• Tidak ada hasil yang ditemukan

Generalized Sticky Random Walk Markov Chain is an Expander

Dalam dokumen Pseudorandomness of the Sticky Random Walk (Halaman 31-59)

Chapter II: Pseudorandomness with Arbitrary Labels: Sticky Random Walk . 19

2.4 Generalized Sticky Random Walk Markov Chain is an Expander

In this section, we present and prove some equivalence properties between the generalized families of sticky random walks and show that the generalized sticky random walk is also an expander graph.

Lemma 2.4.1. Let ๐‘ be the number of vertices in the generalized sticky random walk. Then, for all ๐‘ mod ๐‘˜ โ‰ก 0,๐‘†(๐‘›, ๐‘, ๐œ†) reduces from๐‘†(๐‘›, ๐‘˜ , ๐‘๐œ†(1โˆ’ 1

๐‘˜)). Proof. Consider a generalized sticky random walk which details an irreducible homogeneous Markov chain on๐‘states where the probability of staying at the same state is 1๐‘+ (๐‘โˆ’1)๐œ†and the probability of switching states is 1๐‘โˆ’๐œ†. Then, consider a โ€™groupedโ€™ random-walk, for a grouping of states๐‘‰ =[๐‘] =๐‘‰

0u ยท ยท ยท u๐‘‰๐‘˜โˆ’

1, where ๐‘‰๐‘– contains an arbitrary selection of ๐‘/๐‘˜ vertices and where ๐‘ mod ๐‘˜ โ‰ก 0. Then, ๐‘†(๐‘›, ๐‘, ๐œ†)details an๐‘›-step long random walk on the generalized sticky random walk.

Then, we note that the probability that the current state of the grouped random walk stays at itself must be(1

๐‘˜+ (๐‘โˆ’1)๐œ†) + (1

๐‘โˆ’๐œ†) (๐‘

๐‘˜ โˆ’1) = 1

๐‘˜+๐‘๐œ†(1โˆ’1

๐‘˜). Here, the first term comes from the probability of any state๐ธ in the sticky random walk staying at itself, and the second term comes from the probability that any other vertex in the same group as ๐ธ transitions to ๐ธ. Since this is true for any of the grouped vertex, we conclude that our grouping of the random walk yields a sticky random walk on ๐‘˜ vertices and bias ๐‘๐œ†(1โˆ’ 1

๐‘˜), which completes the reduction.

Lemma 2.4.2. Every generalized sticky random walk ๐‘†(๐‘›, ๐‘, ๐œ†) corresponds to a ๐‘›-step long random walk on a ๐‘๐œ†-spectral expander with ๐‘vertices.

Proof. We first extend Definition 45 of the sticky random walk matrix in [GV22].

For subsets ๐ด, ๐ต โˆˆ [๐‘], let ๐ฝ๐ด, ๐ต โˆˆ R๐ดร—๐ต denote the matrix with all entries equal to |๐ด|1 . Then, for๐œ† โˆˆ [0,1], let๐บ๐œ†, ๐‘ โˆˆ R๐‘ร—๐‘ denote the generalized sticky random walk matrix. Then, by definition, we write that:

๐บ๐œ†, ๐‘ = (1โˆ’๐œ†)J๐‘‰ ,๐‘‰ +๐‘๐œ†I{๐‘›ร—๐‘›}

Then, note that k๐ผ๐‘›ร—๐‘›k2 is 1, as it acts as ๐ฝ on the orthogonal subspaces Rof R๐‘. Therefore,๐œ†(๐บ๐œ†, ๐‘) โ‰ค ๐‘๐œ†since the eigenvector of๐บ๐œ†, ๐‘ is orthogonal to๐ฝ๐‘‰ ,๐‘‰ and so ๐บ๐œ†, ๐‘๐œˆ =( (1โˆ’๐œ†)J๐‘ฃ ,๐‘ฃ+๐‘๐œ† ๐ผ{๐‘›ร—๐‘›})๐œˆ =(1โˆ’๐œ†)J๐‘ฃ ,๐‘ฃ๐œˆ+๐‘๐œ† ๐ผ{๐‘›ร—๐‘›}๐œˆ= ๐‘๐œ†๐œˆ. The opposite inequality comes from the fact that ๐‘›โˆ’๐‘›1

1ยฎ{๐‘0} โˆ’ 1

๐‘›

ร๐‘โˆ’1 ๐‘–=1

1ยฎ{๐‘๐‘–} โˆˆ ยฎ1โŠฅ is an eigenvector of๐บ๐œ†, ๐‘ with eigenvalue ๐‘๐œ†, which proves the theorem.

BIBLIOGRAPHY

[Ahm+19] AmirMahdi Ahmadinejad et al. โ€œHigh-precision Estimation of Ran- dom Walks in Small Spaceโ€. In:CoRRabs/1912.04524 (2019). arXiv:

1912.04524. url:http://arxiv.org/abs/1912.04524.

[AKS04] Manindra Agarwal, Neeraj Kayal, and Nitin Saxena. โ€œPrimes is in Pโ€. In:Annals of Mathematics160 (2004), pp. 781โ€“793. url:http:

//www.cse.iitk.ac.in/primality.pdf. [Alo86] Noga Alon.Eigenvalues and Expanders. 1986.

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. โ€œPseudorandom Pseudo-distributions with Near-Optimal Error for Read-Once Branch- ing Programsโ€. In:SIAM Journal on Computing49.5 (2020), STOC18- 242-STOC18โ€“299. doi: 10 . 1137 / 18M1197734. eprint: https : / / doi . org / 10 . 1137 / 18M1197734. url: https : / / doi . org / 10 . 1137/18M1197734.

[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. โ€œA Combinatorial Con- struction of Almost-Ramanujan Graphs Using the Zig-Zag Productโ€.

In: SIAM Journal on Computing40.2 (2011), pp. 267โ€“290. doi:10.

1137/080732651. eprint:https://doi.org/10.1137/080732651. url:https://doi.org/10.1137/080732651.

[Coh+22] Gil Cohen et al. โ€œExpander Random Walks: The General Case and Limitationsโ€. In: 49th International Colloquium on Automata, Lan- guages, and Programming (ICALP 2022). Ed. by Mikoล‚aj Bojaล„czyk, Emanuela Merelli, and David P. Woodruff. Vol. 229. Leibniz In- ternational Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:

Schloss Dagstuhl โ€“ Leibniz-Zentrum fรผr Informatik, 2022, 43:1โ€“43:18.

isbn: 978-3-95977-235-8. doi: 10.4230/LIPIcs.ICALP.2022.43. url: https : / / drops . dagstuhl . de / opus / volltexte / 2022 / 16384.

[Con19] David Conlon.Hypergraph expanders from Cayley graphs. 2019. arXiv:

1709.10006 [math.CO].

[CPT21] Gil Cohen, Noam Peri, and Amnon Ta-Shma. โ€œExpander Random Walks: A Fourier-Analytic Approachโ€. In:Proceedings of the 53rd An- nual ACM SIGACT Symposium on Theory of Computing. STOC 2021.

Virtual, Italy: Association for Computing Machinery, 2021, pp. 1643โ€“

1655. isbn: 9781450380539. doi:10.1145/3406325.3451049. url:

https://doi.org/10.1145/3406325.3451049.

[DLV22] Andreea Deac, Marc Lackenby, and Petar Veliฤkoviฤ‡.Expander Graph Propagation. 2022. arXiv:2210.02997 [cs.LG].

[Fri03] J. Friedman. โ€œRelative expanders or weakly relatively Ramanujan graphsโ€. In: (2003), pp. 19โ€“35.

[GG81] O. Gabber and Z. Galil. โ€œExplicit Constructions of Linear Size Super- concentratorsโ€. In: (1981), pp. 407โ€“420.

[Gil98] David Gillman. โ€œA Chernoff Bound for Random Walks on Expander Graphsโ€. In:SIAM Journal on Computing27.4 (1998), pp. 1203โ€“1220.

doi: 10.1137/S0097539794268765. eprint: https://doi.org/

10 . 1137 / S0097539794268765. url: https : / / doi . org / 10 . 1137/S0097539794268765.

[GK21] Venkatesan Guruswami and Vinayak M. Kumar. โ€œPseudobinomiality of the Sticky Random Walkโ€. In:12th Innovations in Theoretical Com- puter Science Conference (ITCS 2021). Ed. by James R. Lee. Vol. 185.

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhlโ€“Leibniz-Zentrum fรผr Informatik, 2021, 48:1โ€“48:19. isbn: 978-3-95977-177-1. doi:10.4230/LIPIcs.ITCS.

2021.48. url:https://drops.dagstuhl.de/opus/volltexte/

2021/13587.

[GK23] Roy Gotlib and Tali Kaufman. No Where to Go But High: A Per- spective on High Dimensional Expanders. 2023. arXiv:2304.10106 [math.CO].

[Gur20] Venkatesan Guruswami. โ€œMore Great Ideas in Theoretical Computer Scienceโ€. In: (2020).

[GV22] Louis Golowich and Salil Vadhan. โ€œPseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branch- ing Programsโ€. In:37th Computational Complexity Conference (CCC 2022). Ed. by Shachar Lovett. Vol. 234. Leibniz International Proceed- ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl โ€“ Leibniz-Zentrum fรผr Informatik, 2022, 27:1โ€“27:13. isbn: 978-3- 95977-241-9. doi: 10.4230/LIPIcs.CCC.2022.27. url: https:

//drops.dagstuhl.de/opus/volltexte/2022/16589.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. โ€œExpander graphs and their applicationsโ€. In: Bulletin of the American Mathematical Society43(4):439โ€“561 (2006).

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. โ€œPseudoran- domness for Network Algorithmsโ€. In:Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing. STOC โ€™94. Mon- treal, Quebec, Canada: Association for Computing Machinery, 1994, pp. 356โ€“364. isbn: 0897916638. doi: 10 . 1145 / 195058 . 195190. url:https://doi.org/10.1145/195058.195190.

[Kom+02] J. Komlรณs et al. The regularity lemma and its applications in graph theory. 2002. doi:10.1007/3-540-45878-6_3.

[KS96] David R. Karger and Clifford Stein. โ€œA New Approach to the Minimum Cut Problemโ€. In:J. ACM43.4 (1996), pp. 601โ€“640. issn: 0004-5411.

doi: 10 . 1145 / 234533 . 234534. url: https : / / doi . org / 10 . 1145/234533.234534.

[Lez01] Pascal Lezaud. โ€œChernoff and Berry-Essรฉen inequalities for Markov processesโ€. en. In:ESAIM: Probability and Statistics5 (2001), pp. 183โ€“

201. url:http://www.numdam.org/item/PS_2001__5__183_0/. [LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. โ€œRamanujan graphsโ€. In:

(1988), pp. 261โ€“277.

[Lub17] Alexander Lubotzky. Ramanujan Graphs. 2017. doi: 10 . 48550 / ARXIV.1711.06558. url:https://arxiv.org/abs/1711.06558. [Mar75] G.A. Margulis. โ€œExplicit Construction of Concentratorsโ€. In: (1975),

pp. 325โ€“332.

[Mil75] Gary L. Miller. โ€œRiemannโ€™s Hypothesis and Tests for Primalityโ€. In:

Proceedings of the Seventh Annual ACM Symposium on Theory of Computing. STOC โ€™75. Albuquerque, New Mexico, USA: Association for Computing Machinery, 1975, pp. 234โ€“239. isbn: 9781450374194.

doi: 10 . 1145 / 800116 . 803773. url: https : / / doi . org / 10 . 1145/800116.803773.

[Rab80] Michael Rabin. Probabilistic Algorithm for Testing Primality. 1980.

url: https : / / www . sciencedirect . com / science / article / pii/0022314X80900840.

[Rei05] Omer Reingold. โ€œUndirected ST-Connectivity in Log-Spaceโ€. In:Pro- ceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing. STOC โ€™05. Baltimore, MD, USA: Association for Com- puting Machinery, 2005, pp. 376โ€“385. isbn: 1581139608. doi: 10 . 1145 / 1060590 . 1060647. url: https : / / doi . org / 10 . 1145 / 1060590.1060647.

[RR17] Shravas Rao and Oded Regev. โ€œA Sharp Tail Bound for the Expander Random Samplerโ€. In:arXiv e-prints, arXiv:1703.10205 (Mar. 2017), arXiv:1703.10205. arXiv:1703.10205 [math.PR].

[RVW04] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree. June 2004. url:

https://arxiv.org/abs/math/0406038.

[Sam98] Alex Samorodnitsky. โ€œOn the optimum of Delsarteโ€™s linear programโ€.

In:J. Combinatorial Theory, Ser. A96 (1998).

[SS96] M. Sipser and D.A. Spielman. โ€œExpander codesโ€. In: IEEE Transac- tions on Information Theory 42.6 (1996), pp. 1710โ€“1722. doi: 10 . 1109/18.556667.

[Ta-17] Amnon Ta-Shma. โ€œExplicit, Almost Optimal, Epsilon-Balanced Codesโ€.

In:Proceedings of the 49th Annual ACM SIGACT Symposium on The- ory of Computing. STOC 2017. Montreal, Canada: Association for Computing Machinery, 2017, pp. 238โ€“251. isbn: 9781450345286. doi:

10.1145/3055399.3055408. url:https://doi.org/10.1145/

3055399.3055408.

[Tal17] Avishay Tal. โ€œTight Bounds on the Fourier Spectrum of AC0โ€. In:

32nd Computational Complexity Conference (CCC 2017). Ed. by Ryan Oโ€™Donnell. Vol. 79. Leibniz International Proceedings in Informat- ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhlโ€“Leibniz-Zentrum fuer Informatik, 2017, 15:1โ€“15:31. isbn: 978-3-95977-040-8. doi:10.

4230/LIPIcs.CCC.2017.15. url:http://drops.dagstuhl.de/

opus/volltexte/2017/7525.

[Tre11] Luca Trevisan. โ€œGraph Partitioning and Expandersโ€. In: (2011). url:

https : / / lucatrevisan . github . io / teaching / cs359g - 11 / lecture01.pdf.

[Vad13] Salil Vadhan.Pseudorandomness. Book On Demand Ltd, 2013.

A p p e n d i x A

PROOF OF INTRODUCTORY THEOREMS

Lemma 1.3.1: Without loss of generality, let๐œ†

1 โ‰ฅ ยท ยท ยท โ‰ฅ๐œ†๐‘›be the๐‘›eigenvalues of L. Then,0=๐œ†

1 โ‰ค ยท ยท ยท โ‰ค๐œ†๐‘› =2.

Proof. We first show that 0 is an eigenvalue of the Laplacian L with eigenvector ๐ท1/2ยฎ1, whereยฎ1is the all-ones vector of length๐‘›. Observe that:

L (๐ท1/2ยฎ1) =๐ทโˆ’1/2(๐ผโˆ’๐ท)๐ทโˆ’1/2๐ท1/21ยฎ= ๐ทโˆ’1/2(๐ผ โˆ’๐ท)ยฎ1=0

The last equality holds because ยฎ1is an eigenvector of (๐ผ โˆ’ ๐ด) which corresponds to an eigenvalue of 0. Thus, 0 is an eigenvalue ofL. To show that 0 is a minimal eigenvalue of L, note that since L is symmetric and positive semidefinite (PSD), we must have that:

๐œ†1:= inf

๐‘ฅโˆˆR๐‘›:k๐‘ฅk=1

๐‘ฅ๐‘‡L๐‘ฅ So, for an arbitrary๐‘ฃ โˆˆR๐‘›, observe that:

๐‘ฃ๐‘‡L๐‘ฃ=๐‘ฃ๐‘‡(1โˆ’๐ทโˆ’1/2๐ด ๐ทโˆ’1/2)๐‘ฃ

=ร•

๐‘–โˆˆ๐‘‰

๐‘ฃ2

๐‘– โˆ’ ร•

(๐‘–, ๐‘—)โˆˆ๐ธ

2๐‘ฃ๐‘–๐‘ฃ๐‘— p๐‘‘๐‘–๐‘‘๐‘—

= ร•

(๐‘–, ๐‘—)โˆˆ๐ธ

๐‘ฃ๐‘–

โˆš ๐‘‘๐‘–

โˆ’ ๐‘ฃ๐‘— p

๐‘‘๐‘—

!2

โ‰ฅ 0 Thus,๐œ†

1=inf๐‘ฅโˆˆR๐‘›:k๐‘ฅk=1๐‘ฅ๐‘‡L๐‘ฅ โ‰ฅ 0.

For the other direction, we observe (by the PSD ofL) that๐‘ฅ๐‘‡(1โˆ’๐ทโˆ’1/2๐ด ๐ทโˆ’1/2)๐‘ฅ โ‰ฅ 0 implies๐œ†๐‘› โ‰ค 2 as shown below:

โˆ’๐‘ฅ๐‘‡๐ทโˆ’1/2๐ด ๐ทโˆ’1/2๐‘ฅ โ‰ค ๐‘ฅ๐‘‡๐‘ฅ =โ‡’ ๐‘ฅ๐‘‡๐ผ ๐‘ฅโˆ’๐‘ฅ๐‘‡๐ทโˆ’1/2๐ด ๐ทโˆ’1/2๐‘ฅ โ‰ค 2๐‘ฅ๐‘‡๐‘ฅ Factorizing, we get that:

๐‘ฅ๐‘‡(๐ผโˆ’๐ทโˆ’1/2๐ด ๐ทโˆ’1/2)๐‘ฅ

๐‘ฅ๐‘‡๐‘ฅ := ๐‘ฅ๐‘‡L๐‘ฅ ๐‘ฅ๐‘‡๐‘ฅ

โ‰ค 2 =โ‡’ ๐‘ฅ๐‘‡L๐‘ฅ โ‰ค 2

Thus, each eigenvalue is bounded above by 2. So, ๐œ†๐‘› โ‰ค 2, which proves the

claim.

Lemma 1.3.2: Let ๐บ = (๐‘‰ , ๐ธ) be a ๐‘‘-regular graph with edge expansion โ„Ž. If any๐œ– < โ„Ž fraction of edges are removed from๐บ, then the graph has a connected component that spans atleast1โˆ’๐œ–/2โ„Žfraction of the vertices.

Proof adapted from [Tre11]. Let ๐ธ0 โІ ๐ธ be an any subset of โ‰ค ๐œ–|๐ธ| = ๐œ– ๐‘‘|๐‘‰|/2 edges that an adversary may wish to remove from the graph.Let ๐ถ

1, . . . , ๐ถ๐‘š be the connected components of the graph (๐‘‰ , ๐ธ โˆ’ ๐ธ0) ordered (WLOG) such that

|๐ถ

1| โ‰ฅ |๐ถ

2| โ‰ฅ ยท ยท ยท โ‰ฅ |๐ถ๐‘š|. Observe that:

|๐ธ0| โ‰ฅ 1 2

ร•

๐‘–โ‰ ๐‘—

๐ธ(๐ถ๐‘–, ๐ถ๐‘—)= 1 2

ร•

๐‘–

๐ธ(๐ถ๐‘–, ๐‘‰ โˆ’๐ถ๐‘–)

Then, |๐ถ

1| > |๐‘‰|/2, since |๐ถ

1| โ‰ค |๐‘‰|/2 would imply that |๐ธ0| โ‰ฅ 1

2

ร

๐‘–๐‘‘ โ„Ž|๐ถ๐‘–| = ๐‘‘ โ„Ž|๐‘‰|/2, which is impossible if โ„Ž > ๐œ–. If |๐ถ

1| โ‰ฅ |๐‘‰|/2, we define ๐‘† := ๐ถ

2โˆช

ยท ยท ยท โˆช๐ถ๐‘š. Then, |๐ธ0| โ‰ฅ ๐ธ(๐ถ

1, ๐‘†) โ‰ฅ ๐‘‘ โ„Ž|๐‘†|, which implies |๐‘†| โ‰ค ๐œ–

2โ„Ž|๐‘‰| and so ๐ถ1 โ‰ฅ (1โˆ’๐œ–/2โ„Ž) |๐‘‰|. This proves our claim.

Lemma 1.3.3: For every constant๐‘‘ โˆˆN, any๐‘‘-regular graph๐บ = (๐‘‰ , ๐ธ)satisfies ๐œ†(๐บ) โ‰ฅ 2

โˆš

๐‘‘โˆ’1/๐‘‘โˆ’๐‘œ(1), where the๐‘œ(1) term vanishes as๐‘› โ†’ โˆž.

Proof adapted from [Vad13]. Let ๐บ be a regular undirected graph and ๐‘‡๐‘‘ be the infinite๐‘‘-regular tree. For a graph ๐ป andโ„“ โˆˆ N, let ๐‘โ„“(๐ป) denote the probability that if we choose a random vertex๐‘ฃ โˆˆ ๐ปand do a random walk of length 2โ„“, we end back at vertex ๐‘ฃ. Then, we first observe that ๐‘โ„“(๐บ) โ‰ฅ ๐‘โ„“(๐‘‡๐‘‘). Second, note that ๐‘โ„“(๐‘‡๐‘‘) โ‰ฅ๐ถโ„“(๐‘‘โˆ’1)โ„“/๐‘‘2โ„“. Here,๐ถโ„“is the Catalan number, which equals the number of properly parenthesized strings of length 2โ„“. This last inequality holds because in the worst case, the random walk goesโ„“ steps away from๐‘ฃ and back, where at each vertex there are๐‘‘โˆ’1 branches possible in the๐‘‘-regular tree. Here, there are atmost ๐‘‘2โ„“ possible choices of paths. Finally, given an exact path, the number of ways in which the vertex could get to a vertex โ„“ steps away is exactly๐ถโ„“, theโ„“th Catalan number.

Since the trace of the matrix L is the sum of its eigenvalues, the 2โ„“โ€™th transition matrix has sum of eigenvalues exactly๐‘› ๐‘โ„“(๐บ). We can bound this from above by 1+ (๐‘›โˆ’1)๐œ†2โ„“. Then, using the fact that ๐ถโ„“ = 2โ„“โ„“

/(โ„“ +1), we get that ๐œ†(๐บ) โ‰ฅ 2

โˆš

๐‘‘โˆ’1/๐‘‘โˆ’๐‘œ(1).

Lemma 1.3.4(Expander Mixing Lemma): Let๐บ = (๐‘‰ , ๐ธ) with |๐‘‰| = ๐‘›,|๐ธ| = ๐‘š be a๐‘‘-regular graph with spectral expansion constant๐œ†. Then, for any subsets๐‘†, ๐‘‡ of the vertex-set๐‘‰, we have that:

๐ธ(๐‘†, ๐‘‡) โˆ’ ๐‘‘|๐‘†||๐‘‡| ๐‘›

โ‰ค๐œ†

p|๐‘†||๐‘‡|

Proof. Let1๐‘† be the indicator vector of the set๐‘†and1๐‘‡ be the indicator vector of the set๐‘‡, where:

(1๐‘†)๐‘— =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

0, ๐‘— โˆ‰๐‘† 1, ๐‘— โˆˆ๐‘†

and (1๐‘‡)๐‘— =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

0, ๐‘— โˆ‰๐‘‡ 1, ๐‘— โˆˆ๐‘‡ Let ๐‘ข = (1/๐‘›, . . . ,1/๐‘›). Let 1๐‘† = |๐‘†|๐‘ข +๐‘ฃ

1,1๐‘‡ = |๐‘‡|๐‘ข +๐‘ฃ

2. Then, observe that h๐‘ฃ

1, ๐‘ขi=h๐‘ฃ

2, ๐‘ขi=0. Also:

k๐‘ฃ

1k =p

(๐‘›โˆ’ |๐‘†|)/๐‘›2+ |๐‘†| (1+๐‘›2โˆ’2/๐‘›) =p

1/๐‘›+ |๐‘†| โˆ’2|๐‘†|/๐‘› โ‰ค p

|๐‘†| k๐‘ฃ

2k =p

(๐‘›โˆ’ |๐‘‡|)/๐‘›2+ |๐‘‡| (1+๐‘›2โˆ’2/๐‘›) =p

1/๐‘›+ |๐‘‡| โˆ’2|๐‘‡|/๐‘›โ‰ค p

|๐‘‡| Note that the number of edges between๐‘†and๐‘‡ is exactly (1๐‘†)๐‘‡๐ด1๐‘‡. Then:

๐ธ(๐‘†, ๐‘‡) = (1๐‘†)๐‘‡๐ด1๐‘‡ =(|๐‘†|๐‘ข๐‘‡ +๐‘ฃ๐‘‡

1)๐ด(|๐‘‡|๐‘ข+๐‘ฃ

2)

= ๐‘‘|๐‘†||๐‘‡| ๐‘›

+๐‘‘|๐‘‡|๐‘ฃ๐‘‡

1๐‘ข+ |๐‘†|๐‘ข๐‘‡๐ด๐‘ฃ

2+๐‘ฃ๐‘‡

1๐ด๐‘ฃ

2

= ๐‘‘|๐‘†||๐‘‡| ๐‘›

+๐‘ฃ๐‘‡

1๐ด๐‘ฃ

2

So, subtracting, we have that:

๐ธ(๐‘†, ๐‘‡) โˆ’ ๐‘‘|๐‘†||๐‘‡| ๐‘›

=๐‘ฃ๐‘‡

1๐ด๐‘ฃ

2

โ‰ค k๐‘ฃ

1k k๐ด๐‘ฃ

2k (Cauchy Schwartz)

โ‰ค k๐‘ฃ

1k๐œ†k๐‘ฃ

2k

โ‰ค ๐œ† p|๐‘†|p

|๐‘‡|

This yields the claim.

Lemma 1.3.5[Expander Hitting Lemma]. Let๐บ = (๐‘‰ , ๐ธ)with|๐‘‰|=๐‘›,|๐ธ|=๐‘šbe a ๐‘‘-regular graph with spectral expansion constant๐œ†. Then, for any ๐ต โІ ๐‘‰ such that|๐ต|= (1โˆ’๐›ฟ)๐‘›, the probability that a random walk๐‘‹

1, ๐‘‹

2, . . . , ๐‘‹๐‘ก of๐‘กโˆ’1steps starting at a uniformly random vertex of๐บ completely stays inside๐ตis given by:

Pr[๐‘‹๐‘– โˆˆ ๐ต,โˆ€๐‘– โˆˆ [๐‘ก]] โ‰ค (1โˆ’๐›ฟ(1โˆ’๐œ†))๐‘กโˆ’1

Proof adapted from [Gur20]. Let ๐‘€ be the random walk matrix of the graph ๐บ and let๐‘ƒ be the projection matrix that zeroes out all the indices not in๐ต such that ๐‘ƒ๐‘– ๐‘— =1{๐‘–=๐‘— ,๐‘–โˆˆ๐ต}. So, the probability that all the๐‘กvertices of a random walk are in ๐ต is equal to:

Pr[๐‘‰๐‘– โˆˆ๐ต,โˆ€๐‘– โˆˆ [๐‘ก]] = k๐‘ƒ ๐‘€ ๐‘ƒ ๐‘€ . . . ๐‘ƒ ๐‘€ ๐‘ƒ๐‘ขk1 Then, by Cauchy Schwartz (and since๐‘ƒ2=๐‘ƒ), we write that:

k (๐‘ƒ ๐‘€ ๐‘ƒ)๐‘กโˆ’1๐‘ƒ๐‘ขk1 โ‰ค โˆš

๐‘›k (๐‘ƒ ๐‘€ ๐‘ƒ)๐‘กโˆ’1๐‘ƒ๐‘ขk

We then bound the largest absolute value of the eigenvalues of ๐‘ƒ ๐‘€ ๐‘ƒ. Let ๐œˆ = maxk๐‘ฅk=1๐‘ฅ๐‘‡๐‘ƒ ๐‘€ ๐‘ƒ๐‘ฅ. Let ๐‘ฆ = ๐‘ƒ๐‘ฅ. We then have that๐œˆ = ๐‘ฆ๐‘‡๐‘€ ๐‘ฆ, where ๐‘ฆ = ๐‘ฆk +๐‘ฆโŠฅ such that๐‘ฆk =๐›ผ๐‘ข and h๐‘ฆโŠฅ, ๐‘ฆki =0. Note that k๐‘ฆkk2+ k๐‘ฆโŠฅk2 = k๐‘ฆk2 โ‰ค k๐‘ฅk2 = 1.

Then, ๐‘ฆk =๐›ผ๐‘ข, where๐›ผ= h๐‘ฆ,1i. Thus, k๐‘ฆkk2= 1๐‘›h๐‘ฆ,1i2 โ‰ค (1โˆ’๐›ฟ) k๐‘ฆk2. So:

๐œˆ= ๐‘ฆ๐‘‡๐‘€ ๐‘ฆ =(๐‘ฆk

๐‘‡ +๐‘ฆโŠฅ

๐‘‡)๐‘€(๐‘ฆk+๐‘ฆโŠฅ)

โ‰ค (1โˆ’๐œ†) k๐‘ฆkk2+๐œ†k๐‘ฆk2

โ‰ค 1โˆ’๐›ฟ(1โˆ’๐œ†) So, it must then be the case that:

k (๐‘ƒ ๐‘€ ๐‘ƒ)๐‘กโˆ’1๐‘ƒ๐‘ขk1 โ‰ค โˆš

๐‘›k (๐‘ƒ ๐‘€ ๐‘ƒ)๐‘กโˆ’1๐‘ƒ๐‘ขk โ‰คโˆš

๐‘›(1โˆ’๐›ฟ(1โˆ’๐œ†))๐‘กโˆ’1k๐‘ƒ๐‘ขk

โ‰ค

โˆš

1โˆ’๐›ฟ(1โˆ’๐›ฟ(1โˆ’๐œ†))๐‘กโˆ’1

โ‰ค (1โˆ’๐›ฟ(1โˆ’๐œ†))๐‘กโˆ’1

This proves the claim.

Lemma 1.4.1[Ta-Shma]. Let๐‘†

0be the parity of the number of times an expander random walk of length ๐‘ก hit ๐ต and ๐‘†

1 be the parity of the number of times a uniformly random sequence of variables realized a value contained in๐ต. Then, for ๐œ–0=0.8, ๐›ฝ =0.01, and small๐œ†such that๐œ–

0+2๐›ฝ+2๐œ† <0.9: TVD(๐‘†

0, ๐‘†

1) =(๐œ–

0+2๐›ฝ+2๐œ†)b๐‘ก/2c

Proof adapted from [Ta-17]. LetVbe a vector space with dim(V)= |๐‘‰|=๐‘›0and identify an element ๐‘ฃ โˆˆ ๐‘‰ with a basis vector ยฎ๐‘ฃ โˆˆ V. We will use this basis to define๐บ, the linear operator of a random walk in๐บ. Now, letฮฅ be a distribution over{0,1}๐‘˜. For a linear test๐›ผ โˆˆ {0,1}๐‘˜, let:

Bias๐›ผ(ฮฅ)= Pr

๐‘ โˆˆฮฅ

(h๐›ผ, ๐‘ i=0) โˆ’ Pr

๐‘ โˆˆฮฅ

[h๐‘Ž, ๐‘ i=1]

Then, Bias(ฮฅ) =max๐›ผโ‰ โˆ…Bias๐›ผ(ฮฅ). We say thatฮฅis๐œ–-based if Bias(ฮฅ) โ‰ค๐œ–. Now, let๐›ผ= (๐›ผ

1, . . . , ๐›ผ๐‘˜) โˆˆ {0,1}๐‘˜ be a test-set that maximizes Bias๐›ผ(ฮฅ) and let๐‘†

0, ๐‘†

1

be the corresponding partitions of [๐‘›0], such that ๐‘†๐‘ = {๐‘ฃ โˆˆ [๐‘›0] : h๐‘(๐‘ฃ) |๐›ผi = ๐‘}. Then, define ฮ 0 and ฮ 1, where ฮ ๐‘ is the projection on the vector space of span({ยฎ๐‘ฃ|๐‘ฃ โˆˆ ๐‘†๐‘}). We let ฮ  = ฮ 0 โˆ’ ฮ 1. Then, sample a random walk on an expander. Let๐‘๐‘’๐‘ฃ ๐‘’๐‘›(๐‘†

1)be the probability that a sampled path(๐‘ฃ

0, . . . , ๐‘ฃ๐‘ก)visits๐‘†

1

an even number of times, and ๐‘๐‘œ ๐‘‘๐‘‘(๐‘†

1) for an odd number of times. Then, observe the following:

1) Bias๐›ผ(ฮฅ) =|E๐‘ฃ0,...,๐‘ฃ๐‘ก[(โˆ’1)โŠ•

๐‘ก

๐‘—=0h๐‘(๐‘ฃ๐‘—),๐›ผi

] | = |๐‘๐‘’๐‘ฃ ๐‘’๐‘›(๐‘†

1) โˆ’๐‘๐‘œ ๐‘‘๐‘‘(๐‘†

1) |. 2) ๐‘๐‘’๐‘ฃ ๐‘’๐‘›(๐‘†

1) โˆ’ ๐‘๐‘œ ๐‘‘๐‘‘(๐‘†

1) = ร

๐‘0,...,๐‘๐‘กโˆˆ{0,1}(โˆ’1)๐‘0+ยทยทยท+๐‘)๐‘ก1โ€ ฮ ๐‘๐‘ก๐บ . . .ฮ ๐‘

2๐บฮ ๐‘

1๐บฮ ๐‘

01 because paths that fall an even number of times into๐‘†

1contribute 1 while the other paths contributeโˆ’1. Then, by the distributive law, this must be identically equal to 1โ€ (ร

๐‘๐‘กโˆˆ{0,1}(โˆ’1)๐‘๐‘กฮ ๐‘๐‘ก)๐บ . . .(ร

๐‘0โˆˆ{0,1}(โˆ’1)๐‘0ฮ ๐‘

0)1=1โ€ (ฮ ๐บ)๐‘กฮ 1.

3) Let๐‘ฃ โˆˆ V such thatk๐‘ฃk =1 and๐‘ฃ=๐‘ฃโŠฅ+๐‘ฃk. Then since๐บ ๐‘ฃk =๐‘ฃk = k๐‘ฃkk1: kฮ ๐บฮ ๐บ ๐‘ฃk โ‰ค kฮ ๐บฮ ๐บ ๐‘ฃโŠฅk + kฮ ๐บฮ ๐บ ๐‘ฃkk โ‰ค kฮ ๐บ(ฮ 1)kk + kฮ ๐บ(ฮ 1)โŠฅk + k๐บ ๐‘ฃโŠฅk

โ‰ค k (ฮ 1)kk +2๐œ†= ||๐‘†

0| โˆ’ |๐‘†

1||

๐‘›

+2๐œ† โ‰ค ๐œ–

0+2๐›ฝ+2๐œ† The last inequality arises from lettingฮฅ0be๐œ–

0-biased and noting that๐‘›โˆ’๐‘›0 โ‰ค ๐›ฝ๐‘›. 4)|๐‘๐‘’๐‘ฃ ๐‘’๐‘›(๐‘†

1) โˆ’๐‘๐‘œ ๐‘‘๐‘‘(๐‘†

1) | =|1โ€ (ฮ ๐บ)๐‘กฮ 1| โ‰ค k (ฮ ๐บ)๐‘กk โ‰ค k (ฮ ๐บ)2kb๐‘ก/2c โ‰ค (๐œ–

0+2๐›ฝ+ 2๐œ†)b๐‘ก/2c. For large enough๐‘ก, this term goes to 0, which is identical to the Chernoff result for the uniform random variables. This proves the claim.

Lemma 17. Orthogonality of the Krawtchouk functions:

h๐พ๐‘Ÿ, ๐พ๐‘ i = E

๐‘โˆผBin(๐‘›,1

2)

[๐พ๐‘Ÿ(๐‘)๐พ๐‘ (๐‘)] =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

0 if๐‘Ÿ โ‰  ๐‘ 

๐‘› ๐‘ 

if๐‘Ÿ =๐‘ 

Proof. We provide a probabilistic interpretation of the Krawtchouk function as demonstrated in [Sam98]. Fix๐ด โˆˆ [๐‘›]

โ„“

,๐ต โˆˆ๐‘ˆ [๐‘›]

๐‘ 

, and choose๐ถ โˆˆ๐‘ˆ [๐‘›]

๐‘Ÿ

. Then, ๐พ๐‘ (โ„“) =

๐‘› ๐‘ 

E[(โˆ’1)|๐ดโˆฉ๐ต|], ๐พ๐‘Ÿ(โ„“) = ๐‘›

๐‘Ÿ

E[(โˆ’1)|๐ดโˆฉ๐ถ|] The inner product of๐พ๐‘Ÿ and๐พ๐‘  is then:

h๐พ๐‘Ÿ, ๐พ๐‘ i= ๐‘›

๐‘Ÿ ๐‘› ๐‘ 

E[(โˆ’1)|๐ดโˆฉ๐ต|]E[(โˆ’1)|๐ดโˆฉ๐ถ|]

= ๐‘›

๐‘Ÿ ๐‘› ๐‘ 

E[(โˆ’1)|๐ดโˆฉ๐ต|(โˆ’1)|๐ดโˆฉ๐ถ|] (A, B, and C are independent) If ๐ต โ‰  ๐ถ, then E[(โˆ’1)|๐ดโˆฉ๐ต|(โˆ’1)|๐ดโˆฉ๐ถ||๐ต โ‰  ๐ถ] = 0, since for each ๐‘ฅ โˆˆ ๐ตฮ”๐ถ, we could either have ๐‘ฅ โˆˆ ๐ด or ๐‘ฅ โˆ‰ ๐ด, which contributes a +1 or -1 (or vice versa) (respectively) to the expectation. So, the expected value must be 0. Conversely, if ๐ต =๐ถ, then it must be the case that๐‘Ÿ = ๐‘ , which occurs with probability 1๐‘›

๐‘ 

. So, E[(โˆ’1)|๐ดโˆฉ๐ต|(โˆ’1)|๐ดโˆฉ๐ถ|] =E[(โˆ’1)2|๐ดโˆฉ๐ต|] = 1

(๐‘›๐‘ ). This yields that h๐พ๐‘Ÿ, ๐พ๐‘ i=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

0 if๐‘Ÿ โ‰  ๐‘ 

๐‘› ๐‘ 

if๐‘Ÿ =๐‘ 

Lemma 1.5.6 [Fooling Symmetric Functions]. For all integers ๐‘ก โ‰ฅ 1 and ๐‘ โ‰ฅ 2, let๐บ = (๐บ๐‘–)1โ‰ค๐‘–โ‰ค๐‘กโˆ’1 be a sequence of ๐œ†-spectral expanders on a shared vertex set ๐‘‰ with labelingval :๐‘‰โ†’ [๐‘] that assigns each label๐‘ โˆˆ [๐‘] to ๐‘“๐‘-fraction of the vertices. Then, for any label ๐‘, we have that the total variation distance between the number of ๐‘โ€™s seen in the expander random walk and the uniform distribution on [๐‘] has the following bound (where [ฮฃ(๐‘)๐‘] counts the number of occurrences of๐‘in๐‘) is:

TVD( [ฮฃ(RW๐‘กG)]๐‘,[ฮฃ(๐‘ˆ[๐‘‘])]๐‘) โ‰ค๐‘‚

๐‘ min๐‘โˆˆ[๐‘] ๐‘“๐‘

๐‘‚(๐‘)

ยท๐œ†

!

Proof adapted from [GV22]. Consider the case ๐‘

0๐‘

1๐‘ก < 1. Then, for ๐‘— โˆˆ Z๐‘ก, we have that:

|๐‘”๐‘—| โ‰ค 44ยท k๐บ๐‘ขโˆ’๐บ0

๐‘ขk ๐‘ก

ยท๐‘’2๐‘Ÿ

2โˆ’๐‘ ๐‘Ÿ(๐‘—โˆ’๐‘

1๐‘ก)

This expression is minimized when setting๐‘Ÿ = 1

2 and ๐‘  =sgn(๐‘— โˆ’ ๐‘

1๐‘ก). Summing over all ๐‘— :|๐‘— โˆ’๐‘

1๐‘ก| โ‰ฅ ๐‘gives:

ร•

๐‘—โˆˆZ๐‘ก:|๐‘—โˆ’๐‘

1๐‘ก|โ‰ฅ๐‘

|๐‘”๐‘—| โ‰ค88ยท k๐บ0

๐‘ขโˆ’๐บ๐‘ขk ๐‘ก

ยท ๐‘’1/2โˆ’๐‘/2

1โˆ’๐‘’โˆ’1/2 โ‰ค 4000๐‘’โˆ’๐‘

2/8๐‘ก

ยท k๐บ0

๐‘ขโˆ’๐บ๐‘ขk ๐‘ก

A similar method shows an equivalent result for ๐‘

0๐‘

1๐‘ก โ‰ฅ 1, which thus proves lemma 1.5.7 (theorem 18).

The proof of lemma 1.5.8 (Theorem 20), in turn, gets to the heart of the proof methodologies used in the paper, since it involves a Fourier-analytic component.

We will fulfil this by providing a high-level overview of the (auxiliary) proof of lemma 1.5.8. To do this, we re-tell [GV22]โ€™s description of the Fourier group on Z. Let ๐‘†1 = R/2๐œ‹Zwithโ„“2norm k๐‘“k =

qโˆซ ๐œ‹

โˆ’๐œ‹|๐‘“(๐œƒ) |2d๐œƒ/2๐œ‹ and use [Ahm+19]โ€™s formulation of the singular-value approximation.

Letโ„“2(Z) andโ„“2(๐‘†1) represent the subspaces ofCZ andC๐‘†1 (resp.) that contain all elements of finiteโ„“2norm. Then, the Fourier transform ofZis the mapF :โ„“2(Z) โ†’ โ„“2(๐‘†1) such that the Fourier transform of โ„Ž โˆˆ โ„“2(Z), denoted Fโ„Ž = โ„Žห† โˆˆ โ„“2(๐‘†1), is given by ห†โ„Ž(๐œƒ) = ร

๐‘—โˆˆZโ„Ž๐‘—๐‘’โˆ’๐‘– ๐œƒ ๐‘—. It can also be expressed in terms of the Fourier characters ๐œ’๐œƒ = (๐‘’๐‘– ๐œƒ ๐‘—)๐‘—โˆˆZ โˆˆ CZas ห†โ„Ž(๐œƒ) = ๐œ’โˆ—

๐œƒ

โ„Ž. The central idea for lemma 1.5.8 is that theโ„“

2norm is preserved under the Fourier transform, and so, k๐‘”(๐‘ ๐‘Ÿ)k = k๐‘”ห†(๐‘ ๐‘Ÿ)k. The last component needed for this proof is theorem 25 from [GV22] which is a

linear-algebraic result that bounds|๐‘”ห†(๐‘ ๐‘Ÿ)|as follows:

|๐‘”ห†(๐‘Ÿ ๐‘ | โ‰ค 4ยท k๐บ0

๐‘ขโˆ’๐บ๐‘ขk ยท๐‘

0๐‘

1ยท

4๐‘Ÿ2+ 3 2

๐œƒ2

ยท๐‘’๐‘0๐‘1๐‘ก(2๐‘Ÿ

2โˆ’๐œƒ2/20)

Then, to prove lemma 1.5.8, [GV22] uses the result from theorem 25 above.

k๐‘”(๐‘ ๐‘Ÿ)k =k๐‘”ห†(๐‘ ๐‘Ÿ)k = s

โˆซ โˆž

โˆ’โˆž

|๐‘”ห†(๐‘ ๐‘Ÿ)(๐œƒ) |2d๐œƒ 2๐œ‹

โ‰ค4

โˆš 2k๐บ0

๐‘ขโˆ’๐บ๐‘ขk๐‘

0๐‘

1๐‘’2๐‘0๐‘1๐‘ก๐‘Ÿ

2

4๐‘Ÿ2 s

โˆซ ๐œ‹

โˆ’๐œ‹

๐‘’โˆ’๐‘0๐‘

1๐‘ก ๐œƒ2/10d๐œƒ 2๐œ‹

+ s

โˆซ ๐œ‹

โˆ’๐œ‹

9 4

๐œƒ4๐‘’โˆ’๐‘0๐‘

1๐‘ก ๐œƒ2/10d๐œƒ 2๐œ‹

!

From here, bounding the inequality further with different standard results yields the result for 1.5.8. The big-picture idea of this proof is the notion that the โ„“

2 norm is preserved under the Fourier transform which relates the quantity to theโ„“

1 norm

which can also, in turn, be bounded.

Lemma 2.1.1. [Krawtchouk coefficient of the probability ratio] Expanding ๐‘ž(โ„“) through the Krawtchouk function expansion in Proposition 3.2 yields that:

ห†

๐‘ž(๐‘˜)= 1

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’๐‘˜ E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

[๐พ๐‘˜(|๐‘ |0)]

Proof. Writing the expected value of๐พ๐‘˜(|๐‘ |0) using๐‘ž(๐‘)and๐พ๐‘˜(๐‘), we get:

ห†

๐‘ž(๐‘˜) = 1

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’๐‘˜

๐‘›

ร•

๐‘=0

๐‘› ๐‘

(๐‘โˆ’1)๐‘›โˆ’๐‘ ๐‘๐‘›

๐‘ž(๐‘)๐พ๐‘˜(๐‘)

= 1

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’๐‘˜

๐‘›

ร•

๐‘=0

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)Pr

[|๐‘ |0=๐‘]๐พ๐‘˜(๐‘) (substituting๐‘ž(๐‘))

= 1

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’๐‘˜ E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)[๐พ๐‘˜(|๐‘ |0)] (by definition of E

๐‘ โˆˆ๐‘†(๐‘›, ๐‘,๐œ†)[๐พ๐‘˜(|๐‘ |0)])

Lemma 2.1.2. For๐‘  โˆˆ ๐‘†(๐‘›, ๐‘, ๐œ†), we have that Pr[|๐‘ |0=โ„“] = 1

๐‘๐‘›

๐‘›

ร•

๐‘˜=0

๐พโ„“(๐‘˜) E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

[๐พ๐‘˜(|๐‘ |0)]

Proof. Writing out Pr[|๐‘ |0 =โ„“] in terms of the probability ratio๐‘ž(โ„“), we get:

Pr[|๐‘ |0=โ„“] =

๐‘› โ„“

(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

๐‘ž(โ„“)

=

๐‘› โ„“

(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

๐‘›

ร•

๐‘˜=0

ห†

๐‘ž(๐‘˜)๐พ๐‘˜(โ„“) (Krawtchouk expansion of๐‘ž(โ„“))

=

๐‘› โ„“

(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

๐‘›

ร•

๐‘˜=0

๐พ๐‘˜(โ„“)

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’๐‘˜ E[๐พ๐‘˜(|๐‘ |0)] (Lemma 3.1)

= 1 ๐‘๐‘›

๐‘›

ร•

๐‘˜=0 ๐‘› โ„“

๐‘› ๐‘˜

(๐‘โˆ’1)๐‘›โˆ’โ„“

(๐‘โˆ’1)๐‘›โˆ’๐‘˜ E[๐พ๐‘˜(|๐‘ |0)]๐พ๐‘˜(โ„“)

= 1 ๐‘๐‘›

๐‘›

ร•

๐‘˜=0

๐พโ„“(๐‘˜) E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

[๐พ๐‘˜(|๐‘ |0)] (By the reciprocity relation) Lemma 2.2.1. The expected value of the Krawtchouk function is given by:

E[๐พ๐‘˜(|๐‘ |0)] =

๏ฃฑ๏ฃด

๏ฃด๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃด

๏ฃณ

(๐‘โˆ’1)๐‘›โˆ’๐‘˜

๐‘›โˆ’๐‘˜

ร

๐‘‘=๐‘˜

๐œ™0(๐‘‘)๐œ†๐‘‘, if๐‘ =๐‘˜ mod ๐‘ โ‰ก0

0, if๐‘=๐‘˜ mod ๐‘ . 0

Proof. By the formula of expected values, we have that:

E[๐พ๐‘˜(|๐‘ |0)] = ร•

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

Pr[๐‘ ] ร•

๐‘ฆโˆˆZ๐‘›2

|๐‘ฆ|0=๐‘˜

(โˆ’1)๐‘ฆยท๐‘ 

= ร•

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

Pr[๐‘ ] ร•

๐‘ฆโˆˆZ๐‘›2

|๐‘ฆ|0=๐‘˜

(โˆ’1)

๐‘›

ร

๐‘–=1

๐‘ฆ๐‘–ยท๐‘ ๐‘–

= ร•

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

Pr[๐‘ ] ร•

๐‘ฆโˆˆZ๐‘›2

|๐‘ฆ|0=๐‘˜ ๐‘›

ร–

๐‘–=1

(โˆ’1)๐‘ฆ๐‘–ยท๐‘ ๐‘–

We note then that the dot-product on the exponent of(โˆ’1)only takes the summation of the element-wise product of๐›ผand๐‘ฆfor positions on๐‘ฆthat are strictly non-zero.

Therefore, we can rewrite the summation by considering the indices corresponding to locations of non-zeros in ๐‘ฆ, and instead take the summation of the dot-product along these indices. So, for๐‘‡ ={๐‘Ž

1< ... < ๐‘Ž๐‘›โˆ’๐‘˜}, we have that:

E[๐พ๐‘˜(|๐‘ |0)] = ร•

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

Pr[๐‘ ] ร•

๐‘‡โˆˆ(๐‘›โˆ’๐‘˜[๐‘›]) ร–

๐‘–โˆˆ๐‘‡

(โˆ’1)๐‘ ๐‘–

Further, choosing a๐‘‡ โˆˆ ๐‘›โˆ’๐‘˜[๐‘›]

implies a choice of๐‘‡ = [๐‘›]

๐‘˜

= [๐‘›] \๐‘‡. Hence, the summation reduces to:

E[๐พ๐‘˜(|๐‘ |0)] = ร•

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

Pr[๐‘ ] ร•

๐‘‡โˆˆ([๐‘›๐‘˜]) ร–

๐‘–โˆˆ๐‘‡

(โˆ’1)๐‘ ๐‘–

= ร•

๐‘‡โˆˆ([๐‘›๐‘˜]) E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

ร–

๐‘–โˆˆ๐‘‡

(โˆ’1)๐‘ ๐‘–

(definition of expectations)

Next, observe that the sticky random walk is a Markov chain where(โˆ’1)๐‘ ๐‘– =(โˆ’1)๐‘ ๐‘–โˆ’1 with probability 1/๐‘+ (๐‘โˆ’1)๐œ†). So, we can instead model the transitions of strings from the sticky random walk as random variables๐‘ข, where๐‘ข

1is uniformly distributed inZ๐‘and for๐‘– โ‰ฅ 2,๐‘ข๐‘–is uniformly distributed on(1โˆ’๐œ†)๐‘ˆ[Z๐‘] +๐œ†ยท10. To provide an intuition for this refactorization,(1โˆ’๐œ†)๐‘ˆ[Z๐‘]is the โ€™baseโ€™ probability of switching to any vertex and๐œ†is the additional probability of staying on the same vertex.

Then, since๐‘ ๐‘– =ร

๐‘–โˆˆ๐‘‡ร๐‘–

๐‘—=1๐‘ข๐‘—, we write that:

๐‘ โˆˆ๐‘†(๐‘›, ๐‘,๐œ†)E ร–

๐‘–โˆˆ๐‘‡

(โˆ’1)๐‘ ๐‘–

= E

๐‘ โˆˆ๐‘†(๐‘›, ๐‘,๐œ†)

(โˆ’1)

ร

๐‘–โˆˆ๐‘‡ ๐‘–

ร

๐‘—=1

๐‘ข๐‘—

=

๐‘Ž๐‘›โˆ’๐‘˜

ร–

๐‘—=1

๐‘ โˆˆ๐‘†(๐‘›, ๐‘,๐œ†)E

(โˆ’1)

ร

๐‘–โˆˆ๐‘‡;๐‘–โ‰ฅ๐‘—

๐‘ข๐‘—

(independence of๐‘ข๐‘—โ€™s)

When ๐‘— =1, we get that:

E

(โˆ’1)

ร

๐‘–โˆˆ๐‘‡;๐‘–โ‰ฅ1

๐‘ข1

=E[(โˆ’1)|๐‘‡|๐‘ข1]

=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

1, if|๐‘‡| mod ๐‘ โ‰ก0 0, otherwise

Conversely, when ๐‘— โ‰ฅ 2, let๐‘‡๐‘— ={๐‘– โˆˆ๐‘‡;๐‘– โ‰ฅ ๐‘—}. Then, E

(โˆ’1)

ร

๐‘–โˆˆ๐‘‡;๐‘–โ‰ฅ๐‘—

๐‘ข๐‘—

=E[(โˆ’1)|๐‘‡๐‘—|๐‘ข๐‘—]

=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

1, if|๐‘‡๐‘—| mod ๐‘โ‰ก 0 E[(โˆ’1)๐‘ข๐‘—], otherwise

Next, observe that for ๐‘— โ‰ฅ2,E[(โˆ’1)๐‘ข๐‘—] =๐œ†.

Proof. To show this, we write the expression for๐‘ข๐‘—, ๐‘— โ‰ฅ 2 in the exponent and take the expected value of(โˆ’1)๐‘ข๐‘—.

E[(โˆ’1)๐‘ข๐‘—] =E[(โˆ’1)(1โˆ’๐œ†)๐‘ˆ[Z๐‘]+๐œ†ยท10] (since๐‘ข๐‘— โˆผ (1โˆ’๐œ†)๐‘ˆ[Z๐‘] +๐œ†ยท10)

=

๐‘โˆ’1

ร•

๐‘˜=0

(โˆ’1)๐‘˜Pr[๐‘ข๐‘— =๐‘˜] (definition of expectation)

= (โˆ’1)0Pr[๐‘ข๐‘— =0] + (โˆ’1)1Pr[๐‘ข๐‘— =1] +...+ (โˆ’1)๐‘โˆ’1Pr[๐‘ข๐‘— = ๐‘โˆ’1]

= 1

๐‘ +๐œ†

๐‘โˆ’1 ๐‘

โˆ’ 1

๐‘

โˆ’ ๐œ† ๐‘

+...+ (โˆ’1)๐‘โˆ’1 1

๐‘

โˆ’ ๐œ† ๐‘

= 1 ๐‘

๐‘โˆ’1

ร•

๐‘˜=0

(โˆ’1)๐‘˜โˆ’ ๐œ† ๐‘

๐‘โˆ’1

ร•

๐‘˜=0

(โˆ’1)๐‘˜ +๐œ†(โˆ’1)0=๐œ†

Then, for๐‘˜ mod ๐‘โ‰ก 0, we have that:

E[๐พ๐‘˜(|๐‘ |0)] = ร•

๐‘‡โˆˆ([๐‘›๐‘˜]) E

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)

ร–

๐‘–โˆˆ๐‘‡

(โˆ’1)๐‘ ๐‘–

= ร•

๐‘‡โˆˆ([๐‘›]๐‘˜) ร–

๐‘–โˆˆ๐‘‡

๐‘ โˆผ๐‘†(๐‘›, ๐‘,๐œ†)E

[(โˆ’1)๐‘ ๐‘–] (independence of (โˆ’1)๐‘ ๐‘–)

= ร•

๐‘‡โˆˆ([๐‘›]๐‘˜)

๐‘Ž๐‘›โˆ’๐‘˜

ร–

๐‘—=1

๐œ† (since|๐‘‡|=๐‘Ž๐‘›โˆ’๐‘˜)

= ร•

๐‘‡โˆˆ([๐‘›]๐‘˜) ๐œ†๐‘Ž๐‘›โˆ’๐‘˜

We then parameterize the summation over every possible value of the shift of T (for ๐‘˜ mod ๐‘ โ‰ก0), where the shift function is given in Definition 22.

E[๐พ๐‘˜(|๐‘ |0)] =

๐‘›โˆ’๐‘˜

ร•

๐‘‘=๐‘˜

ร•

๐‘‡โˆˆ([๐‘›๐‘˜])

shift0(T)=d

1

๐œ†๐‘‘

=

๐‘›โˆ’๐‘˜

ร•

๐‘‘=๐‘˜

๐œ™0(๐‘‘)๐œ†๐‘‘

This yields the claim.

Lemma 2.2.2. For ๐‘ โˆˆNwhere 0 โ‰ค ๐‘ โ‰ค ๐‘, and for ๐‘‘ โˆˆNwhere ๐‘˜ โ‰ค ๐‘‘ โ‰ค ๐‘›โˆ’๐‘˜, the number of ๐‘˜-sized subsets of [๐‘›]that satisfy shift๐‘(๐‘‡) =๐‘‘is:

๐œ™๐‘(๐‘‘)= 1 ๐‘๐‘˜

ร•

๐‘‡โˆˆ([๐‘›]๐‘˜)

shift๐‘(๐‘‡)=๐‘‘

1= 1 ๐‘๐‘˜

๐‘‘โˆ’1 b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c โˆ’1

๐‘›โˆ’๐‘‘ b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c

Proof. To determine ๐œ™๐‘(๐‘‘), we count the total number of ways to choose ๐‘Ž

1<

๐‘Ž2< ... < ๐‘Ž๐‘˜ such that the lengths of the intervals (๐‘Ž๐‘ โˆ’๐‘Ž๐‘โˆ’

1) + (๐‘Ž๐‘+๐‘ โˆ’๐‘Ž๐‘+๐‘โˆ’

1) + (๐‘Ž๐‘+

2๐‘โˆ’๐‘Ž๐‘+

2๐‘โˆ’1) +... = ๐‘‘, where for any ๐‘— โ‰ค 0, ๐‘Ž๐‘— = 0. To do this, we combine each element-wise interval (๐‘Ž๐‘+๐‘– ๐‘, ๐‘Ž๐‘+๐‘– ๐‘โˆ’

1) to form a contiguous interval of length ๐‘‘ (starting from ๐‘Ž๐‘โˆ’

1 = 0). The remaining contiguous region that excludes these intervals must then have a length of ๐‘›โˆ’๐‘‘. We then abstract the number of ways to count ๐‘Ž

1 < ... < ๐‘Ž๐‘˜ by counting the number of intervals that have a length of ๐‘‘ when combined, such that the remaining intervals have a length๐‘›โˆ’ ๐‘‘. From a length of๐‘‘โˆ’1 (accounting for๐‘Ž

0 =0), we need to select intervals that form a length of b|๐‘˜ โˆ’ ๐‘|/(๐‘โˆ’ 1)c โˆ’1 since they represent the number of choices of elements of๐‘‡ that are index-separated by ๐‘. Similarly, from a length of๐‘›โˆ’๐‘‘, we need to select intervals that form a length ofb|๐‘˜โˆ’๐‘|/(๐‘โˆ’1)cpossible intervals, since they represent every other element of ๐‘‡. This second constraint is to ensure that the total length of the intervals chosen is exactly๐‘›. Finally, we divide by the maximum number of repetitions to prevent duplicates, which is ๐‘๐‘˜. Hence, we write that:

ร•

๐‘‡โˆˆ([๐‘›]๐‘˜)

shift๐‘(๐‘‡)=๐‘‘

1=

๐‘‘โˆ’1 b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c โˆ’1

๐‘›โˆ’๐‘‘ b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c

Therefore,

๐œ™๐‘(๐‘‘)= 1 ๐‘๐‘˜

ร•

๐‘‡โˆˆ([๐‘›]๐‘˜)

shift๐‘(๐‘‡)=๐‘‘

1= 1 ๐‘๐‘˜

๐‘‘โˆ’1 b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c โˆ’1

๐‘›โˆ’๐‘‘ b|๐‘˜โˆ’๐‘|

๐‘โˆ’1c

Lemma 2.3.1. The total variational distance between the generalized sticky random walk on ๐‘vertices and the uniform distribution on ๐‘states is given by:

TVD( [ฮฃ(๐‘†(๐‘›, ๐‘, ๐œ†))]0,[ฮฃ(U๐‘›๐‘)]0) = 1 2 E

๐‘โˆผU๐‘›๐‘

[|๐‘ž(๐‘) โˆ’1|]

Proof. We write the expression of the total variation distance between the ๐‘›-step sticky random walk on ๐‘ states and๐‘›-samples from the uniform distribution on ๐‘ states. This then yields:

TVD( [ฮฃ(๐‘†(๐‘›, ๐‘, ๐œ†))]0,[ฮฃ(U๐‘›๐‘)]0) = 1 2

๐‘›

ร•

โ„“=0

Pr[|๐‘ |0 =โ„“] โˆ’

๐‘› โ„“

(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

= 1 2

๐‘›

ร•

โ„“=0

๐‘› โ„“

๐‘ž(โ„“)(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

โˆ’

๐‘› โ„“

(๐‘โˆ’1)๐‘›โˆ’โ„“ ๐‘๐‘›

= 1 2

๐‘›

ร•

โ„“=0

๐‘› โ„“

๐‘๐‘›

(๐‘โˆ’1)๐‘›โˆ’โ„“(๐‘ž(โ„“) โˆ’1)

= 1 2

๐‘›

ร•

โ„“=0

|Pr[โ„“] (๐‘ž(โ„“) โˆ’1) |

= 1

2 E

๐‘โˆผ[ฮฃ(U๐‘›๐‘)]0

[|๐‘ž(๐‘) โˆ’1|]

Lemma A.0.1. For 1 โ‰ค ๐‘˜ โ‰ค ๐‘›

๐‘, we can bound (๐‘›๐‘˜)2 (๐‘ ๐‘˜๐‘›) โ‰ค (๐‘›๐‘’

๐‘˜)2๐‘˜ ยท (๐‘ ๐‘˜

๐‘›)๐‘ ๐‘˜. Proof. We use the bound that(๐‘›

๐‘˜)๐‘˜ โ‰ค ๐‘›

๐‘˜

< (๐‘›๐‘’

๐‘˜)๐‘˜. This gives us that (๐‘›๐‘˜)2 (๐‘ ๐‘˜๐‘›) โ‰ค (

๐‘›๐‘’ ๐‘˜)2๐‘˜ ( ๐‘›

๐‘ ๐‘˜)๐‘ ๐‘˜. Simplifying it yields that(๐‘›๐‘’

๐‘˜ )2๐‘˜ ยท (๐‘ ๐‘˜

๐‘› )๐‘ ๐‘˜, which proves the claim.

A p p e n d i x B

PROOF OF THEOREMS IN CHAPTER 2

In this section of the Appendix, we present a generalization of the Krawtchouk polynomials into the complex domain that yields an elegant method of analysis for bounding the total variation distance of [ฮฃ(๐‘†(๐‘›, ๐‘, ๐œ†))]0and[ฮฃ(U๐‘›๐‘)]0, but only for when ๐‘ is a prime number. For the generalized sticky random walk, this method yields an upper-bound on TVD( [ฮฃ(๐‘†(๐‘›, ๐‘, ๐œ†))]0,[ฮฃ(U๐‘›๐‘)]0) of๐‘‚(๐œ† ๐‘๐‘‚(๐‘)), which matches the upper-bound derived in Corollary 4 of [GV22] through Fourier-analytic means, which the body of our paper shows to be suboptimal when the size of the alphabet used is allow to increase asymptotically. Nonetheless, we include a proof of this generalization to present our novel treatment of the Krawtchouk function.

Definition 23. Given any set ๐‘†๐‘˜ โІ [๐‘›] with cardinality |๐‘†๐‘˜| = ๐‘˜, let ๐‘ฃ๐‘†

๐‘˜ denote a bit-string in{0,1}๐‘› such that for each๐‘– โˆˆ ๐‘†๐‘˜, (๐‘ฃ๐‘†

๐‘˜)๐‘– =0 and for each๐‘– โˆˆ [๐‘›] \๐‘†๐‘˜, (๐‘ฃ๐‘†

๐‘˜)๐‘– =1. Similarly, given the context of a prior prime number ๐‘, let๐‘ค๐‘†

๐‘˜ denote a string in Z๐‘›๐‘ where for each ๐‘– โˆˆ ๐‘†๐‘˜, (๐‘ค๐‘†

๐‘˜)๐‘– = 0, and for each ๐‘– โˆˆ [๐‘›] \ ๐‘†๐‘˜, (๐‘ค๐‘†

๐‘˜)๐‘– โˆˆ [๐‘โˆ’1].

Definition 24. Let๐ทdenote the โ€œzero distributionโ€ where for anyโ„“ โˆˆ [๐‘›], Pr[๐ท =โ„“] denotes the probability that a string๐‘  โˆˆ Z๐‘›๐‘hasโ„“ zeros. Specifically, Pr[๐ท =โ„“] =

(๐‘›โ„“)(๐‘โˆ’1)๐‘›โˆ’โ„“

๐‘๐‘› , since there are ๐‘›โ„“

ways to select the locations for theโ„“ 0s in a string of length๐‘›, and (๐‘โˆ’1)๐‘›โˆ’โ„“ to populate the other๐‘›โˆ’๐‘˜ locations with characters from [๐‘โˆ’1].

Definition 25. For๐‘ โ‰ฅ 2, let๐œ”๐‘denote the ๐‘๐‘ก โ„Ž primitive root of unity if it satisfies (๐œ”๐‘)๐‘ = 1, and if there does not exist ๐‘ž โˆˆ Nwhere ๐‘ž < ๐‘ such that (๐œ”๐‘)๐‘ž = 1.

Specifically, the multiplicative order of the ๐‘๐‘ก โ„Ž primitive root of unity must be ๐‘. Then, for 1 โ‰ค ๐‘˜ < ๐‘, we must have that

๐‘โˆ’1

ร•

๐‘—=0

(๐œ”๐‘)๐‘˜ ๐‘— =๐œ”๐‘˜ยท0

๐‘ +๐œ”๐‘˜ยท1

๐‘ +...+๐œ”

๐‘˜ยท(๐‘โˆ’1)

๐‘ =0

Proof. Given๐œ”

๐‘

๐‘ =1, it is clear that for ๐‘˜ < ๐‘, (๐œ”๐‘˜

๐‘)๐‘ =1. Thus,(๐œ”๐‘˜

๐‘)๐‘โˆ’1=0= (๐œ”๐‘˜

๐‘ โˆ’1) (๐œ”๐‘˜ยท0

๐‘ +๐œ”๐‘˜ยท1

๐‘ +...+๐œ”

๐‘˜ยท(๐‘โˆ’1)

๐‘ ). Since ๐œ”๐‘˜

๐‘ โ‰  1 as๐œ”๐‘ is a primitive root of unity, we must have that๐œ”๐‘˜ยท0

๐‘ +๐œ”๐‘˜ยท1

๐‘ +...+๐œ”

๐‘˜ยท(๐‘โˆ’1)

๐‘ =0, which proves the claim.

Dalam dokumen Pseudorandomness of the Sticky Random Walk (Halaman 31-59)

Dokumen terkait