• Tidak ada hasil yang ditemukan

Leveraging large language model for text generation for characterization brain and

7.2 Future works

7.2.2 Leveraging large language model for text generation for characterization brain and

on vast amounts of textual data, these models demonstrate an impressive ability to understand, generate, and interact using human language. Their architecture and scale enable them to capture contextual meanings from diverse linguistic sources.

LLMs can be applied in multi-modality domains such as the medical imaging domain. For instance, the model is expected to predict brain volume, brain ages, or other brain-related metrics given single thigh slices.

This designed paradigm offers unparalleled advantages. The inherent explainability ensures that generated records are both detailed and contextually relevant, translating intricate visual data into interpretable content.

Their precision ensures no nuanced feature is overlooked, while their versatility enables concurrent process- ing of diverse data forms, such as textual medical histories, for a holistic analysis. LLMs guarantee consistent and rapid record generation. Their adaptability also allows for outputs tailored to varied audiences, and the inherent feedback loop ensures ongoing refinement and accuracy improvement in response to expert input.

References

[1] Abubakar Abid, Muhammad Fatih Balin, and James Zou. Concrete autoencoders for differentiable feature selection and reconstruction.arXiv preprint arXiv:1901.09346, 2019.

[2] Daniel C Alexander. Multiple-fiber reconstruction algorithms for diffusion mri. Annals of the New York Academy of Sciences, 1064(1):113–133, 2005.

[3] J L Andersson, S Skare, and J Ashburner. How to correct susceptibility distortions in spin-echo echo- planar images: Application to diffusion tensor imaging.Neuroimage, 20, 2003.

[4] D B Archer, D E Vaillancourt, and S A Coombes. A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb Cortex, 28, 2018.

[5] Brian B Avants, Nick Tustison, Gang Song, and Others. Advanced normalization tools (ANTS).

Insight j, 2(365):1–35, 2009.

[6] K M Baarsen, M Kleinnijenhuis, S Jbabdi, S N Sotiropoulos, J A Grotenhuis, and A M Walsum. A probabilistic atlas of the cerebellar white matter.Neuroimage, 124, 2015.

[7] Siqi Bao and Albert C.S. Chung. Multi-scale structured CNN with label consistency for brain MR image segmentation.Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 6(1):113–117, jan 2018.

[8] Yoann Barnouin, Gillian Butler-Browne, Thomas Voit, David Reversat, Noura Azzabou, Ga¨elle Ler- oux, Anthony Behin, Jamie S McPhee, Pierre G Carlier, and Jean-Yves Hogrel. Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. Journal of Magnetic Reso- nance Imaging, 40(1):239–247, 2014.

[9] Peter J Basser. Fiber-tractography via diffusion tensor mri (dt-mri). InProceedings of the 6th Annual Meeting ISMRM, Sydney, Australia, volume 1226, 1998.

[10] Peter J Basser, James Mattiello, and Denis LeBihan. Estimation of the effective self-diffusion tensor from the nmr spin echo.Journal of Magnetic Resonance, Series B, 103(3):247–254, 1994.

[11] Stefan Bauer, Roland Wiest, Lutz-P Nolte, and Mauricio Reyes. A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine & Biology, 58(13):R97, 2013.

[12] Dani Beck, Ann-Marie G De Lange, Dag Alnæs, Ivan I Maximov, Mads L Pedersen, Olof Dahlqvist Leinhard, Jennifer Linge, Rozalyn Simon, Genevi`eve Richard, Kristine M Ulrichsen, et al. Adipose tissue distribution from body mri is associated with cross-sectional and longitudinal brain age in adults.

NeuroImage: Clinical, 33:102949, 2022.

[13] T E Behrens, H Johansen-Berg, M W Woolrich, S M Smith, C A Wheeler-Kingshott, and P A Boulby.

Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.

Nat Neurosci, 6, 2003.

[14] Luis EB Bettio, Luckshi Rajendran, and Joana Gil-Mohapel. The effects of aging in the hippocampus and cognitive decline.Neuroscience & Biobehavioral Reviews, 79:66–86, 2017.

[15] Jennifer F Bobb, Brian S Schwartz, Christos Davatzikos, and Brian Caffo. Cross-sectional and lon- gitudinal association of body mass index and brain volume. Human brain mapping, 35(1):75–88, 2014.

[16] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kas- neci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[17] David J Brenner and Eric J Hall. Computed tomography—an increasing source of radiation exposure.

New England journal of medicine, 357(22):2277–2284, 2007.

[18] Herb Brody. Medical imaging. Nature, 502(7473):S81–S81, 2013.

[19] U B¨urgel, K Amunts, L Hoemke, H Mohlberg, J M Gilsbach, and K Zilles. White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability.Neuroimage, 29, 2006.

[20] Mariano Cabezas, Arnau Oliver, Xavier Llad´o, Jordi Freixenet, and Meritxell Bach Cuadra. A review of atlas-based segmentation for magnetic resonance brain images. Computer methods and programs in biomedicine, 104(3):e158—-e177, 2011.

[21] Leon Y Cai, Qi Yang, Colin B Hansen, Vishwesh Nath, Karthik Ramadass, Graham W Johnson, Benjamin N Conrad, Brian D Boyd, John P Begnoche, Lori L Beason-Held, and Others. PreQual:

An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images.Magnetic Resonance in Medicine, 86(1):456–470, 2021.

[22] Marco Catani and Michel Thiebaut De Schotten.Atlas of human brain connections. Oxford University Press, 2012.

[23] Marco Catani, Robert J Howard, Sinisa Pajevic, and Derek K Jones. Virtual in vivo interactive dissec- tion of white matter fasciculi in the human brain. Neuroimage, 17(1):77–94, 2002.

[24] Marco Catani and Michel Thiebaut de Schotten. A diffusion tensor imaging tractography atlas for virtual in vivo dissections.Cortex, 44(8):1105–1132, 2008.

[25] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-Chen Chiu. All about structure: Adapting structural information across domains for boosting semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1900–1909, 2019.

[26] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information- theoretic perspective on model interpretation. InInternational Conference on Machine Learning, pages 883–892. PMLR, 2018.

[27] Liang Chen, Paul Bentley, Kensaku Mori, Kazunari Misawa, Michitaka Fujiwara, and Daniel Rueckert.

Self-supervised learning for medical image analysis using image context restoration. Medical image analysis, 58:101539, 2019.

[28] Q Chenot, N Tzourio-Mazoyer, F Rheault, M Descoteaux, F Crivello, L Zago, E Mellet, G Jobard, M Joliot, B Mazoyer, and L Petit. A population-based atlas of the human pyramidal tract in 410 healthy participants.Brain Struct Funct, 224, 2019.

[29] ¨Ozg¨un C¸ ic¸ek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u- net: learning dense volumetric segmentation from sparse annotation. InInternational conference on medical image computing and computer-assisted intervention, pages 424–432. Springer, 2016.

[30] Pierrick Coup´e, Boris Mansencal, Micha¨el Cl´ement, R´emi Giraud, Baudouin Denis de Senneville, Vinh-Thong Ta, Vincent Lepetit, and Jos´e V Manjon. AssemblyNet: A novel deep decision-making process for whole brain MRI segmentation. InInternational Conference on Medical Image Computing and Computer-Assisted Intervention, pages 466–474, 2019.

[31] A M Dale, B Fischl, and M I Sereno. Cortical surface-based analysis. I Segmentation and surface reconstruction.Neuroimage, 9, 1999.

[32] Christos Davatzikos and N Bryan. Using a deformable surface model to obtain a shape representation of the cortex.IEEE transactions on medical imaging, 15(6):785–795, 1996.

[33] Alexandre De Br´ebisson and Giovanni Montana. Deep neural networks for anatomical brain segmen- tation. Technical report, 2015.

[34] Jonas de Carvalho Felinto, Katia Maria Poloni, Paulo Guilherme de Lima Freire, Jessica Bianca Aily, Aline Castilho de Almeida, Maria Gabriela Pedroso, Stela M´arcia Mattiello, and Ricardo Jos´e Fer- rari. Automatic segmentation and quantification of thigh tissues in CT images. InLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10960 LNCS, pages 261–276. Springer Verlag, 2018.

[35] Yue-Ting Deng, Yu-Zhu Li, Shu-Yi Huang, Ya-Nan Ou, Wei Zhang, Shi-Dong Chen, Ya-Ru Zhang, Liu Yang, Qiang Dong, Jian-Feng Feng, et al. Association of life course adiposity with risk of incident dementia: a prospective cohort study of 322,336 participants.Molecular Psychiatry, pages 1–11, 2022.

[36] Richard A Dennis, Douglas E Long, Reid D Landes, Kalpana P Padala, Prasad R Padala, Kimberly K Garner, James N Wise, Charlotte A Peterson, and Dennis H Sullivan. Tutorial for using SliceOmatic to calculate thigh area and composition from computed tomography images from older adults. PloS one, 13(10):e0204529, 2018.

[37] R S Desikan, F Segonne, B Fischl, B T Quinn, B C Dickerson, and D Blacker. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

Neuroimage, 31, 2006.

[38] Lee R Dice. Measures of the amount of ecologic association between species.Ecology, 26(3):297–302, 1945.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[40] S B Eickhoff, S Heim, K Zilles, and K Amunts. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps.Neuroimage, 32, 2006.

[41] S B Eickhoff, T Paus, S Caspers, M H Grosbras, A C Evans, K Zilles, and K Amunts. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited.Neuroimage, 36, 2007.

[42] S B Eickhoff, K E Stephan, H Mohlberg, C Grefkes, G R Fink, K Amunts, and K Zilles. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.Neuroimage, 25, 2005.

[43] Klaus Engelke, Oleg Museyko, Ling Wang, and Jean Denis Laredo. Quantitative analysis of skeletal muscle by computed tomography imaging—State of the art, oct 2018.

[44] S Ewert, P Plettig, N Li, M M Chakravarty, D L Collins, T M Herrington, A A K¨uhn, and A Horn.

Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.Neuroimage, 170, 2018.

[45] Luigi Ferrucci. The Baltimore Longitudinal Study of Aging (BLSA): A 50-Year-Long Journey and Plans for the Future.The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(12):1416–1419, dec 2008.

[46] Teresa D Figley, Behnoush Mortazavi Moghadam, Navdeep Bhullar, Jennifer Kornelsen, Susan M Courtney, and Chase R Figley. Probabilistic white matter atlases of human auditory, basal ganglia, lan- guage, precuneus, sensorimotor, visual and visuospatial networks. Frontiers in human neuroscience, 11:306, 2017.

[47] B Fischl. FreeSurfer. Neuroimage, 62, 2012.

[48] B Fischl, M I Sereno, and A M Dale. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.Neuroimage, 9, 1999.

[49] Vladimir Fonov, Alan C Evans, Kelly Botteron, C Robert Almli, Robert C McKinstry, D Louis Collins, Brain Development Cooperative Group, and Others. Unbiased average age-appropriate atlases for pediatric studies.Neuroimage, 54(1):313–327, 2011.

[50] Peter Francis, Mark Lyons, Mathew Piasecki, Jamie Mc Phee, Karen Hind, and Philip Jakeman. Mea- surement of muscle health in aging. Biogerontology, 18(6):901–911, 2017.

[51] John DE Gabrieli, Satrajit S Ghosh, and Susan Whitfield-Gabrieli. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.Neuron, 85(1):11–26, 2015.

[52] Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan Van Der Walt, Maxime Descoteaux, and Ian Nimmo-Smith. Dipy, a library for the analysis of diffusion MRI data.

Frontiers in neuroinformatics, 8:8, 2014.

[53] Eleftherios Garyfallidis, Marc Alexandre Cˆot´e, Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent Petit, David Fortin, Stephen Cunanne, and Maxime Descoteaux. Recognition of white matter bundles using local and global streamline-based registration and clustering, apr 2018.

[54] J C Gee, M Reivich, and R Bajcsy. Elastically deforming 3D atlas to match anatomical brain images.

J Comput Assist Tomogr, 17, 1993.

[55] George Gifford, Robert McCutcheon, and Philip McGuire. Neuroimaging studies in people at clinical high risk for psychosis. InRisk Factors for Psychosis, pages 167–182. Elsevier, 2020.

[56] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell, Essa Ya- coub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson, and Others. A multi-modal parcellation of human cerebral cortex.Nature, 536(7615):171–178, 2016.

[57] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

[58] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.Communications of the ACM, 63(11):139–144, 2020.

[59] Hao Guan and Mingxia Liu. Domain adaptation for medical image analysis: a survey. IEEE Transac- tions on Biomedical Engineering, 69(3):1173–1185, 2021.

[60] Miguel Guevara, Claudio Rom´an, Josselin Houenou, Delphine Duclap, Cyril Poupon, Jean Franc¸ois Mangin, and Pamela Guevara. Reproducibility of superficial white matter tracts using diffusion- weighted imaging tractography. Neuroimage, 147:703–725, 2017.

[61] P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard, D. Le Bihan, M. Leboyer, J. Houe- nou, and J. F. Mangin. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas.NeuroImage, 61(4):1083–1099, jul 2012.

[62] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[63] Isabelle Guyon and Andr´e Elisseeff. An introduction to variable and feature selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[64] Colin B Hansen, Qi Yang, Ilwoo Lyu, Francois Rheault, Cailey Kerley, Bramsh Qamar Chandio, Shreyas Fadnavis, Owen Williams, Andrea T Shafer, Susan M Resnick, et al. Pandora: 4-d white mat- ter bundle population-based atlases derived from diffusion mri fiber tractography. Neuroinformatics, 19(3):447–460, 2021.

[65] Colin B Hansen, Qi Yang, Ilwoo Lyu, Francois Rheault, Cailey Kerley, Bramsh Qamar Chandio, Shreyas Fadnavis, Owen Williams, Andrea T Shafer, Susan M Resnick, and Others. Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography.Neuroin- formatics, pages 1–14, 2020.

[66] Rolf A Heckemann, Joseph V Hajnal, Paul Aljabar, Daniel Rueckert, and Alexander Hammers. Au- tomatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neu- roImage, 33(1):115–126, 2006.

[67] Tobias Heimann, Brain Van Ginneken, Martin A. Styner, Yulia Arzhaeva, Volker Aurich, Christian Bauer, Andreas Beck, Christoph Becker, Reinhard Beichel, Gy¨orgy Bekes, Fernando Bello, Gerd Bin- nig, Horst Bischof, Alexander Bornik, Peter M.M. Cashman, Ying Chi, Andr´es C´ordova, Benoit M.

Dawant, M´arta Fidrich, Jacob D. Furst, Daisuke Furukawa, Lars Grenacher, Joachim Hornegger, Dag- mar Kainm¨uller, Richard I. Kitney, Hidefumi Kobatake, Hans Lamecker, Thomas Lange, Jeongjin Lee, Brian Lennon, Rui Li, Senhu Li, Hans Peter Meinzer, G´abor N´emeth, Daniela S. Raicu, Anne Mareike Rau, Eva M. Van Rikxoort, Mika¨el Rousson, L´aszlo Rusk´o, Kinda A. Saddi, G¨unter Schmidt, Dieter Seghers, Akinobu Shimizu, Pieter Slagmolen, Erich Sorantin, Grzegorz Soza, Ruchaneewan Susom- boon, Jonathan M. Waite, Andreas Wimmer, and Ivo Wolf. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging, 28(8):1251–1265, aug 2009.

[68] C L Hoad and A L Martel. Segmentation of MR images for computer-assisted surgery of the lumbar spine. Physics in Medicine & Biology, 47(19):3503, 2002.

[69] Myles Hollander, Douglas A Wolfe, and Eric Chicken.Nonparametric statistical methods. John Wiley

& Sons, 2013.

[70] Martin Hudelmaier, Wolfgang Wirth, Maria Himmer, Susanne Ring-Dimitriou, Alexandra S¨anger, and Felix Eckstein. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas—Quantitative assessment using MRI.Magnetic resonance in medicine, 64(6):1713–1720, 2010.

[71] Yuankai Huo, Zhoubing Xu, Hyeonsoo Moon, Shunxing Bao, Albert Assad, Tamara K Moyo, Michael R Savona, Richard G Abramson, and Bennett A Landman. Synseg-net: Synthetic segmenta- tion without target modality ground truth. IEEE transactions on medical imaging, 38(4):1016–1025, 2018.

[72] Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, and Bennett A. Landman. 3D whole brain segmentation using spatially localized atlas network tiles.NeuroImage, 194:105–119, jul 2019.

[73] In-seong Hwang and Soon-Beom Hong. Association between body mass index and subcortical volume in pre-adolescent children with autism spectrum disorder: An exploratory study. Autism Research, 15(12):2238–2249, 2022.

[74] Juan Eugenio Iglesias and Mert R Sabuncu. Multi-atlas segmentation of biomedical images: a survey.

Medical image analysis, 24(1):205–219, 2015.

[75] I Ilinsky, A Horn, P Paul-Gilloteaux, P Gressens, C Verney, and K Kultas-Ilinsky. Human motor thalamus reconstructed in 3D from continuous sagittal sections with identified subcortical afferent territories.eNeuro, 5, 2018.

[76] Aliz Lacoste Jeanson, Jn Dupej, Chiara Villa, and Jaroslav Brek. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body ct scans.PeerJ, 5:e3302, 2017.

[77] M Jenkinson, C F Beckmann, T E Behrens, M W Woolrich, and S M Smith. Fsl. Neuroimage, 62, 2012.

[78] Ben Jeurissen, Maxime Descoteaux, Susumu Mori, and Alexander Leemans. Diffusion mri fiber trac- tography of the brain. NMR in Biomedicine, 32(4):e3785, 2019.

[79] MP Jones, JB Dilley, Douglas Drossman, and MD Crowell. Brain–gut connections in functional gi disorders: anatomic and physiologic relationships. Neurogastroenterology & Motility, 18(2):91–103, 2006.

[80] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on tabular datasets.Advances in neural information processing systems, 34:23928–23941, 2021.

[81] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an image edge detection filter using the sobel operator.IEEE Journal of solid-state circuits, 23(2):358–367, 1988.

[82] M C Keuken, P L Bazin, A Schafer, J Neumann, R Turner, and B U Forstmann. Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus.J Neurosci, 33, 2013.

[83] R Kikinis, M E Shenton, D V Iosifescu, R W McCarley, P Saiviroonporn, H H Hokama, A Robatino, D Metcalf, C G Wible, C M Portas, R M Donnino, and F A Jolesz. A digital brain atlas for surgical planning, model-driven segmentation, and teaching.IEEE Trans Vis Comput Graph, 2, 1996.

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[85] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[86] L Labache, M Joliot, J Saracco, G Jobard, I Hesling, L Zago, E Mellet, L Petit, F Crivello, B Mazoyer, and N Tzourio-Mazoyer. A SENtence Supramodal areas AtlaS (SENSAAS) based on multiple task- induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers.

Brain Struct Funct, 224, 2019.

[87] J L Lancaster, M G Woldorff, L M Parsons, M Liotti, C S Freitas, L Rainey, P V Kochunov, D Nicker- son, S A Mikiten, and P T Fox. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 10, 2000.

[88] Eric B Larson. The body-mind connection in aging and dementia.Journal of the American Geriatrics Society, 61(7):1210, 2013.

[89] Ross M Lawrence, Eric W Bridgeford, Patrick E Myers, Ganesh C Arvapalli, Sandhya C Ramachan- dran, Derek A Pisner, Paige F Frank, Allison D Lemmer, Aki Nikolaidis, and Joshua T Vogelstein.

Standardizing human brain parcellations.Scientific data, 8(1):1–9, 2021.

[90] Stephen M Lawrie and Suheib S Abukmeil. Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies.The British Journal of Psychi- atry, 172(2):110–120, 1998.

[91] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.nature, 521(7553):436–444, 2015.

[92] Ho Hin Lee, Yucheng Tang, Shunxing Bao, Yan Xu, Qi Yang, Xin Yu, Agnes B Fogo, Raymond Harris, Mark P de Caestecker, Jeffery M Spraggins, et al. Supervised deep generation of high-resolution arterial phase computed tomography kidney substructure atlas. In Medical Imaging 2022: Image Processing, volume 12032, pages 736–743. SPIE, 2022.

[93] Ho Hin Lee, Yucheng Tang, Shunxing Bao, Qi Yang, Xin Yu, Kevin L Schey, Jeffery M Spraggins, Yuankai Huo, and Bennett A Landman. Unsupervised registration refinement for generating unbiased eye atlas. InMedical Imaging 2023: Image Processing, volume 12464, pages 470–476. SPIE, 2023.

[94] Lay Khoon Lee, Siau Chuin Liew, and Weng Jie Thong. A review of image segmentation method- ologies in medical image. Advanced computer and communication engineering technology, pages 1069–1080, 2015.

[95] Glenn N Levine. The mind-heart-body connection. Circulation, 140(17):1363–1365, 2019.

[96] Chunming Li, Chenyang Xu, Changfeng Gui, and Martin D Fox. Distance regularized level set evolu- tion and its application to image segmentation.IEEE transactions on image processing, 19(12):3243–

3254, 2010.

[97] Kang Li, Shujun Wang, Lequan Yu, and Pheng-Ann Heng. Dual-teacher++: Exploiting intra-domain and inter-domain knowledge with reliable transfer for cardiac segmentation. IEEE Transactions on Medical Imaging, 2020.

[98] Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. H-DenseUNet:

hybrid densely connected UNet for liver and tumor segmentation from CT volumes.IEEE transactions on medical imaging, 37(12):2663–2674, 2018.

[99] K I Lim, S J Yang, T N Kim, H J Yoo, H J Kang, W Song, Sei-Hyun Baik, D S Choi, and Kyung Mook Choi. The association between the ratio of visceral fat to thigh muscle area and metabolic syndrome:

the Korean Sarcopenic Obesity Study (KSOS).Clinical endocrinology, 73(5):588–594, 2010.

[100] Chen Liu, Matthew Amodio, Liangbo L Shen, Feng Gao, Arman Avesta, Sanjay Aneja, Jay C Wang, Lucian V Del Priore, and Smita Krishnaswamy. Cuts: A fully unsupervised framework for medical image segmentation. arXiv preprint arXiv:2209.11359, 2022.

[101] N Makris, J M Goldstein, D Kennedy, S M Hodge, V S Caviness, S V Faraone, M T Tsuang, and L J Seidman. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res, 83, 2006.

[102] R B Mars, S Jbabdi, J Sallet, J X O’Reilly, P L Croxson, E Olivier, M P Noonan, C Bergmann, A S Mitchell, M G Baxter, T E J Behrens, H Johansen-Berg, V Tomassini, K L Miller, and M F S Rushworth. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.J Neurosci, 31, 2011.

[103] R B Mars, J Sallet, U Schuffelgen, S Jbabdi, I Toni, and M F Rushworth. Connectivity-based subdivi- sions of the human right “temporoparietal junction area”: Evidence for different areas participating in different cortical networks.Cereb Cortex, 22, 2012.

[104] S´ebastien Martin, Jocelyne Troccaz, and Vincent Daanen. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Medical physics, 37(4):1579–1590, 2010.

[105] J Mazziotta, A Toga, A Evans, P Fox, J Lancaster, K Zilles, R Woods, T Paus, G Simpson, B Pike, C Holmes, L Collins, P Thompson, D MacDonald, M Iacoboni, T Schormann, K Amunts, N Palomero-Gallagher, S Geyer, L Parsons, K Narr, N Kabani, G L Goualher, D Boomsma, T Can- non, R Kawashima, and B Mazoyer. A probabilistic atlas and reference system for the human brain:

International consortium for brain mapping (ICBM). Philos Trans R Soc Lond Ser B Biol Sci, 356, 2001.

[106] J Mazziotta, A Toga, A Evans, P Fox, J Lancaster, K Zilles, R Woods, T Paus, G Simpson, B Pike, C Holmes, L Collins, P Thompson, D MacDonald, M Iacoboni, T Schormann, K Amunts, N Palomero- Gallagher, S Geyer, L Parsons, K Narr, N Kabani, G le Goualher, J Feidler, K Smith, D Boomsma, H H Pol, T Cannon, R Kawashima, and B Mazoyer. A four-dimensional probabilistic atlas of the human brain. Journal of the American Medical Informatics Association : JAMIA, 8, 2001.

[107] J C Mazziotta, A W Toga, A Evans, P Fox, and J Lancaster. A probabilistic atlas of the human brain:

Theory and rationale for its development. The international consortium for brain mapping (ICBM).

Neuroimage, 2, 1995.

[108] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction.arXiv preprint arXiv:1802.03426, 2018.

[109] N Mitsiopoulos, R N Baumgartner, S B Heymsfield, W Lyons, D Gallagher, and R Ross. Cadaver vali- dation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography.

Journal of applied physiology, 85(1):115–122, 1998.