• Tidak ada hasil yang ditemukan

Localized data-driven System Level Synthesis

Chapter V: Data-driven Approach in the Noiseless Case

5.4 Localized data-driven System Level Synthesis

In this section we present the necessary results that allow us to recast the con- straints in (2.12) in a localized data-driven parametrization. We first provide a naive parametrization of system responses subject to locality constraints based on Lemma 13 in terms ofG. We then build on this parameterization and show that localized system responses can be characterized using only locally collected trajectories.

Locality constraints in data-driven System Level Synthesis

We start by rewriting the locality constraints using the data-driven parameterization (5.2).

Lemma 14. Consider the LTI system(2.1)with controllable(๐ด, ๐ต)matrices, where each subsystem ๐‘– is subject to locality constraints (2.4). Assume that there is no driving noise. Given the state and input trajectories{xหœ,uหœ}generated by the system over a horizon๐‘‡ withuPE of order at least๐‘›+ ๐ฟ, the following parametrization overGcharacterizes all possible๐‘‘-localized system responses over a time span of ๐ฟโˆ’1:

๐ป๐ฟ(xหœ,uหœ)G, for allGs.t.๐ป1(xหœ)G= ๐ผ , (5.3) ๐ป๐ฟ( [หœx]๐‘–)G๐‘— =0โˆ€๐‘— โˆ‰in๐‘–(๐‘‘),

๐ป๐ฟ( [u]หœ ๐‘–)G๐‘˜ =0โˆ€๐‘˜ โˆ‰in๐‘–(๐‘‘+1), for all๐‘– =1, . . . , ๐‘ .

Proof. We aim to show that

{๐šฝ: ๐‘๐ด ๐ต๐šฝ=๐ผ ,๐šฝโˆˆ L๐‘‘} ={๐ป๐ฟ(xหœ,u)Gหœ :Gs.t. (5.3)}.

(โІ) First, suppose that ๐šฝ โˆˆ L๐‘‘ satisfies that ๐‘๐ด ๐ต๐šฝ = ๐ผ. From Lemma 13, we immediately have that there exists a matrixG s.t. ๐šฝ =๐ป๐ฟ(xหœ,uหœ)G. Thus, we need only verify that thisGsatisfies the linear constraint in (5.3). This follows directly from the assumption that๐šฝ โˆˆ L๐‘‘, which states that

๐ป๐ฟ( [xหœ]๐‘–)G๐‘— =[๐šฝ๐‘ฅ]๐‘– ๐‘— =0โˆ€๐‘— โˆ‰in๐‘–(๐‘‘), ๐ป๐ฟ( [uหœ]๐‘–)G๐‘˜ = [๐šฝ๐‘ข]๐‘– ๐‘˜ =0โˆ€๐‘˜ โˆ‰in๐‘–(๐‘‘+1). Hence,๐šฝโˆˆRHS, proving this direction.

(โЇ) Now suppose that there exists a G that satisfies the constraints on the RHS and let ๐šฝ = ๐ป๐ฟ(xหœ,u)Gหœ . Since ๐ป1(x)Gหœ = ๐ผ, from Lemma 2, we have that ๐šฝ is achievable. From the other two constraints, we have that ๐šฝ โˆˆ L๐‘‘, proving this

direction and hence the lemma. โ–ก

It is important to note that even though Lemma 14 allows one to capture the locality constraint (2.4) by simply translating the locality constraints over๐šฝto constraints overG, it cannot be implemented with only local information exchange. In order to satisfy the constraints (5.3), each subsystem has to have access to global state and input trajectories and construct a global Hankel matrix. The PE condition of Lemma 12 further implies that the length of the trajectory that needs to be collected grows with the dimension of the global system state. In what follows we show how constraint (5.3) can further be relaxed to only require local information without introducing any additional conservatism.

Localized Data-driven System Level Synthesis

In this subsection we show that constraint (5.3) can be enforced (i) with local communication between neighbors, i.e., no constraints are imposed outside each subsystem ๐‘‘-neighborhood, and (ii) the amount of data needed, i.e., trajectory length, only scales with the size of the๐‘‘-localized neighborhood, and not the global system. We start by providing a result that allows constraint (5.3) to be satisfied with local information only.

Definition 11. Given a subsystem๐‘– satisfying the local dynamics [๐‘ฅ(๐‘ก+1)]๐‘– = โˆ‘๏ธ

๐‘—โˆˆ{๐‘–,๐‘–ยฑ1}

[๐ด]๐‘– ๐‘—[๐‘ฅ(๐‘ก)]๐‘— + [๐ต]๐‘–๐‘–[๐‘ข(๐‘ก)]๐‘–+ [๐‘ค(๐‘ก)]๐‘–, (5.4)

we define itsaugmented๐‘‘-localized subsystemas the system composed by the states [๐‘ฅ]in๐‘–(๐‘‘+1)and augmented control actions[๐‘ขยฏ]๐‘– := ( [๐‘ข]โŠบ

in๐‘–(๐‘‘+2) [๐‘ฅ]โŠบ

๐‘—)โŠบ, โˆ€๐‘— ๐‘ .๐‘ก .dist(๐‘— โ†’ ๐‘–) =๐‘‘+2. That is, the system given by

[๐‘ฅ(๐‘ก+1)]in๐‘–(๐‘‘+1) = [๐ด]in๐‘–(๐‘‘+1)[๐‘ฅ(๐‘ก)]in๐‘–(๐‘‘+1) + [๐ตยฏ]in๐‘–(๐‘‘+1)[๐‘ขยฏ(๐‘ก)]๐‘–, (5.5) with๐ตยฏ := h

[๐ต]in๐‘–(๐‘‘+2) [๐ด]๐‘– ๐‘—

i

โˆ€ ๐‘— s.t. ๐‘‘๐‘– ๐‘ ๐‘ก(๐‘— โ†’๐‘–) =๐‘‘+2.

Notice that by treating the state of the boundary subsystems as additional control inputs, we can view the augmented๐‘‘-localized system as a standalone LTI system.

Lemma 15. For ๐‘– = 1, . . . , ๐‘, let ๐šฟ๐‘– be an achievable system response for the augmented๐‘‘-localized subsystem(5.5)of subsystem๐‘–. Further assume that each๐šฟ๐‘– satisfies constraints(5.6):

[๐šฟ๐‘–๐‘ฅ]๐‘— =0, โˆ€๐‘— s.t. ๐‘‘+1โ‰ค dist(๐‘— โ†’๐‘–) โ‰ค ๐‘‘+2, (5.6a) [๐šฟ๐‘–๐‘ข]๐‘— =0, โˆ€๐‘— s.t. dist(๐‘— โ†’๐‘–) =๐‘‘+2 (5.6b) for all๐‘–. Then, the system response๐šฝdefined by(5.7)is achievable for system(??) and๐‘‘-localized.

[๐šฝ]๐‘– ๐‘— :=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

[๐šฟ๐‘–]๐‘—, โˆ€๐‘— โˆˆin๐‘–(๐‘‘+1)

0, otherwise

(5.7) for all๐‘– =1, . . . , ๐‘ is also achievable and๐‘‘-localized.

Proof. First, from the fact that๐šฟ๐‘– is achievable for all ๐‘– = 1, . . . , ๐‘, we have that ฮฆ๐‘ฅ[0] = ๐ผ by construction. Thus, to show that๐šฝis achievable, it suffices to show that

ฮฆ๐‘ฅ[๐‘ก+1] = ๐ดฮฆ๐‘ฅ[๐‘ก] +๐ตฮฆ๐‘ข[๐‘ก], โˆ€0โ‰ค ๐‘ก โ‰ค๐‘‡ โˆ’1.

We show this block-column-wise. Specifically, we show that the block columnsฮฆ๐‘–๐‘ฅ andฮฆ๐‘–๐‘ขassociated with each subsystem satisfy

ฮฆ๐‘–๐‘ฅ[๐‘ก+1] = ๐ดฮฆ๐‘–๐‘ฅ[๐‘ก] +๐ตฮฆ๐‘–๐‘ข[๐‘ก], โˆ€0โ‰ค ๐‘ก โ‰ค๐‘‡ โˆ’1. (5.8) We further partition the rows of these block-columns into four subsets as follows:

ฮฆ๐‘–๐‘ฅ = h [ฮฆ๐‘–๐‘ฅ]โŠบ

in๐‘–(๐‘‘) [ฮฆ๐‘–๐‘ฅ]โŠบ

๐‘‘+1 [ฮฆ๐‘–๐‘ฅ]โŠบ

๐‘‘+2 [ฮฆ๐‘–๐‘ฅ]โŠบ

ext๐‘–(๐‘‘+2)

iโŠบ ,

where the notation [ฮฆ๐‘–๐‘ฅ]๐‘˜ represents the entries ofฮฆ๐‘ฅ corresponding to subsystems ๐‘˜-hops away from the๐‘–-th subsystem. Identical notation holds for the partition of ฮฆ๐‘–๐‘ข.

Using this partition, we have the following forฮฆ๐‘–๐‘ฅ andฮฆ๐‘–๐‘ข[๐‘ก] given their definition in terms of๐šฟ:

ฮฆ๐‘–๐‘ฅ[๐‘ก] =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

[ฮจ๐‘ฅ๐‘–[๐‘ก]]in๐‘–(๐‘‘) 0 0 0

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

, ฮฆ๐‘–๐‘ข[๐‘ก] =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

[ฮจ๐‘ข๐‘–[๐‘ก]]in๐‘–(๐‘‘) [ฮจ๐‘ข๐‘–[๐‘ก]]๐‘‘+1

0 0

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป .

We also partition the dynamics matrices ๐ดand ๐ตaccordingly, where

๐ด=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐ดin(

๐‘‘) in(๐‘‘) ๐ดin(

๐‘‘)

๐‘‘+1 0 0

๐ด๐‘‘+1

in(๐‘‘) ๐ด๐‘‘+1

๐‘‘+1 ๐ด๐‘‘+1

๐‘‘+2 0

0 ๐ด๐‘‘+2

๐‘‘+1 ๐ด๐‘‘+2

๐‘‘+2 ๐ด๐‘‘+2

ext๐‘–(๐‘‘+2)

0 0 ๐ดext๐‘–(

๐‘‘+2)

๐‘‘+2 ๐ดext๐‘–(

๐‘‘+2) ext๐‘–(๐‘‘+2)

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ,

๐ต=

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐ตin(๐‘‘)

in(๐‘‘) 0 0 0

0 ๐ต๐‘‘+1

๐‘‘+1 0 0

0 0 ๐ต๐‘‘+2

๐‘‘+2 0

0 0 0 ๐ตext๐‘–(๐‘‘+2)

ext๐‘–(๐‘‘+2)

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป .

Here, the superscript represents an index on the block row and the subscript repre- sents an index on the block column. The sparsity pattern of the partition follows directly from the definition of augmented๐‘‘-localized subsystems and the subsystem dynamics (5.4).

We can now show that equation (5.8) holds for each of the๐‘–thblock-columns andฮฆ๐‘– is an achievable impulse response of the system. First, note that

[ฮฆ๐‘–๐‘ฅ[๐‘ก+1]]in๐‘–(๐‘‘) =[๐ดฮฆ๐‘–๐‘ฅ[๐‘ก] +๐ตฮฆ๐‘–๐‘ข[๐‘ก]]in๐‘–(๐‘‘)

=๐ดin๐‘–(

๐‘‘)

in๐‘–(๐‘‘)[ฮจ๐‘–๐‘ฅ[๐‘ก]]in

๐‘–(๐‘‘) +๐ตin๐‘–(

๐‘‘)

in๐‘–(๐‘‘)[ฮจ๐‘–๐‘ข[๐‘ก]]in

๐‘–(๐‘‘) +๐ตin๐‘–(

๐‘‘)

๐‘‘+1 [ฮจ๐‘ข๐‘–[๐‘ก]]๐‘‘+1

=[ฮจ๐‘–๐‘ฅ[๐‘ก+1]]in๐‘–(๐‘‘),

where the second equality comes from the sparsity patterns of ๐ด, ๐ต, and ๐šฝ๐‘–, and the third equality from the achievability of๐šฟ๐‘–. Similarly, to show that the boundary subsystems satisfy the dynamics, we note that

[ฮฆ๐‘–๐‘ฅ[๐‘ก+1]]๐‘‘+1= ๐ด๐‘‘+1

in๐‘–(๐‘‘)[ฮจ๐‘ฅ(๐‘–)(๐‘ก)]in๐‘–(๐‘‘) +๐ต๐‘‘+1

๐‘‘+1[ฮจ๐‘ข(๐‘–)(๐‘ก)]๐‘‘+1

= [ฮจ๐‘ฅ(๐‘–)(๐‘ก+1)]๐‘‘+1

=0.

Lastly, from the sparsity pattern of the dynamic matrices and ฮฆ๐‘–[๐‘ก], we trivially have that

[ฮฆ๐‘ฅ(๐‘–)(๐‘ก+1)]ext๐‘–(๐‘‘) =[๐ดฮฆ๐‘–๐‘ฅ[๐‘ก] +๐ตฮฆ๐‘–๐‘ข[๐‘ก]]ext๐‘–(๐‘‘) =0,

concluding the proof for the achievability of ๐šฝ. We end by noting that ๐šฝ is ๐‘‘-

localized by construction. โ–ก

In light of this result, locality constraints as in Definition 2, i.e., [๐šฝ๐‘ฅ]๐‘– ๐‘— = 0โˆ€๐‘– โˆ‰ out๐‘—(๐‘‘), do not need to be imposed on every subsystem๐‘– โˆ‰ out๐‘—(๐‘‘). Instead, it suffices to impose this constraint only on subsystems๐‘–at a distance๐‘‘+2 of subsystem ๐‘—. Intuitively, this can be seen as a constraint on the propagation of a signal: if [๐‘ค]๐‘— has no effect on subsystem ๐‘– at distance ๐‘‘ +1 because [๐šฝ๐‘ฅ]๐‘– ๐‘— = 0, then the propagation of that signal is stopped and localized within that neighborhood. This idea will allow us to reformulate constraint (5.3) so that it can be imposed with only local communications.

However, despite the fact that locality constraints can now be achieved with local information exchanges, the amount of data that needs to be collected scales with the global size of the network๐‘›because we require that the control trajectory be at least PE of order at least ๐‘›+๐ฟ. In the following theorem, we build upon the previous results and show how this requirement can also be reduced to only depend on the size of a๐‘‘-localized neighborhood.

Theorem 4. Consider the LTI system (2.1) composed of subsystems (5.4), each with controllable ( [๐ด]in

๐‘–(๐‘‘+2),[๐ต]in

๐‘–(๐‘‘+2)) matrices for the augmented๐‘‘-localized subsystem ๐‘–. Assume that there is no driving noise and that the local control trajectory at the๐‘‘-localized subsystem[uหœ]in๐‘–(๐‘‘+1) is PE of order at least๐‘›in

๐‘–(๐‘‘)+๐ฟ, where ๐‘›in

๐‘–(๐‘‘) is the dimension of [xหœ]in๐‘–(๐‘‘). Then, ๐šฝ is an achievable ๐‘‘-localized system response for each subsystem(5.4)if and only if it can be written as

[๐šฝ๐‘–]in๐‘–(๐‘‘) =๐ป๐ฟ( [x]หœ in๐‘–(๐‘‘+1),[u]หœ in๐‘–(๐‘‘+1))G๐‘–, (5.9a) [๐šฝ๐‘–]ext

๐‘–(๐‘‘+1) =0, (5.9b)

whereG๐‘– satisfies

๐ป1( [xหœ]in๐‘–(๐‘‘+1))G๐‘–= ๐ผ๐‘–, (5.10a) ๐ป๐ฟ( [x]หœ ๐‘—)G๐‘– =0โˆ€๐‘–, ๐‘— s.t. ๐‘‘+1 โ‰ค dist(๐‘— โ†’๐‘–) โ‰ค ๐‘‘+2, (5.10b) ๐ป๐ฟ( [uหœ]๐‘—)G๐‘– =0โˆ€๐‘–, ๐‘—s.t. dist(๐‘— โ†’๐‘–) =๐‘‘+2. (5.10c)

Proof. (โ‡’) We first show that all๐‘‘-localized system responses๐šฝcan be parame- terized by a corresponding set of matrices {G๐‘–}๐‘

๐‘–=1. First, we note that since ๐šฝis ๐‘‘-localized, each๐‘‘-localized subsystem impulse response[๐šฝ๐‘–]in๐‘–(๐‘‘+1) is achievable on the augmented ๐‘‘-localized subsystem๐‘–. Thus, from applying Corollary 3.1, we have that there existsG๐‘–satisfying constraint (5.10a) such that

[๐šฝ๐‘–]in๐‘–(๐‘‘) =๐ป๐ฟ( [หœx]in๐‘–(๐‘‘),[uหœ]in๐‘–(๐‘‘+1))G๐‘–.

Since๐šฝis๐‘‘-localized, we have thatG๐‘–satisfies both constraints (5.10b) and (5.10c), concluding the proof in this direction.

(โ‡) Now we show that if eachG๐‘–satisfies the constraint (5.10) for all๐‘–=1, . . . , ๐‘, then the resulting๐šฝis achievable and localized. Consider the augmented๐‘‘-localized subsystem๐‘–and define

๐šฟ๐‘– =๐ป๐ฟ( [xหœ]in๐‘–(๐‘‘),[uหœ]in๐‘–(๐‘‘+1))G๐‘–.

From Corollary 3.1, we have that ๐šฟ๐‘– is an achievable impulse response on the augmented ๐‘‘-localized subsystem ๐‘–. Moreover, by construction it satisfies the sparsity condition in Lemma 15. Thus, constructing๐šฝusing๐šฟas in equation (5.7) we conclude that๐šฝis an achievable and๐‘‘-localized system response. โ–ก Corollary 4.1. Consider a function๐‘” :๐šฝโ†’Rsuch that

๐‘”(๐šฝ) =

๐‘

โˆ‘๏ธ

๐‘–=1

๐‘”๐‘–( [๐šฝ๐‘–]in๐‘–(๐‘‘+1)). Then, solving the optimization problem

min ๐‘”(๐šฝ) ๐‘ .๐‘ก . ๐‘๐ด ๐ต๐šฝ=๐ผ , ๐šฝโˆˆ L๐‘‘

is equivalent to solving min

๐‘

โˆ‘๏ธ

๐‘–=1

๐‘”๐‘–

๐ป๐ฟ [xหœ]in๐‘–(๐‘‘),[uหœ]in๐‘–(๐‘‘+1) G๐‘–

๐‘ .๐‘ก .G๐‘– satisfies(5.10)for all๐‘– =1. . . , ๐‘ ,

and then constructing the๐‘‘-localized system response๐šฝas per equation(5.9).

This result provides a data-driven approach in which locality constraints, as in equation (2.4), can be seamlessly considered and imposed by means of an affine subspace where only local information exchanges are necessary. Moreover, the

amount of data needed to parametrize the behavior of the system does not scale with the size of the network but rather with๐‘‘, the size of the localized region, which is usually much smaller than ๐‘›. To the best of our knowledge, this is the first such result. As we show next, this will prove key in extending data-driven SLS to the distributed setting.