Chapter II: Pseudorandomness with Arbitrary Labels: Sticky Random Walk . 19
2.4 Generalized Sticky Random Walk Markov Chain is an Expander
In this section, we present and prove some equivalence properties between the generalized families of sticky random walks and show that the generalized sticky random walk is also an expander graph.
Lemma 2.4.1. Let ๐ be the number of vertices in the generalized sticky random walk. Then, for all ๐ mod ๐ โก 0,๐(๐, ๐, ๐) reduces from๐(๐, ๐ , ๐๐(1โ 1
๐)). Proof. Consider a generalized sticky random walk which details an irreducible homogeneous Markov chain on๐states where the probability of staying at the same state is 1๐+ (๐โ1)๐and the probability of switching states is 1๐โ๐. Then, consider a โgroupedโ random-walk, for a grouping of states๐ =[๐] =๐
0u ยท ยท ยท u๐๐โ
1, where ๐๐ contains an arbitrary selection of ๐/๐ vertices and where ๐ mod ๐ โก 0. Then, ๐(๐, ๐, ๐)details an๐-step long random walk on the generalized sticky random walk.
Then, we note that the probability that the current state of the grouped random walk stays at itself must be(1
๐+ (๐โ1)๐) + (1
๐โ๐) (๐
๐ โ1) = 1
๐+๐๐(1โ1
๐). Here, the first term comes from the probability of any state๐ธ in the sticky random walk staying at itself, and the second term comes from the probability that any other vertex in the same group as ๐ธ transitions to ๐ธ. Since this is true for any of the grouped vertex, we conclude that our grouping of the random walk yields a sticky random walk on ๐ vertices and bias ๐๐(1โ 1
๐), which completes the reduction.
Lemma 2.4.2. Every generalized sticky random walk ๐(๐, ๐, ๐) corresponds to a ๐-step long random walk on a ๐๐-spectral expander with ๐vertices.
Proof. We first extend Definition 45 of the sticky random walk matrix in [GV22].
For subsets ๐ด, ๐ต โ [๐], let ๐ฝ๐ด, ๐ต โ R๐ดร๐ต denote the matrix with all entries equal to |๐ด|1 . Then, for๐ โ [0,1], let๐บ๐, ๐ โ R๐ร๐ denote the generalized sticky random walk matrix. Then, by definition, we write that:
๐บ๐, ๐ = (1โ๐)J๐ ,๐ +๐๐I{๐ร๐}
Then, note that k๐ผ๐ร๐k2 is 1, as it acts as ๐ฝ on the orthogonal subspaces Rof R๐. Therefore,๐(๐บ๐, ๐) โค ๐๐since the eigenvector of๐บ๐, ๐ is orthogonal to๐ฝ๐ ,๐ and so ๐บ๐, ๐๐ =( (1โ๐)J๐ฃ ,๐ฃ+๐๐ ๐ผ{๐ร๐})๐ =(1โ๐)J๐ฃ ,๐ฃ๐+๐๐ ๐ผ{๐ร๐}๐= ๐๐๐. The opposite inequality comes from the fact that ๐โ๐1
1ยฎ{๐0} โ 1
๐
ร๐โ1 ๐=1
1ยฎ{๐๐} โ ยฎ1โฅ is an eigenvector of๐บ๐, ๐ with eigenvalue ๐๐, which proves the theorem.
BIBLIOGRAPHY
[Ahm+19] AmirMahdi Ahmadinejad et al. โHigh-precision Estimation of Ran- dom Walks in Small Spaceโ. In:CoRRabs/1912.04524 (2019). arXiv:
1912.04524. url:http://arxiv.org/abs/1912.04524.
[AKS04] Manindra Agarwal, Neeraj Kayal, and Nitin Saxena. โPrimes is in Pโ. In:Annals of Mathematics160 (2004), pp. 781โ793. url:http:
//www.cse.iitk.ac.in/primality.pdf. [Alo86] Noga Alon.Eigenvalues and Expanders. 1986.
[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. โPseudorandom Pseudo-distributions with Near-Optimal Error for Read-Once Branch- ing Programsโ. In:SIAM Journal on Computing49.5 (2020), STOC18- 242-STOC18โ299. doi: 10 . 1137 / 18M1197734. eprint: https : / / doi . org / 10 . 1137 / 18M1197734. url: https : / / doi . org / 10 . 1137/18M1197734.
[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. โA Combinatorial Con- struction of Almost-Ramanujan Graphs Using the Zig-Zag Productโ.
In: SIAM Journal on Computing40.2 (2011), pp. 267โ290. doi:10.
1137/080732651. eprint:https://doi.org/10.1137/080732651. url:https://doi.org/10.1137/080732651.
[Coh+22] Gil Cohen et al. โExpander Random Walks: The General Case and Limitationsโ. In: 49th International Colloquium on Automata, Lan- guages, and Programming (ICALP 2022). Ed. by Mikoลaj Bojaลczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229. Leibniz In- ternational Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl โ Leibniz-Zentrum fรผr Informatik, 2022, 43:1โ43:18.
isbn: 978-3-95977-235-8. doi: 10.4230/LIPIcs.ICALP.2022.43. url: https : / / drops . dagstuhl . de / opus / volltexte / 2022 / 16384.
[Con19] David Conlon.Hypergraph expanders from Cayley graphs. 2019. arXiv:
1709.10006 [math.CO].
[CPT21] Gil Cohen, Noam Peri, and Amnon Ta-Shma. โExpander Random Walks: A Fourier-Analytic Approachโ. In:Proceedings of the 53rd An- nual ACM SIGACT Symposium on Theory of Computing. STOC 2021.
Virtual, Italy: Association for Computing Machinery, 2021, pp. 1643โ
1655. isbn: 9781450380539. doi:10.1145/3406325.3451049. url:
https://doi.org/10.1145/3406325.3451049.
[DLV22] Andreea Deac, Marc Lackenby, and Petar Veliฤkoviฤ.Expander Graph Propagation. 2022. arXiv:2210.02997 [cs.LG].
[Fri03] J. Friedman. โRelative expanders or weakly relatively Ramanujan graphsโ. In: (2003), pp. 19โ35.
[GG81] O. Gabber and Z. Galil. โExplicit Constructions of Linear Size Super- concentratorsโ. In: (1981), pp. 407โ420.
[Gil98] David Gillman. โA Chernoff Bound for Random Walks on Expander Graphsโ. In:SIAM Journal on Computing27.4 (1998), pp. 1203โ1220.
doi: 10.1137/S0097539794268765. eprint: https://doi.org/
10 . 1137 / S0097539794268765. url: https : / / doi . org / 10 . 1137/S0097539794268765.
[GK21] Venkatesan Guruswami and Vinayak M. Kumar. โPseudobinomiality of the Sticky Random Walkโ. In:12th Innovations in Theoretical Com- puter Science Conference (ITCS 2021). Ed. by James R. Lee. Vol. 185.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss DagstuhlโLeibniz-Zentrum fรผr Informatik, 2021, 48:1โ48:19. isbn: 978-3-95977-177-1. doi:10.4230/LIPIcs.ITCS.
2021.48. url:https://drops.dagstuhl.de/opus/volltexte/
2021/13587.
[GK23] Roy Gotlib and Tali Kaufman. No Where to Go But High: A Per- spective on High Dimensional Expanders. 2023. arXiv:2304.10106 [math.CO].
[Gur20] Venkatesan Guruswami. โMore Great Ideas in Theoretical Computer Scienceโ. In: (2020).
[GV22] Louis Golowich and Salil Vadhan. โPseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branch- ing Programsโ. In:37th Computational Complexity Conference (CCC 2022). Ed. by Shachar Lovett. Vol. 234. Leibniz International Proceed- ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl โ Leibniz-Zentrum fรผr Informatik, 2022, 27:1โ27:13. isbn: 978-3- 95977-241-9. doi: 10.4230/LIPIcs.CCC.2022.27. url: https:
//drops.dagstuhl.de/opus/volltexte/2022/16589.
[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. โExpander graphs and their applicationsโ. In: Bulletin of the American Mathematical Society43(4):439โ561 (2006).
[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. โPseudoran- domness for Network Algorithmsโ. In:Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing. STOC โ94. Mon- treal, Quebec, Canada: Association for Computing Machinery, 1994, pp. 356โ364. isbn: 0897916638. doi: 10 . 1145 / 195058 . 195190. url:https://doi.org/10.1145/195058.195190.
[Kom+02] J. Komlรณs et al. The regularity lemma and its applications in graph theory. 2002. doi:10.1007/3-540-45878-6_3.
[KS96] David R. Karger and Clifford Stein. โA New Approach to the Minimum Cut Problemโ. In:J. ACM43.4 (1996), pp. 601โ640. issn: 0004-5411.
doi: 10 . 1145 / 234533 . 234534. url: https : / / doi . org / 10 . 1145/234533.234534.
[Lez01] Pascal Lezaud. โChernoff and Berry-Essรฉen inequalities for Markov processesโ. en. In:ESAIM: Probability and Statistics5 (2001), pp. 183โ
201. url:http://www.numdam.org/item/PS_2001__5__183_0/. [LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. โRamanujan graphsโ. In:
(1988), pp. 261โ277.
[Lub17] Alexander Lubotzky. Ramanujan Graphs. 2017. doi: 10 . 48550 / ARXIV.1711.06558. url:https://arxiv.org/abs/1711.06558. [Mar75] G.A. Margulis. โExplicit Construction of Concentratorsโ. In: (1975),
pp. 325โ332.
[Mil75] Gary L. Miller. โRiemannโs Hypothesis and Tests for Primalityโ. In:
Proceedings of the Seventh Annual ACM Symposium on Theory of Computing. STOC โ75. Albuquerque, New Mexico, USA: Association for Computing Machinery, 1975, pp. 234โ239. isbn: 9781450374194.
doi: 10 . 1145 / 800116 . 803773. url: https : / / doi . org / 10 . 1145/800116.803773.
[Rab80] Michael Rabin. Probabilistic Algorithm for Testing Primality. 1980.
url: https : / / www . sciencedirect . com / science / article / pii/0022314X80900840.
[Rei05] Omer Reingold. โUndirected ST-Connectivity in Log-Spaceโ. In:Pro- ceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing. STOC โ05. Baltimore, MD, USA: Association for Com- puting Machinery, 2005, pp. 376โ385. isbn: 1581139608. doi: 10 . 1145 / 1060590 . 1060647. url: https : / / doi . org / 10 . 1145 / 1060590.1060647.
[RR17] Shravas Rao and Oded Regev. โA Sharp Tail Bound for the Expander Random Samplerโ. In:arXiv e-prints, arXiv:1703.10205 (Mar. 2017), arXiv:1703.10205. arXiv:1703.10205 [math.PR].
[RVW04] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree. June 2004. url:
https://arxiv.org/abs/math/0406038.
[Sam98] Alex Samorodnitsky. โOn the optimum of Delsarteโs linear programโ.
In:J. Combinatorial Theory, Ser. A96 (1998).
[SS96] M. Sipser and D.A. Spielman. โExpander codesโ. In: IEEE Transac- tions on Information Theory 42.6 (1996), pp. 1710โ1722. doi: 10 . 1109/18.556667.
[Ta-17] Amnon Ta-Shma. โExplicit, Almost Optimal, Epsilon-Balanced Codesโ.
In:Proceedings of the 49th Annual ACM SIGACT Symposium on The- ory of Computing. STOC 2017. Montreal, Canada: Association for Computing Machinery, 2017, pp. 238โ251. isbn: 9781450345286. doi:
10.1145/3055399.3055408. url:https://doi.org/10.1145/
3055399.3055408.
[Tal17] Avishay Tal. โTight Bounds on the Fourier Spectrum of AC0โ. In:
32nd Computational Complexity Conference (CCC 2017). Ed. by Ryan OโDonnell. Vol. 79. Leibniz International Proceedings in Informat- ics (LIPIcs). Dagstuhl, Germany: Schloss DagstuhlโLeibniz-Zentrum fuer Informatik, 2017, 15:1โ15:31. isbn: 978-3-95977-040-8. doi:10.
4230/LIPIcs.CCC.2017.15. url:http://drops.dagstuhl.de/
opus/volltexte/2017/7525.
[Tre11] Luca Trevisan. โGraph Partitioning and Expandersโ. In: (2011). url:
https : / / lucatrevisan . github . io / teaching / cs359g - 11 / lecture01.pdf.
[Vad13] Salil Vadhan.Pseudorandomness. Book On Demand Ltd, 2013.
A p p e n d i x A
PROOF OF INTRODUCTORY THEOREMS
Lemma 1.3.1: Without loss of generality, let๐
1 โฅ ยท ยท ยท โฅ๐๐be the๐eigenvalues of L. Then,0=๐
1 โค ยท ยท ยท โค๐๐ =2.
Proof. We first show that 0 is an eigenvalue of the Laplacian L with eigenvector ๐ท1/2ยฎ1, whereยฎ1is the all-ones vector of length๐. Observe that:
L (๐ท1/2ยฎ1) =๐ทโ1/2(๐ผโ๐ท)๐ทโ1/2๐ท1/21ยฎ= ๐ทโ1/2(๐ผ โ๐ท)ยฎ1=0
The last equality holds because ยฎ1is an eigenvector of (๐ผ โ ๐ด) which corresponds to an eigenvalue of 0. Thus, 0 is an eigenvalue ofL. To show that 0 is a minimal eigenvalue of L, note that since L is symmetric and positive semidefinite (PSD), we must have that:
๐1:= inf
๐ฅโR๐:k๐ฅk=1
๐ฅ๐L๐ฅ So, for an arbitrary๐ฃ โR๐, observe that:
๐ฃ๐L๐ฃ=๐ฃ๐(1โ๐ทโ1/2๐ด ๐ทโ1/2)๐ฃ
=ร
๐โ๐
๐ฃ2
๐ โ ร
(๐, ๐)โ๐ธ
2๐ฃ๐๐ฃ๐ p๐๐๐๐
= ร
(๐, ๐)โ๐ธ
๐ฃ๐
โ ๐๐
โ ๐ฃ๐ p
๐๐
!2
โฅ 0 Thus,๐
1=inf๐ฅโR๐:k๐ฅk=1๐ฅ๐L๐ฅ โฅ 0.
For the other direction, we observe (by the PSD ofL) that๐ฅ๐(1โ๐ทโ1/2๐ด ๐ทโ1/2)๐ฅ โฅ 0 implies๐๐ โค 2 as shown below:
โ๐ฅ๐๐ทโ1/2๐ด ๐ทโ1/2๐ฅ โค ๐ฅ๐๐ฅ =โ ๐ฅ๐๐ผ ๐ฅโ๐ฅ๐๐ทโ1/2๐ด ๐ทโ1/2๐ฅ โค 2๐ฅ๐๐ฅ Factorizing, we get that:
๐ฅ๐(๐ผโ๐ทโ1/2๐ด ๐ทโ1/2)๐ฅ
๐ฅ๐๐ฅ := ๐ฅ๐L๐ฅ ๐ฅ๐๐ฅ
โค 2 =โ ๐ฅ๐L๐ฅ โค 2
Thus, each eigenvalue is bounded above by 2. So, ๐๐ โค 2, which proves the
claim.
Lemma 1.3.2: Let ๐บ = (๐ , ๐ธ) be a ๐-regular graph with edge expansion โ. If any๐ < โ fraction of edges are removed from๐บ, then the graph has a connected component that spans atleast1โ๐/2โfraction of the vertices.
Proof adapted from [Tre11]. Let ๐ธ0 โ ๐ธ be an any subset of โค ๐|๐ธ| = ๐ ๐|๐|/2 edges that an adversary may wish to remove from the graph.Let ๐ถ
1, . . . , ๐ถ๐ be the connected components of the graph (๐ , ๐ธ โ ๐ธ0) ordered (WLOG) such that
|๐ถ
1| โฅ |๐ถ
2| โฅ ยท ยท ยท โฅ |๐ถ๐|. Observe that:
|๐ธ0| โฅ 1 2
ร
๐โ ๐
๐ธ(๐ถ๐, ๐ถ๐)= 1 2
ร
๐
๐ธ(๐ถ๐, ๐ โ๐ถ๐)
Then, |๐ถ
1| > |๐|/2, since |๐ถ
1| โค |๐|/2 would imply that |๐ธ0| โฅ 1
2
ร
๐๐ โ|๐ถ๐| = ๐ โ|๐|/2, which is impossible if โ > ๐. If |๐ถ
1| โฅ |๐|/2, we define ๐ := ๐ถ
2โช
ยท ยท ยท โช๐ถ๐. Then, |๐ธ0| โฅ ๐ธ(๐ถ
1, ๐) โฅ ๐ โ|๐|, which implies |๐| โค ๐
2โ|๐| and so ๐ถ1 โฅ (1โ๐/2โ) |๐|. This proves our claim.
Lemma 1.3.3: For every constant๐ โN, any๐-regular graph๐บ = (๐ , ๐ธ)satisfies ๐(๐บ) โฅ 2
โ
๐โ1/๐โ๐(1), where the๐(1) term vanishes as๐ โ โ.
Proof adapted from [Vad13]. Let ๐บ be a regular undirected graph and ๐๐ be the infinite๐-regular tree. For a graph ๐ป andโ โ N, let ๐โ(๐ป) denote the probability that if we choose a random vertex๐ฃ โ ๐ปand do a random walk of length 2โ, we end back at vertex ๐ฃ. Then, we first observe that ๐โ(๐บ) โฅ ๐โ(๐๐). Second, note that ๐โ(๐๐) โฅ๐ถโ(๐โ1)โ/๐2โ. Here,๐ถโis the Catalan number, which equals the number of properly parenthesized strings of length 2โ. This last inequality holds because in the worst case, the random walk goesโ steps away from๐ฃ and back, where at each vertex there are๐โ1 branches possible in the๐-regular tree. Here, there are atmost ๐2โ possible choices of paths. Finally, given an exact path, the number of ways in which the vertex could get to a vertex โ steps away is exactly๐ถโ, theโth Catalan number.
Since the trace of the matrix L is the sum of its eigenvalues, the 2โโth transition matrix has sum of eigenvalues exactly๐ ๐โ(๐บ). We can bound this from above by 1+ (๐โ1)๐2โ. Then, using the fact that ๐ถโ = 2โโ
/(โ +1), we get that ๐(๐บ) โฅ 2
โ
๐โ1/๐โ๐(1).
Lemma 1.3.4(Expander Mixing Lemma): Let๐บ = (๐ , ๐ธ) with |๐| = ๐,|๐ธ| = ๐ be a๐-regular graph with spectral expansion constant๐. Then, for any subsets๐, ๐ of the vertex-set๐, we have that:
๐ธ(๐, ๐) โ ๐|๐||๐| ๐
โค๐
p|๐||๐|
Proof. Let1๐ be the indicator vector of the set๐and1๐ be the indicator vector of the set๐, where:
(1๐)๐ =
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
0, ๐ โ๐ 1, ๐ โ๐
and (1๐)๐ =
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
0, ๐ โ๐ 1, ๐ โ๐ Let ๐ข = (1/๐, . . . ,1/๐). Let 1๐ = |๐|๐ข +๐ฃ
1,1๐ = |๐|๐ข +๐ฃ
2. Then, observe that h๐ฃ
1, ๐ขi=h๐ฃ
2, ๐ขi=0. Also:
k๐ฃ
1k =p
(๐โ |๐|)/๐2+ |๐| (1+๐2โ2/๐) =p
1/๐+ |๐| โ2|๐|/๐ โค p
|๐| k๐ฃ
2k =p
(๐โ |๐|)/๐2+ |๐| (1+๐2โ2/๐) =p
1/๐+ |๐| โ2|๐|/๐โค p
|๐| Note that the number of edges between๐and๐ is exactly (1๐)๐๐ด1๐. Then:
๐ธ(๐, ๐) = (1๐)๐๐ด1๐ =(|๐|๐ข๐ +๐ฃ๐
1)๐ด(|๐|๐ข+๐ฃ
2)
= ๐|๐||๐| ๐
+๐|๐|๐ฃ๐
1๐ข+ |๐|๐ข๐๐ด๐ฃ
2+๐ฃ๐
1๐ด๐ฃ
2
= ๐|๐||๐| ๐
+๐ฃ๐
1๐ด๐ฃ
2
So, subtracting, we have that:
๐ธ(๐, ๐) โ ๐|๐||๐| ๐
=๐ฃ๐
1๐ด๐ฃ
2
โค k๐ฃ
1k k๐ด๐ฃ
2k (Cauchy Schwartz)
โค k๐ฃ
1k๐k๐ฃ
2k
โค ๐ p|๐|p
|๐|
This yields the claim.
Lemma 1.3.5[Expander Hitting Lemma]. Let๐บ = (๐ , ๐ธ)with|๐|=๐,|๐ธ|=๐be a ๐-regular graph with spectral expansion constant๐. Then, for any ๐ต โ ๐ such that|๐ต|= (1โ๐ฟ)๐, the probability that a random walk๐
1, ๐
2, . . . , ๐๐ก of๐กโ1steps starting at a uniformly random vertex of๐บ completely stays inside๐ตis given by:
Pr[๐๐ โ ๐ต,โ๐ โ [๐ก]] โค (1โ๐ฟ(1โ๐))๐กโ1
Proof adapted from [Gur20]. Let ๐ be the random walk matrix of the graph ๐บ and let๐ be the projection matrix that zeroes out all the indices not in๐ต such that ๐๐ ๐ =1{๐=๐ ,๐โ๐ต}. So, the probability that all the๐กvertices of a random walk are in ๐ต is equal to:
Pr[๐๐ โ๐ต,โ๐ โ [๐ก]] = k๐ ๐ ๐ ๐ . . . ๐ ๐ ๐๐ขk1 Then, by Cauchy Schwartz (and since๐2=๐), we write that:
k (๐ ๐ ๐)๐กโ1๐๐ขk1 โค โ
๐k (๐ ๐ ๐)๐กโ1๐๐ขk
We then bound the largest absolute value of the eigenvalues of ๐ ๐ ๐. Let ๐ = maxk๐ฅk=1๐ฅ๐๐ ๐ ๐๐ฅ. Let ๐ฆ = ๐๐ฅ. We then have that๐ = ๐ฆ๐๐ ๐ฆ, where ๐ฆ = ๐ฆk +๐ฆโฅ such that๐ฆk =๐ผ๐ข and h๐ฆโฅ, ๐ฆki =0. Note that k๐ฆkk2+ k๐ฆโฅk2 = k๐ฆk2 โค k๐ฅk2 = 1.
Then, ๐ฆk =๐ผ๐ข, where๐ผ= h๐ฆ,1i. Thus, k๐ฆkk2= 1๐h๐ฆ,1i2 โค (1โ๐ฟ) k๐ฆk2. So:
๐= ๐ฆ๐๐ ๐ฆ =(๐ฆk
๐ +๐ฆโฅ
๐)๐(๐ฆk+๐ฆโฅ)
โค (1โ๐) k๐ฆkk2+๐k๐ฆk2
โค 1โ๐ฟ(1โ๐) So, it must then be the case that:
k (๐ ๐ ๐)๐กโ1๐๐ขk1 โค โ
๐k (๐ ๐ ๐)๐กโ1๐๐ขk โคโ
๐(1โ๐ฟ(1โ๐))๐กโ1k๐๐ขk
โค
โ
1โ๐ฟ(1โ๐ฟ(1โ๐))๐กโ1
โค (1โ๐ฟ(1โ๐))๐กโ1
This proves the claim.
Lemma 1.4.1[Ta-Shma]. Let๐
0be the parity of the number of times an expander random walk of length ๐ก hit ๐ต and ๐
1 be the parity of the number of times a uniformly random sequence of variables realized a value contained in๐ต. Then, for ๐0=0.8, ๐ฝ =0.01, and small๐such that๐
0+2๐ฝ+2๐ <0.9: TVD(๐
0, ๐
1) =(๐
0+2๐ฝ+2๐)b๐ก/2c
Proof adapted from [Ta-17]. LetVbe a vector space with dim(V)= |๐|=๐0and identify an element ๐ฃ โ ๐ with a basis vector ยฎ๐ฃ โ V. We will use this basis to define๐บ, the linear operator of a random walk in๐บ. Now, letฮฅ be a distribution over{0,1}๐. For a linear test๐ผ โ {0,1}๐, let:
Bias๐ผ(ฮฅ)= Pr
๐ โฮฅ
(h๐ผ, ๐ i=0) โ Pr
๐ โฮฅ
[h๐, ๐ i=1]
Then, Bias(ฮฅ) =max๐ผโ โ Bias๐ผ(ฮฅ). We say thatฮฅis๐-based if Bias(ฮฅ) โค๐. Now, let๐ผ= (๐ผ
1, . . . , ๐ผ๐) โ {0,1}๐ be a test-set that maximizes Bias๐ผ(ฮฅ) and let๐
0, ๐
1
be the corresponding partitions of [๐0], such that ๐๐ = {๐ฃ โ [๐0] : h๐(๐ฃ) |๐ผi = ๐}. Then, define ฮ 0 and ฮ 1, where ฮ ๐ is the projection on the vector space of span({ยฎ๐ฃ|๐ฃ โ ๐๐}). We let ฮ = ฮ 0 โ ฮ 1. Then, sample a random walk on an expander. Let๐๐๐ฃ ๐๐(๐
1)be the probability that a sampled path(๐ฃ
0, . . . , ๐ฃ๐ก)visits๐
1
an even number of times, and ๐๐ ๐๐(๐
1) for an odd number of times. Then, observe the following:
1) Bias๐ผ(ฮฅ) =|E๐ฃ0,...,๐ฃ๐ก[(โ1)โ
๐ก
๐=0h๐(๐ฃ๐),๐ผi
] | = |๐๐๐ฃ ๐๐(๐
1) โ๐๐ ๐๐(๐
1) |. 2) ๐๐๐ฃ ๐๐(๐
1) โ ๐๐ ๐๐(๐
1) = ร
๐0,...,๐๐กโ{0,1}(โ1)๐0+ยทยทยท+๐)๐ก1โ ฮ ๐๐ก๐บ . . .ฮ ๐
2๐บฮ ๐
1๐บฮ ๐
01 because paths that fall an even number of times into๐
1contribute 1 while the other paths contributeโ1. Then, by the distributive law, this must be identically equal to 1โ (ร
๐๐กโ{0,1}(โ1)๐๐กฮ ๐๐ก)๐บ . . .(ร
๐0โ{0,1}(โ1)๐0ฮ ๐
0)1=1โ (ฮ ๐บ)๐กฮ 1.
3) Let๐ฃ โ V such thatk๐ฃk =1 and๐ฃ=๐ฃโฅ+๐ฃk. Then since๐บ ๐ฃk =๐ฃk = k๐ฃkk1: kฮ ๐บฮ ๐บ ๐ฃk โค kฮ ๐บฮ ๐บ ๐ฃโฅk + kฮ ๐บฮ ๐บ ๐ฃkk โค kฮ ๐บ(ฮ 1)kk + kฮ ๐บ(ฮ 1)โฅk + k๐บ ๐ฃโฅk
โค k (ฮ 1)kk +2๐= ||๐
0| โ |๐
1||
๐
+2๐ โค ๐
0+2๐ฝ+2๐ The last inequality arises from lettingฮฅ0be๐
0-biased and noting that๐โ๐0 โค ๐ฝ๐. 4)|๐๐๐ฃ ๐๐(๐
1) โ๐๐ ๐๐(๐
1) | =|1โ (ฮ ๐บ)๐กฮ 1| โค k (ฮ ๐บ)๐กk โค k (ฮ ๐บ)2kb๐ก/2c โค (๐
0+2๐ฝ+ 2๐)b๐ก/2c. For large enough๐ก, this term goes to 0, which is identical to the Chernoff result for the uniform random variables. This proves the claim.
Lemma 17. Orthogonality of the Krawtchouk functions:
h๐พ๐, ๐พ๐ i = E
๐โผBin(๐,1
2)
[๐พ๐(๐)๐พ๐ (๐)] =
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
0 if๐ โ ๐
๐ ๐
if๐ =๐
Proof. We provide a probabilistic interpretation of the Krawtchouk function as demonstrated in [Sam98]. Fix๐ด โ [๐]
โ
,๐ต โ๐ [๐]
๐
, and choose๐ถ โ๐ [๐]
๐
. Then, ๐พ๐ (โ) =
๐ ๐
E[(โ1)|๐ดโฉ๐ต|], ๐พ๐(โ) = ๐
๐
E[(โ1)|๐ดโฉ๐ถ|] The inner product of๐พ๐ and๐พ๐ is then:
h๐พ๐, ๐พ๐ i= ๐
๐ ๐ ๐
E[(โ1)|๐ดโฉ๐ต|]E[(โ1)|๐ดโฉ๐ถ|]
= ๐
๐ ๐ ๐
E[(โ1)|๐ดโฉ๐ต|(โ1)|๐ดโฉ๐ถ|] (A, B, and C are independent) If ๐ต โ ๐ถ, then E[(โ1)|๐ดโฉ๐ต|(โ1)|๐ดโฉ๐ถ||๐ต โ ๐ถ] = 0, since for each ๐ฅ โ ๐ตฮ๐ถ, we could either have ๐ฅ โ ๐ด or ๐ฅ โ ๐ด, which contributes a +1 or -1 (or vice versa) (respectively) to the expectation. So, the expected value must be 0. Conversely, if ๐ต =๐ถ, then it must be the case that๐ = ๐ , which occurs with probability 1๐
๐
. So, E[(โ1)|๐ดโฉ๐ต|(โ1)|๐ดโฉ๐ถ|] =E[(โ1)2|๐ดโฉ๐ต|] = 1
(๐๐ ). This yields that h๐พ๐, ๐พ๐ i=
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
0 if๐ โ ๐
๐ ๐
if๐ =๐
Lemma 1.5.6 [Fooling Symmetric Functions]. For all integers ๐ก โฅ 1 and ๐ โฅ 2, let๐บ = (๐บ๐)1โค๐โค๐กโ1 be a sequence of ๐-spectral expanders on a shared vertex set ๐ with labelingval :๐โ [๐] that assigns each label๐ โ [๐] to ๐๐-fraction of the vertices. Then, for any label ๐, we have that the total variation distance between the number of ๐โs seen in the expander random walk and the uniform distribution on [๐] has the following bound (where [ฮฃ(๐)๐] counts the number of occurrences of๐in๐) is:
TVD( [ฮฃ(RW๐กG)]๐,[ฮฃ(๐[๐])]๐) โค๐
๐ min๐โ[๐] ๐๐
๐(๐)
ยท๐
!
Proof adapted from [GV22]. Consider the case ๐
0๐
1๐ก < 1. Then, for ๐ โ Z๐ก, we have that:
|๐๐| โค 44ยท k๐บ๐ขโ๐บ0
๐ขk ๐ก
ยท๐2๐
2โ๐ ๐(๐โ๐
1๐ก)
This expression is minimized when setting๐ = 1
2 and ๐ =sgn(๐ โ ๐
1๐ก). Summing over all ๐ :|๐ โ๐
1๐ก| โฅ ๐gives:
ร
๐โZ๐ก:|๐โ๐
1๐ก|โฅ๐
|๐๐| โค88ยท k๐บ0
๐ขโ๐บ๐ขk ๐ก
ยท ๐1/2โ๐/2
1โ๐โ1/2 โค 4000๐โ๐
2/8๐ก
ยท k๐บ0
๐ขโ๐บ๐ขk ๐ก
A similar method shows an equivalent result for ๐
0๐
1๐ก โฅ 1, which thus proves lemma 1.5.7 (theorem 18).
The proof of lemma 1.5.8 (Theorem 20), in turn, gets to the heart of the proof methodologies used in the paper, since it involves a Fourier-analytic component.
We will fulfil this by providing a high-level overview of the (auxiliary) proof of lemma 1.5.8. To do this, we re-tell [GV22]โs description of the Fourier group on Z. Let ๐1 = R/2๐Zwithโ2norm k๐k =
qโซ ๐
โ๐|๐(๐) |2d๐/2๐ and use [Ahm+19]โs formulation of the singular-value approximation.
Letโ2(Z) andโ2(๐1) represent the subspaces ofCZ andC๐1 (resp.) that contain all elements of finiteโ2norm. Then, the Fourier transform ofZis the mapF :โ2(Z) โ โ2(๐1) such that the Fourier transform of โ โ โ2(Z), denoted Fโ = โห โ โ2(๐1), is given by หโ(๐) = ร
๐โZโ๐๐โ๐ ๐ ๐. It can also be expressed in terms of the Fourier characters ๐๐ = (๐๐ ๐ ๐)๐โZ โ CZas หโ(๐) = ๐โ
๐
โ. The central idea for lemma 1.5.8 is that theโ
2norm is preserved under the Fourier transform, and so, k๐(๐ ๐)k = k๐ห(๐ ๐)k. The last component needed for this proof is theorem 25 from [GV22] which is a
linear-algebraic result that bounds|๐ห(๐ ๐)|as follows:
|๐ห(๐ ๐ | โค 4ยท k๐บ0
๐ขโ๐บ๐ขk ยท๐
0๐
1ยท
4๐2+ 3 2
๐2
ยท๐๐0๐1๐ก(2๐
2โ๐2/20)
Then, to prove lemma 1.5.8, [GV22] uses the result from theorem 25 above.
k๐(๐ ๐)k =k๐ห(๐ ๐)k = s
โซ โ
โโ
|๐ห(๐ ๐)(๐) |2d๐ 2๐
โค4
โ 2k๐บ0
๐ขโ๐บ๐ขk๐
0๐
1๐2๐0๐1๐ก๐
2
4๐2 s
โซ ๐
โ๐
๐โ๐0๐
1๐ก ๐2/10d๐ 2๐
+ s
โซ ๐
โ๐
9 4
๐4๐โ๐0๐
1๐ก ๐2/10d๐ 2๐
!
From here, bounding the inequality further with different standard results yields the result for 1.5.8. The big-picture idea of this proof is the notion that the โ
2 norm is preserved under the Fourier transform which relates the quantity to theโ
1 norm
which can also, in turn, be bounded.
Lemma 2.1.1. [Krawtchouk coefficient of the probability ratio] Expanding ๐(โ) through the Krawtchouk function expansion in Proposition 3.2 yields that:
ห
๐(๐)= 1
๐ ๐
(๐โ1)๐โ๐ E
๐ โผ๐(๐, ๐,๐)
[๐พ๐(|๐ |0)]
Proof. Writing the expected value of๐พ๐(|๐ |0) using๐(๐)and๐พ๐(๐), we get:
ห
๐(๐) = 1
๐ ๐
(๐โ1)๐โ๐
๐
ร
๐=0
๐ ๐
(๐โ1)๐โ๐ ๐๐
๐(๐)๐พ๐(๐)
= 1
๐ ๐
(๐โ1)๐โ๐
๐
ร
๐=0
๐ โผ๐(๐, ๐,๐)Pr
[|๐ |0=๐]๐พ๐(๐) (substituting๐(๐))
= 1
๐ ๐
(๐โ1)๐โ๐ E
๐ โผ๐(๐, ๐,๐)[๐พ๐(|๐ |0)] (by definition of E
๐ โ๐(๐, ๐,๐)[๐พ๐(|๐ |0)])
Lemma 2.1.2. For๐ โ ๐(๐, ๐, ๐), we have that Pr[|๐ |0=โ] = 1
๐๐
๐
ร
๐=0
๐พโ(๐) E
๐ โผ๐(๐, ๐,๐)
[๐พ๐(|๐ |0)]
Proof. Writing out Pr[|๐ |0 =โ] in terms of the probability ratio๐(โ), we get:
Pr[|๐ |0=โ] =
๐ โ
(๐โ1)๐โโ ๐๐
๐(โ)
=
๐ โ
(๐โ1)๐โโ ๐๐
๐
ร
๐=0
ห
๐(๐)๐พ๐(โ) (Krawtchouk expansion of๐(โ))
=
๐ โ
(๐โ1)๐โโ ๐๐
๐
ร
๐=0
๐พ๐(โ)
๐ ๐
(๐โ1)๐โ๐ E[๐พ๐(|๐ |0)] (Lemma 3.1)
= 1 ๐๐
๐
ร
๐=0 ๐ โ
๐ ๐
(๐โ1)๐โโ
(๐โ1)๐โ๐ E[๐พ๐(|๐ |0)]๐พ๐(โ)
= 1 ๐๐
๐
ร
๐=0
๐พโ(๐) E
๐ โผ๐(๐, ๐,๐)
[๐พ๐(|๐ |0)] (By the reciprocity relation) Lemma 2.2.1. The expected value of the Krawtchouk function is given by:
E[๐พ๐(|๐ |0)] =
๏ฃฑ๏ฃด
๏ฃด๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃด
๏ฃณ
(๐โ1)๐โ๐
๐โ๐
ร
๐=๐
๐0(๐)๐๐, if๐ =๐ mod ๐ โก0
0, if๐=๐ mod ๐ . 0
Proof. By the formula of expected values, we have that:
E[๐พ๐(|๐ |0)] = ร
๐ โผ๐(๐, ๐,๐)
Pr[๐ ] ร
๐ฆโZ๐2
|๐ฆ|0=๐
(โ1)๐ฆยท๐
= ร
๐ โผ๐(๐, ๐,๐)
Pr[๐ ] ร
๐ฆโZ๐2
|๐ฆ|0=๐
(โ1)
๐
ร
๐=1
๐ฆ๐ยท๐ ๐
= ร
๐ โผ๐(๐, ๐,๐)
Pr[๐ ] ร
๐ฆโZ๐2
|๐ฆ|0=๐ ๐
ร
๐=1
(โ1)๐ฆ๐ยท๐ ๐
We note then that the dot-product on the exponent of(โ1)only takes the summation of the element-wise product of๐ผand๐ฆfor positions on๐ฆthat are strictly non-zero.
Therefore, we can rewrite the summation by considering the indices corresponding to locations of non-zeros in ๐ฆ, and instead take the summation of the dot-product along these indices. So, for๐ ={๐
1< ... < ๐๐โ๐}, we have that:
E[๐พ๐(|๐ |0)] = ร
๐ โผ๐(๐, ๐,๐)
Pr[๐ ] ร
๐โ(๐โ๐[๐]) ร
๐โ๐
(โ1)๐ ๐
Further, choosing a๐ โ ๐โ๐[๐]
implies a choice of๐ = [๐]
๐
= [๐] \๐. Hence, the summation reduces to:
E[๐พ๐(|๐ |0)] = ร
๐ โผ๐(๐, ๐,๐)
Pr[๐ ] ร
๐โ([๐๐]) ร
๐โ๐
(โ1)๐ ๐
= ร
๐โ([๐๐]) E
๐ โผ๐(๐, ๐,๐)
ร
๐โ๐
(โ1)๐ ๐
(definition of expectations)
Next, observe that the sticky random walk is a Markov chain where(โ1)๐ ๐ =(โ1)๐ ๐โ1 with probability 1/๐+ (๐โ1)๐). So, we can instead model the transitions of strings from the sticky random walk as random variables๐ข, where๐ข
1is uniformly distributed inZ๐and for๐ โฅ 2,๐ข๐is uniformly distributed on(1โ๐)๐[Z๐] +๐ยท10. To provide an intuition for this refactorization,(1โ๐)๐[Z๐]is the โbaseโ probability of switching to any vertex and๐is the additional probability of staying on the same vertex.
Then, since๐ ๐ =ร
๐โ๐ร๐
๐=1๐ข๐, we write that:
๐ โ๐(๐, ๐,๐)E ร
๐โ๐
(โ1)๐ ๐
= E
๐ โ๐(๐, ๐,๐)
(โ1)
ร
๐โ๐ ๐
ร
๐=1
๐ข๐
=
๐๐โ๐
ร
๐=1
๐ โ๐(๐, ๐,๐)E
(โ1)
ร
๐โ๐;๐โฅ๐
๐ข๐
(independence of๐ข๐โs)
When ๐ =1, we get that:
E
(โ1)
ร
๐โ๐;๐โฅ1
๐ข1
=E[(โ1)|๐|๐ข1]
=
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
1, if|๐| mod ๐ โก0 0, otherwise
Conversely, when ๐ โฅ 2, let๐๐ ={๐ โ๐;๐ โฅ ๐}. Then, E
(โ1)
ร
๐โ๐;๐โฅ๐
๐ข๐
=E[(โ1)|๐๐|๐ข๐]
=
๏ฃฑ๏ฃด
๏ฃด
๏ฃฒ
๏ฃด๏ฃด
๏ฃณ
1, if|๐๐| mod ๐โก 0 E[(โ1)๐ข๐], otherwise
Next, observe that for ๐ โฅ2,E[(โ1)๐ข๐] =๐.
Proof. To show this, we write the expression for๐ข๐, ๐ โฅ 2 in the exponent and take the expected value of(โ1)๐ข๐.
E[(โ1)๐ข๐] =E[(โ1)(1โ๐)๐[Z๐]+๐ยท10] (since๐ข๐ โผ (1โ๐)๐[Z๐] +๐ยท10)
=
๐โ1
ร
๐=0
(โ1)๐Pr[๐ข๐ =๐] (definition of expectation)
= (โ1)0Pr[๐ข๐ =0] + (โ1)1Pr[๐ข๐ =1] +...+ (โ1)๐โ1Pr[๐ข๐ = ๐โ1]
= 1
๐ +๐
๐โ1 ๐
โ 1
๐
โ ๐ ๐
+...+ (โ1)๐โ1 1
๐
โ ๐ ๐
= 1 ๐
๐โ1
ร
๐=0
(โ1)๐โ ๐ ๐
๐โ1
ร
๐=0
(โ1)๐ +๐(โ1)0=๐
Then, for๐ mod ๐โก 0, we have that:
E[๐พ๐(|๐ |0)] = ร
๐โ([๐๐]) E
๐ โผ๐(๐, ๐,๐)
ร
๐โ๐
(โ1)๐ ๐
= ร
๐โ([๐]๐) ร
๐โ๐
๐ โผ๐(๐, ๐,๐)E
[(โ1)๐ ๐] (independence of (โ1)๐ ๐)
= ร
๐โ([๐]๐)
๐๐โ๐
ร
๐=1
๐ (since|๐|=๐๐โ๐)
= ร
๐โ([๐]๐) ๐๐๐โ๐
We then parameterize the summation over every possible value of the shift of T (for ๐ mod ๐ โก0), where the shift function is given in Definition 22.
E[๐พ๐(|๐ |0)] =
๐โ๐
ร
๐=๐
ร
๐โ([๐๐])
shift0(T)=d
1
๐๐
=
๐โ๐
ร
๐=๐
๐0(๐)๐๐
This yields the claim.
Lemma 2.2.2. For ๐ โNwhere 0 โค ๐ โค ๐, and for ๐ โNwhere ๐ โค ๐ โค ๐โ๐, the number of ๐-sized subsets of [๐]that satisfy shift๐(๐) =๐is:
๐๐(๐)= 1 ๐๐
ร
๐โ([๐]๐)
shift๐(๐)=๐
1= 1 ๐๐
๐โ1 b|๐โ๐|
๐โ1c โ1
๐โ๐ b|๐โ๐|
๐โ1c
Proof. To determine ๐๐(๐), we count the total number of ways to choose ๐
1<
๐2< ... < ๐๐ such that the lengths of the intervals (๐๐ โ๐๐โ
1) + (๐๐+๐ โ๐๐+๐โ
1) + (๐๐+
2๐โ๐๐+
2๐โ1) +... = ๐, where for any ๐ โค 0, ๐๐ = 0. To do this, we combine each element-wise interval (๐๐+๐ ๐, ๐๐+๐ ๐โ
1) to form a contiguous interval of length ๐ (starting from ๐๐โ
1 = 0). The remaining contiguous region that excludes these intervals must then have a length of ๐โ๐. We then abstract the number of ways to count ๐
1 < ... < ๐๐ by counting the number of intervals that have a length of ๐ when combined, such that the remaining intervals have a length๐โ ๐. From a length of๐โ1 (accounting for๐
0 =0), we need to select intervals that form a length of b|๐ โ ๐|/(๐โ 1)c โ1 since they represent the number of choices of elements of๐ that are index-separated by ๐. Similarly, from a length of๐โ๐, we need to select intervals that form a length ofb|๐โ๐|/(๐โ1)cpossible intervals, since they represent every other element of ๐. This second constraint is to ensure that the total length of the intervals chosen is exactly๐. Finally, we divide by the maximum number of repetitions to prevent duplicates, which is ๐๐. Hence, we write that:
ร
๐โ([๐]๐)
shift๐(๐)=๐
1=
๐โ1 b|๐โ๐|
๐โ1c โ1
๐โ๐ b|๐โ๐|
๐โ1c
Therefore,
๐๐(๐)= 1 ๐๐
ร
๐โ([๐]๐)
shift๐(๐)=๐
1= 1 ๐๐
๐โ1 b|๐โ๐|
๐โ1c โ1
๐โ๐ b|๐โ๐|
๐โ1c
Lemma 2.3.1. The total variational distance between the generalized sticky random walk on ๐vertices and the uniform distribution on ๐states is given by:
TVD( [ฮฃ(๐(๐, ๐, ๐))]0,[ฮฃ(U๐๐)]0) = 1 2 E
๐โผU๐๐
[|๐(๐) โ1|]
Proof. We write the expression of the total variation distance between the ๐-step sticky random walk on ๐ states and๐-samples from the uniform distribution on ๐ states. This then yields:
TVD( [ฮฃ(๐(๐, ๐, ๐))]0,[ฮฃ(U๐๐)]0) = 1 2
๐
ร
โ=0
Pr[|๐ |0 =โ] โ
๐ โ
(๐โ1)๐โโ ๐๐
= 1 2
๐
ร
โ=0
๐ โ
๐(โ)(๐โ1)๐โโ ๐๐
โ
๐ โ
(๐โ1)๐โโ ๐๐
= 1 2
๐
ร
โ=0
๐ โ
๐๐
(๐โ1)๐โโ(๐(โ) โ1)
= 1 2
๐
ร
โ=0
|Pr[โ] (๐(โ) โ1) |
= 1
2 E
๐โผ[ฮฃ(U๐๐)]0
[|๐(๐) โ1|]
Lemma A.0.1. For 1 โค ๐ โค ๐
๐, we can bound (๐๐)2 (๐ ๐๐) โค (๐๐
๐)2๐ ยท (๐ ๐
๐)๐ ๐. Proof. We use the bound that(๐
๐)๐ โค ๐
๐
< (๐๐
๐)๐. This gives us that (๐๐)2 (๐ ๐๐) โค (
๐๐ ๐)2๐ ( ๐
๐ ๐)๐ ๐. Simplifying it yields that(๐๐
๐ )2๐ ยท (๐ ๐
๐ )๐ ๐, which proves the claim.
A p p e n d i x B
PROOF OF THEOREMS IN CHAPTER 2
In this section of the Appendix, we present a generalization of the Krawtchouk polynomials into the complex domain that yields an elegant method of analysis for bounding the total variation distance of [ฮฃ(๐(๐, ๐, ๐))]0and[ฮฃ(U๐๐)]0, but only for when ๐ is a prime number. For the generalized sticky random walk, this method yields an upper-bound on TVD( [ฮฃ(๐(๐, ๐, ๐))]0,[ฮฃ(U๐๐)]0) of๐(๐ ๐๐(๐)), which matches the upper-bound derived in Corollary 4 of [GV22] through Fourier-analytic means, which the body of our paper shows to be suboptimal when the size of the alphabet used is allow to increase asymptotically. Nonetheless, we include a proof of this generalization to present our novel treatment of the Krawtchouk function.
Definition 23. Given any set ๐๐ โ [๐] with cardinality |๐๐| = ๐, let ๐ฃ๐
๐ denote a bit-string in{0,1}๐ such that for each๐ โ ๐๐, (๐ฃ๐
๐)๐ =0 and for each๐ โ [๐] \๐๐, (๐ฃ๐
๐)๐ =1. Similarly, given the context of a prior prime number ๐, let๐ค๐
๐ denote a string in Z๐๐ where for each ๐ โ ๐๐, (๐ค๐
๐)๐ = 0, and for each ๐ โ [๐] \ ๐๐, (๐ค๐
๐)๐ โ [๐โ1].
Definition 24. Let๐ทdenote the โzero distributionโ where for anyโ โ [๐], Pr[๐ท =โ] denotes the probability that a string๐ โ Z๐๐hasโ zeros. Specifically, Pr[๐ท =โ] =
(๐โ)(๐โ1)๐โโ
๐๐ , since there are ๐โ
ways to select the locations for theโ 0s in a string of length๐, and (๐โ1)๐โโ to populate the other๐โ๐ locations with characters from [๐โ1].
Definition 25. For๐ โฅ 2, let๐๐denote the ๐๐ก โ primitive root of unity if it satisfies (๐๐)๐ = 1, and if there does not exist ๐ โ Nwhere ๐ < ๐ such that (๐๐)๐ = 1.
Specifically, the multiplicative order of the ๐๐ก โ primitive root of unity must be ๐. Then, for 1 โค ๐ < ๐, we must have that
๐โ1
ร
๐=0
(๐๐)๐ ๐ =๐๐ยท0
๐ +๐๐ยท1
๐ +...+๐
๐ยท(๐โ1)
๐ =0
Proof. Given๐
๐
๐ =1, it is clear that for ๐ < ๐, (๐๐
๐)๐ =1. Thus,(๐๐
๐)๐โ1=0= (๐๐
๐ โ1) (๐๐ยท0
๐ +๐๐ยท1
๐ +...+๐
๐ยท(๐โ1)
๐ ). Since ๐๐
๐ โ 1 as๐๐ is a primitive root of unity, we must have that๐๐ยท0
๐ +๐๐ยท1
๐ +...+๐
๐ยท(๐โ1)
๐ =0, which proves the claim.