• Tidak ada hasil yang ditemukan

into the spark ignition simulation. One of the major conclusions of this work was that electrodynamic effects contributed significantly to the variability and nature of the ignition process, so electrodynamics must be considered in any accurate model of spark ignition. The first steps toward simulating the localized ignition observed in the long spark ignition tests would be to include a localized hot region in the spark channel or increase the temperature of the cathode. There is still a great deal of work to be done before predicting spark ignition is possible using only numerical simulations.

silicone heaters

fiberglass insulating

jacket lid-lifting assembly

Figure 8.1: New heated, stainless steel combustion vessel for jet fuel ignition tests

Bibliography

Federal Aviation Administration. Aircraft fuel system lightning protection design and qualification test procedures development. Technical report, 1994. U.S. Dept. of Transportation Federal Aviation Administration Report DOT/FAA/CT-94/74. 3, 11, 14, 38,47, 180

R. Akbar. Mach Reflection of Gaseous Detonations. PhD thesis, Rensselaer Poly- technic Institute, 1997. xii, 2

O. O. Akindele, D. Bradley, P. W. Mak, and M. McMahon. Spark ignition of turbulent gases. Combustion and Flame, 47:129–155, 1982. 16

M. Akram. Two-dimensional model for spark discharge simulation in air. AIAA Journal, 34(9):1835–1842, 1996. 16,17, 87, 89

V. S. Arpaci, Y. Ko, M. T. Lim, and H. S. Lee. Spark kernel development in constant volume combustion. Combustion and Flame, 135:315–322, 2003. 17

ASTM. Standard test method for minimum ignition energy and quenching distance in gaseous mixtures. Technical report, American Society for Testing and Materials International, 2009. E 582-07. 23

S. Au, R. Haley, and P. R. Smy. The influence of the igniter-induced blast wave upon the initial volume and expansion of the flame kernel. Combustion and Flame, 88:

50–60, 1992. 17

V. Babrauskas. Ignition Handbook: Principles and Applications to Fire Safety Engi- neering, Fire Investigation, Risk Management and Forensic Science. Fire Science Publishers, Issaquah, WA, 2003. 10, 13,14, 23

D. R. Ballal and A. H. Lefebvre. Ignition and flame quenching of flowing heteroge- neous fuel-air mixtures. Combustion and Flame, 35:155–168, 1979. 16

S. P. M. Bane and J. E. Shepherd. Statistical analysis of electrostatic spark igni- tion. 2009 Fall Meeting of the Western States Section of the Combustion Institute, October 26–27, University of California at Irvine, Irvine, CA, paper 09F-64, 2009.

63

S. P. M. Bane, J. E. Shepherd, E. Kwon, and A. C. Day. Statistical analysis of electrostatic spark ignition of lean H2-O2-Ar mixtures. International Conference on Hydrogen Safety, 2009. 38

C. R. Bauwens. Research technical memorandum, evaluation of flame properties (fp) program (Project no. 003025190). Technical report, 2007. FM Global. 105,239 W. B. Benedick, J. C. Cummings, and P. G. Prassinos. Combustion of hydrogen-air

mixtures in the vges cylindrical tank. Technical report, Sandia National Labora- tories, Albuquerque, NM, and Livermore, CA, 1984. Report SAND-83-1022. 43, 44

M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.

Journal of Computational Physics, 82:64–84, 1988. 95

M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53:484–512, 1984. 95

M. V. Blanc, P. G. Guest, G. von Elbe, and B. Lewis. Ignition of explosive gas mixtures by electric sparks. i. minimum ignition energies and quenching distances of mixtures of methane, oxygen, and inert gases. Journal of Chemical Physics, 15:

798–802, 1947. 178

M. V. Blanc, P. G. Guest, G. von Elbe, and B. Lewis. Ignition of explosive gas mixtures by electric sparks. III. minimum ignition energies and quenching distances of mixtures of hydrocarbons and ether with oxygen and inert gases. In Third

Symposium on Combustion, Flame, and Explosion Phenomena, pages 363–367.

The Combustion Institute, Pittsburgh, PA, 1949. 178

Boeing, Airbus, ATA, AEA, AAPA, EAAI, and AIA. Industry reponse to FAA on fuel system safety. Technical report, Boeing Commercial Airplane Group, http://www.boeing.com/news/techissues/pdf/FAARESPONSE.PDF, 1997. 3 D. Bradley and I. L. Critchley. Electromagnetically induced motion of spark ignition

kernels. Combustion and Flame, 22:143–152, 1974. 17

L. G. Britton. Two hundred years of flammability limits. Process Safety Progress, 21:

1–11, 2002. 10,38

H. F. Calcote, Jr. C. A. Gregory, C. M. Barnett, and R. B. Gilmer. Spark ignition effect of molecular structure. Industrial and Engineering Chemistry, 44:2656–2662, 1952. 11, 15, 16, 177,188

K. L. Cashdollar, I. A. Zlochower, G. M. Green, R. A. Thomas, and M. Hertzberg.

Flammability of methane, propane, and hydrogen gases.Journal of Loss Prevention in the Process Industries, 13:327–340, 2000. 39, 43

M. Champion, B. Deshaies, G. Joulin, and K. Kinoshita. Spherical flame initiation:

Theory versus experiments for lean propane-air mixtures. Combustion and Flame, 65:319–337, 1986. 16,17

T. J. Chung. In Numerical Modeling in Combustion, Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor and Francis, 1993.

148

J. Colwell and A. Reza. Hot surface ignition of automotive and aviation fluids. Fire Technology, 41:105–123, 2005. 14,49

H. F. Coward and G. W. Jones. The limits of flammability of gases and vapors.

Technical report, Bureau of Mines, 1952. Bulletin 503. 10, 39,158

S. G. Davis and C. K. Law. Determination of and fuel structure effects on laminar flame speeds of c1 to c8 hydrocarbons. Combustion Science and Technology, 140:

427–449, 1998. xxii, 72, 73, 74

R. Deiterding. Parallel Adaptive Simulation of Multi-dimensional Detonation Struc- tures. PhD thesis, Brandenburgische Technische Universit¨at Cottbus, 2003. 88, 95, 160

W. J. Dixon and F. J. Massey Jr. Introduction to Statistical Analysis. McGraw-Hill, 1983. 47, 48

O. Ekici, O. A. Ezekoye, M. J. Hall, and R. D. Matthews. Thermal and flow fields modeling of fast spark discharges in air. Journal of Fluids Engineering, 129:55–65, 2007. 16, 87, 89

D. Fern´andez-Galisteo, A. L. S´anchez, A. Li n´an, and F. A. Williams. One-step reduced kinetics for lean hydrogen-air deflagration. Combustion and Flame, 156:

985–996, 2009. 105

T. Fornia. Thermal modeling to predict fuel tank flammability. In Transport Fuel Flammability Conference. SAE/FAA, October 1997. 3

I. Glassman. Combustion. Academic Press, 3 edition, 1996. 12

D. Goodwin. Cantera: Object-oriented software for reacting flows, 2005. California Institute of Technology, http://www.cantera.org. xxii,44,59, 72, 92,105,107, 161 F. F. Grinstein and C. Fureby. LES studies of the flow in a swirl gas combustor.

Proceedings of the Combustion Institute, 30:1791–1798, 2005. 105

P. G. Guest. Apparatus for determining minimum energies for electric-spark ignition of flammable gases and vapors. Technical report, 1944. Bureau of Mines Report of Investigations 3753. 180

V. Hamosfakidis, H. G. Im, and D. N. Assanis. A regenerative multiple zone model for hcci combustion. Combustion and Flame, 156:928–941, 2009. 105

J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988. 43 D. Hosmer and S. Lemeshow. Applied Logistic Regression. John Wiley and Sons,

1989. 49

SAE International. Aerospace recommended practice aircraft lightning test methods.

Technical report, SAE International, 2005. Aerospace Report ARP5416. xiii,3,10, 14, 38, 41,52, 53, 157

K. Ishii, T. Tsukamoto, Y. Ujiie, and M. Kono. Analysis of ignition mechanism of combustible mixtures by composite sparks. Combustion and Flame, 91:153–164, 1992. 16, 87, 89

J. Jarosinski. Flammability Limits: History and Mechanism of Flame Extinction, chapter 3. CRC Press, 2009. 156

M. Kono, K. Niu, T. Tsukamoto, and Y. Ujiie. Mechanism of flame kernel formation produced by short duration sparks. In Twenty-Second Symposium (International) on Combustion, pages 1643–1649. The Combustion Institute, Pittsburgh, PA, 1988.

16, 17, 87,89

T. L. Kosvic, L. Zung, and M. Gerstein. Analysis of aircraft fuel tank fire and explosion hazards. Technical report, Air Force Aero Propulsion Laboratory, Wright- Patterson Air Force Base, Ohio, 1971. Report AFAPL-TR-71-7. 3

T. Kravchik, E. Sher, and J. B. Heywood. From spark ignition to flame initiation.

Combustion Science and Technology, 108:1–30, 1995. 16,87, 89, 92

R. K. Kumar. Flammability limits of hydrogen-oxygen-diluent mixtures. Journal of Fire Sciences, 3:245–262, 1985. 39

A. Y. Kusharin, O. E. Popov, and G. L. Agafonov. Initiation of laminar flames in near-limit H2/O2/H2O mixtures. In Twenty-Sixth Symposium (International) on Combustion, pages 985–991. The Combustion Institute, Pittsburgh, PA, 1996. 16, 39

A. Yu. Kusharin, O. E. Popov, G. L. Agafonov, and B. E. Gelfand. Initiation of premixed flames in H2-air-H2O mixtures.Experimental Thermal and Fluid Science, 21:2–8, 2000. 16

E. Kwon, S. P. Moffett, J. E. Shepherd, and A. C. Day. Combustion characteristics of hydrogen as used in a flammable test mixture. Paper PPR-48, 2007. 15, 38 N. Lamoureux, N. Djebaili-Chaumeix, and C. E. Paillard. Laminar flame velocity

determination for H2-air-He-CO2 mixtures using the spherical bomb method. Ex- perimental Thermal and Fluid Science, 27:385–393, 2003. 39

H. J. Langlie. A test-to-failure program for thermal batteries. In Sixteenth Annual Power Sources Conference. PSC Publications Committee, 1962. 47

R. J. Larsen and M. L. Marx. An Introduction to Mathematical Statistics and its Applications. Pearson Prentice Hall, 2006. 184

J. J. Lee and J. E. Shepherd. Spark energy measurements in Jet A part II. Technical report, 1999. technical report, Graduate Aerospace Laboratories, California Insti- tute of Technology, Explosion Dynamics Laboratory Report FM 99-7. xiv, 14, 33, 47, 50, 51

B. Lewis. Report of research and technological work on explosives, explosions, and flames, fiscal year 1946. Technical report, 1947. Bureau of Mines Report of Inves- tigations 4176. 178

B. Lewis. Report of research and technological work on explosives, explosions, and flames, fiscal years 1947 and 1948. Technical report, 1949. Bureau of Mines Report of Investigations 4502. 178, 179

B. Lewis. Report of research and technological work on explosives, explosions, and flames, fiscal year 1949. Technical report, 1950. Bureau of Mines Report of Inves- tigations 4667. 178, 179

B. Lewis and G. von Elbe. Ignition of explosive gas mixtures by electric sparks.

II. theory of propagation of flame from an instantaneous point source of ignition.

Journal of Chemical Physics, 15:803–808, 1947. 178

B. Lewis and G. von Elbe. Combustion, Flames and Explosions of Gases. Academic Press, 1951. xx, 178, 179, 180, 182, 188

B. Lewis and G. von Elbe. Combustion, Flames and Explosions of Gases. Academic Press, New York, 2nd edition, 1961. xxii, 10, 11, 15,16, 23, 32, 56, 57, 58, 63, 65, 68, 70, 73,89, 102, 158, 159

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer. An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36:

566–575, 2004. xviii,xix, 128, 130, 131, 134, 135, 136, 137, 139

E. L. Litchfield. Minimum ignition-energy concept and its application to safety en- gineering. Technical report, 1960. Bureau of Mines Report of Investigations 5671.

180

E. L. Litchfield and M. V. Blanc. Recent developments in spark ignition. Technical report, 1959. Bureau of Mines Report of Investigations 5461. 180

E. L. Litchfield, M. H. Hay, T. A. Kubala, and J. S. Monroe. Minimum ignition energy and quenching distance in gaseous mixtures. Technical report, 1967. Bureau of Mines Report of Investigations 7009. 180

U. Maas and J. Warnatz. Ignition processes in hydrogen-oxygen mixtures.Combustion and Flame, 74:53–69, 1988. 16

E. C. Magison. Electrical Equipment in Hazardous Locations. Instrument Society of America, 3rd edition, 1990. 10, 13, 14,23

R. Maly. Ignition model for spark discharges and the early phase of flame front growth. In Eighteenth Symposium (International) on Combustion, pages 1747–

1754. The Combustion Institute, Pittsburgh, PA, 1980. 16

R. Maly. Spark Ignition: Its Physics and Effect on the Internal Combustion Engine, chapter 3. Springer, 1984. 92

R. Maly and M. Vogel. Initiation and propagation of flame fronts in lean ch4-air mixtures by the three modes of the ignition spark. Proceedings of the Combustion Institute, 17:821–831, 1979. 17, 92

A. J. Metzler. Minimum ignition energies of six pure hydrocarbon fuels of the C2 and C6 series. Technical report, 1952a. NACA report RM E52F27. 11,15,16,177, 188 A. J. Metzler. Minimum ignition energies of 12 pure fuels at atmospheric and reduced pressure. Technical report, 1952b. NACA report RM E53H31. 11,15,16,177, 188 J. Moorhouse, A. Williams, and T. E. Maddison. An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons. Combustion and Flame, 23:

203–213, 1974. 11, 15, 176, 188

L. Nestor. Investigation of turbine fuel flammability within aircraft fuel tanks. Tech- nical report, Naval Air Propulsion Test Center, Naval Base, Philadelphia, 1967.

Final Report DS-67-6. 3

J. Neter, M. H. Kutner, W. Wasserman, and C. J. Nachtsheim. Applied Linear Statistical Models. McGraw-Hill/Irwin, 4th edition, 1996. 49

H. L. Olsen, R. B. Edmonson, and E. L. Gayhart. Microchronometric schlieren study of gaseous expansion from an electric spark. Journal of Applied Physics, 23:1157–

1162, 1952. 17

R. Ono and T. Oda. Measurement of oh density and gas temperature in incipient spark-ignited hydrogen-air flame. Combustion and Flame, 152:69–79, 2008. 17,25 R. Ono, N. Masaharu, S. Fujiwara, S. Horiguchi, and T. Oda. Gas temperature of capacitive spark discharge in air. Journal of Applied Physics, 97:123307, 2005. 11, 17, 25

R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, and T. Oda. Minimum ignition en- ergy of hydrogen-air mixture: Effects of humidity and spark duration. Journal of Electrostatics, 65:87–93, 2007. 11, 25

E. Ott. Effects of fuel slosh and vibration on the flammability hazards of hydrocarbon turbine fuels within aircraft fuel tanks. Technical report, Fire Protection Branch of the Fuels and Lubrication Division, Wright-Patterson Air Force Base, Ohio, 1970.

Report AFAPL-TR-70-65. 3

P. L. Pitt, R. M. Clements, and D. R. Topham. The early phase of spark ignition.

Combustion Science and Technology, 78:289–314, 1991. 17

A. E. Potter. Flame quenching. In Progress in Combustion Science and Technology, volume 1 of International Series of Monographs in Aeronautics and Astronautics, pages 145–181. CRC Press, 1960. 68

E. Randeberg, W. Olsen, and R. K. Eckhoff. A new method for generation of syn- chronised capacitive sparks of low energy. Journal of Electrostatics, 64:263–272, 2006. 11

S. Refael and E. Sher. A theoretical study of the ignition of a reactive medium by means of an electrical discharge. Combustion and Flame, 59:17–30, 1985. 16 R. Reinmann and M. Akram. Temporal investigation of a fast spark discharge in

chemically inert gases.Journal of Physics D—Applied Physics, 30:1125–1134, 1997.

16, 87

P. D. Ronney. Near-limit flame structures at low lewis number. Combustion and Flame, 82:1–14, 1990. 39

G. Rosen. Ignition of combustible gases. Journal of Chemical Physics, 30:298–303, 1959. 11

A. J. Roth. Development and evaluation of an airplane fuel tank ullage composition model—volume II: Experimental determination of airplane fuel tank ullage com-

positions. Technical report, Air Force Wright Aeronautical Laboratories, Wright- Patterson Air Force Base, Ohio, 1987. Report AFWAL-TR-87-2060, Volume II.

3

A. Roux, L. Y. M. Gicquel, S. Reichstadt, N. Bertier, G. Staffelbach, F. Vuillot, and T. J. Poinsot. Analysis of unsteady reacting flows and impact of chemistry description in large eddy simulations of side-dump ramjet combustors.Combustion and Flame, 157:176–191, 2010. 105

V. Sankaran and S. Menon. Subgrid combustion modeling of 3-d premixed flames in the thin-reaction-zone regime.Proceedings of the Combustion Institute, 30:575–582, 2005. 105

D. W. Seibold. Development and evaluation of an airplane fuel tank ullage com- position model–volume I: Airplane fuel tank ullage computer model. Technical report, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, 1987. Report AFWAL-TR-87-2060, Volume I. 3

J. E. Shepherd, J. C. Krok, and J. J. Lee. Spark energy measurements in Jet A. Tech- nical report, Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California, 1999. Explosion Dynamics Laboratory Report FM97-9. 33 J. E. Shepherd, C. D. Nuyt, and J. J. Lee. Flash point and chemical composition

of aviation kerosene (jet a). Technical report, Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California, 2000. Explosion Dynamics Laboratory Report FM99-4. 3

J. E. Shepherd, S. Bane, and J. Ziegler. Development of one-step chemistry models for hydrogen-air and propane-air systems. Technical report, Graduate Aerospace Lab- oratories, California Institute of Technology, Pasadena, California, 2008. Report for FM Global. 239

E. Sher and J. C. Keck. Spark ignition of combustible gas mixtures. Combustion and Flame, 66:17–25, 1986. 16

E. Sher and S. Refael. Numerical analysis of the early phase development of spark- ignited flames in ch4-air mixture. In Nineteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1982. 16

S. Singh, D. Liberman, and J. E. Shepherd. Combustion behind shock waves. InFall 2003 Technical Meeting of the Western States Section of the Combustion Institute, 2003. Paper 03F-29. 137

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N.

Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L.

Miller, A. Violi, and R. P. Lindstedt. A high-temperature chemical ki- netic model of n-alkane oxidation, JetSurF version 1.0, september 15, 2009.

http://melchior.usc.edu/JetSurF/Version1 0/Index.html. xxii, 72

T. M. Sloane. Numerical simulation of electric spark ignition in atmospheric pressure methane-air mixtures. Combustion Science and Technology, 73:367–381, 1990. 16 R. A. Strehlow. Fundamentals of Combustion. Robert E. Kreiger Publishing Com-

pany, New York, 1979. 11

K. G. Strid. Experimental techniques for determination of ignition energy. In Oxi- dation and Combustion Reviews, pages 1–46. Elsevier Publishing Company, 1973.

32

M. Thiele, S. Selle, U. Riedel J. Warnatz, and U. Maas. Numerical simulation of spark ignition including ionization. Combustion Theory and Modeling, 4:413–434, 2000a. 16,87

M. Thiele, J. Warnatz, and U. Maas. Geometrical study of spark ignition in two dimensions. Combustion Theory and Modeling, 4:413–434, 2000b. 16, 17, 87, 89, 92

M. Thiele, J. Warnatz, A. Dreizler, S. Lindenmaier, R. Schießl, U. Maas, A. Grant, and P. Ewart. Spark ignited hydrogen/air mixtures: Two dimensional detailed

modeling and laser based diagnostics. Combustion and Flame, 128:74–87, 2002.

16, 17, 87,89

S. R. Turns. An Introduction to Combustion: Concepts and Applications. McGraw- Hill, 2nd edition, 2000. 12, 73

E. A. Ural, R. G. Zalosh, and F. Tamanini. Ignitability of jet-a fuel vapors in aircraft.

In Aircraft Fire Safety, AGARD Conference Proceedings, page 14, 1989. 3

U. von Pidoll, E. Brzostek, and H.-R. Froechtenigt. Determining the incendivity of electrostatic discharges without explosive gas mixtures. IEE Transactions on Industry Applications, 40:1467–1475, 2004. 74, 75, 160

F. A. Williams. Combustion Theory. The Benjamin/Cummings Publishing Company, Inc., 2 edition, 1985. 12

T. Yuasa, S. Kadota, M. Tsue, M. Kono, H. Nomura, and Y. Ujiee. Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures. Proceedings of the Combustion Institute, 29:743–750, 2002. 16, 87 J. Zukas and W. Walters, editors. Explosive Effects and Applications, chapter 8.

Springer-Verlag NY, 1998. 47

Appendix A

Historical MIE Data and Probability

A.1 Introduction

There is a large volume of historical data dating to the period 1947–1952 on the minimum ignition energy for capacitive spark discharge ignition. This data has been extensively used in the chemical and aviation industry to set standards and evaluate safety with flammable gas mixtures. There exists scant information on the experi- mental procedures, raw data, or uncertainty consideration, or any other information that would enable the assignment of a statistical meaning to the minimum ignition energies that were reported. However, some researchers have claimed that the histor- ical data can be interpreted as corresponding to a certain level of ignition probability as discussed in Section 1.3.3. This appendix documents the investigation of these claims and compares the historical results with modern data.