AdS4/CF T3 at one loop, JHEP 09 (2008) 092, [arXiv:0807.4561].

[87] T. McLoughlin and R. Roiban, Spinning strings at one-loop in AdS4×P3, JHEP 12 (2008) 101, [arXiv:0807.3965].

[88] L. F. Alday, G. Arutyunov, and D. Bykov, Semiclassical quantization of spinning strings in AdS4×CP3, JHEP 11 (2008) 089, [arXiv:0807.4400].

[89] N. Gromov and V. Mikhaylov, Comment on the scaling function inAdS4×CP3, JHEP 04 (2009) 083, [arXiv:0807.4897].

[90] T. McLoughlin, R. Roiban, and A. A. Tseytlin, Quantum spinning strings in AdS4×CP3: Testing the Bethe ansatz proposal, JHEP 11 (2008) 069, [arXiv:0809.4038].

[91] I. Shenderovich, Giant magnons in AdS4/CF T3: Dispersion, quantization and nite-size corrections, arXiv:0807.2861.

[92] S. Frolov and A. A. Tseytlin, Multi-spin string solutions inAdS5×S5, Nucl. Phys. B668 (2003) 77110, [hep-th/0304255].

[93] S. Frolov and A. A. Tseytlin, Quantizing three-spin string solution in AdS5×S5, JHEP 07 (2003) 016, [hep-th/0306130].

[94] S. A. Frolov, I. Y. Park, and A. A. Tseytlin, On one-loop correction to energy of spinning strings inS5, Phys. Rev. D71 (2005) 026006, [hep-th/0408187].

[95] N. Beisert, A. A. Tseytlin, and K. Zarembo, Matching quantum strings to quantum spins:

One-loop vs. nite-size corrections, Nucl. Phys. B715 (2005) 190210, [hep-th/0502173].

[96] B. Chen and J.-B. Wu, Semi-classical strings inAdS4×CP3, JHEP 09 (2008) 096, [arXiv:0807.0802].

[97] C. Ahn, P. Bozhilov, and R. C. Rashkov, Neumann-Rosochatius integrable system for strings onAdS4×CP3, JHEP 09 (2008) 017, [arXiv:0807.3134].

[98] N. Gromov and P. Vieira, TheAdS5×S5 superstring quantum spectrum from the algebraic curve, Nucl. Phys. B789 (2008) 175208, [hep-th/0703191].

[99] S. Frolov and A. A. Tseytlin, Semiclassical quantization of rotating superstring in AdS5×S5, JHEP 06 (2002) 007, [hep-th/0204226].

[100] M. Cvetic, H. Lu, C. N. Pope, and K. S. Stelle, T-Duality in the Green-Schwarz formalism, and the massless/massive IIA duality map, Nucl. Phys. B573 (2000) 149176,

[hep-th/9907202].

[101] N. Gromov, S. Schafer-Nameki, and P. Vieira, Ecient precision quantization in AdS/CFT, JHEP 12 (2008) 013, [arXiv:0807.4752].

Dokumen terkait