• Tidak ada hasil yang ditemukan

Long-term behavior of public belief

Dalam dokumen Essays on social learning and social choice (Halaman 43-50)

Chapter II: The speed of sequential asymptotic learning

2.6 Long-term behavior of public belief

the distribution of𝐿𝑑is identical to that of𝑠𝑑, and so𝐺+ =𝐹+ andπΊβˆ’ =πΉβˆ’. By our definition ofπΉβˆ’, we have that forπ‘₯ >0

πΊβˆ’(βˆ’π‘₯) =πΆβˆ’1·𝑄( ⌈π‘₯βŒ‰ βˆ’1). (2.5) Now, by Lemma 8, we know that

(1βˆ’πœ–) Β·πΊβˆ’(βˆ’π‘₯) < 𝐷+(π‘₯) < (1+πœ–) Β·πΊβˆ’(βˆ’π‘₯), for anyπœ– >0 and allπ‘₯large enough. It follows that

lim inf

π‘₯β†’βˆž

𝐷+(π‘₯)

𝑄(π‘₯) =lim inf

π‘₯β†’βˆž

πΊβˆ’(βˆ’π‘₯) 𝑄(π‘₯) , which, by (2.5) equals

lim inf

π‘₯β†’βˆž

πΆβˆ’1𝑄( ⌈π‘₯βŒ‰ βˆ’1)

𝑄(π‘₯) β‰₯ πΆβˆ’1.

β–‘

Lemma 10. Assume that 𝐴: R>0 β†’ R>0 is a continuous function with a convex differentiable tail, and that 𝐴(π‘₯)goes to0asπ‘₯goes to∞. Let (π‘Žπ‘‘)be any sequence satisfying the recurrence equationπ‘Žπ‘‘+1=π‘Žπ‘‘+𝐴(π‘Žπ‘‘), and suppose there is a function

𝑓 :R>0β†’ R>0with 𝑓′(𝑑) = 𝐴(𝑓(𝑑)) for all sufficiently large𝑑. Then

π‘‘β†’βˆžlim 𝑓(𝑑)

π‘Žπ‘‘

=1.

Given these lemmas, we are ready to prove our theorem.

Proof of Theorem 6. Let (π‘Žπ‘‘) be any sequence inR>0satisfying:

π‘Žπ‘‘+1=π‘Žπ‘‘ +πΊβˆ’(βˆ’π‘Žπ‘‘).

Then by Lemma 10, the sequence(π‘Žπ‘‘)is well approximated by 𝑓(𝑑), the solution to the corresponding differential equation:

lim

π‘‘β†’βˆž

π‘Žπ‘‘ 𝑓(𝑑) =1.

Now, conditional on πœƒ = +1, all agents take action +1 from some point on with probability 1. Thus, with probability 1,

ℓ𝑑+1=ℓ𝑑+𝐷+(ℓ𝑑) for all sufficiently large𝑑. Further, by Lemma 8,

π‘₯β†’βˆžlim

𝐷+(π‘₯) πΊβˆ’(βˆ’π‘₯) =1. So by Lemma 9,

π‘‘β†’βˆžlim ℓ𝑑 π‘Žπ‘‘

=1 with probability 1. Thus, we have

π‘‘β†’βˆžlim ℓ𝑑

𝑓(𝑑) = lim

π‘‘β†’βˆž

ℓ𝑑 π‘Žπ‘‘

Β· π‘Žπ‘‘ 𝑓(𝑑) =1

with probability 1. β–‘

Proofs of Lemmas 9 and 10

Proof of Lemma 9. We prove the claim in two steps. First, we show that for every πœ€ > 0 there are infinitely many times𝑑such that

(1βˆ’πœ€)π‘Žπ‘‘ ≀ 𝑏𝑑 ≀ (1+πœ€)π‘Žπ‘‘. (2.6) Second, we show that if (2.6) holds for some 𝑑 large enough, then it holds for all 𝑑′> 𝑑, proving the claim.

We start with step 1. Assume without loss of generality thatπ‘Žπ‘‘ ≀ 𝑏𝑑 for infinitely many values of𝑑. Fix πœ€ > 0. To show that (1βˆ’πœ€)π‘Žπ‘‘ ≀ 𝑏𝑑 ≀ (1+πœ€)π‘Žπ‘‘ holds for infinitely many values of𝑑, letπ‘₯0> 1 be such that for allπ‘₯ > π‘₯0it holds that 𝐴and 𝐡are monotone decreasing,

𝐴(π‘₯), 𝐡(π‘₯) < πœ€ < 1 and

(1βˆ’πœ€/2)𝐴(π‘₯) < 𝐡(π‘₯) < (1+πœ€/2)𝐴(π‘₯). (2.7) Assume thatπ‘Žπ‘‘, 𝑏𝑑 > π‘₯0; this will indeed be the case for𝑑large enough, since 𝐴and 𝐡are positive and continuous, and so bothπ‘Žπ‘‘ and 𝑏𝑑 are monotone increasing and tend to infinity. So

𝐡(𝑏𝑑) < (1+πœ€/2)𝐴(𝑏𝑑) ≀ (1+πœ€/2)𝐴(π‘Žπ‘‘),

where the first inequality follows from (2.7), and the second follows from the fact that 𝐴 is monotone decreasing and π‘Žπ‘‘ < 𝑏𝑑. Since 𝐡(𝑏(𝑑)) = 𝑏𝑑+1 βˆ’ 𝑏(𝑑) and 𝐴(π‘Žπ‘‘) =π‘Žπ‘‘+1βˆ’π‘Ž(𝑑) we have shown that

𝑏𝑑+1βˆ’π‘π‘‘ < (1+πœ€/2) (π‘Žπ‘‘+1βˆ’π‘Žπ‘‘),

and so eventually 𝑏𝑑 ≀ (1+πœ€)π‘Žπ‘‘. Also, notice that the first time this obtains, we also have that the left inequality in (2.6) holds at the same moment:

𝑏𝑑 > π‘π‘‘βˆ’1> π‘Žπ‘‘βˆ’1=π‘Žπ‘‘ βˆ’ (π‘Žπ‘‘ βˆ’π‘Žπ‘‘βˆ’1) > π‘Žπ‘‘βˆ’πœ€ > π‘Žπ‘‘βˆ’πœ€ π‘Žπ‘‘ =(1βˆ’πœ€)π‘Žπ‘‘.

This completes the first step. Now we go to step 2. Here we show that if (2.6) holds for large enough𝑑 then it holds for all𝑑′> 𝑑.

Fixπœ€ > 0, and letπ‘₯0be defined as above. Suppose that(1βˆ’πœ€)π‘Žπ‘‘ < 𝑏𝑑 < (1+πœ€)π‘Žπ‘‘, with π‘Žπ‘‘, 𝑏𝑑 > π‘₯0. Assume without loss of generality that 𝑏𝑑 β‰₯ π‘Žπ‘‘. Then our assumptions and (2.7) imply

𝑏𝑑+1=𝑏𝑑+𝐡(𝑏𝑑)

< (1+πœ€)π‘Žπ‘‘+ (1+πœ€)𝐴(𝑏𝑑). Becauseπ‘Žπ‘‘ ≀ 𝑏𝑑and 𝐴is decreasing we have

𝑏𝑑+1< (1+πœ€)π‘Žπ‘‘+ (1+πœ€)𝐴(π‘Žπ‘‘)

= (1+πœ€)π‘Žπ‘‘+1. For the other direction, note first that

𝑏𝑑+1> 𝑏𝑑 β‰₯ π‘Žπ‘‘,

by assumption. We can write π‘Žπ‘‘ = (1 βˆ’ πœ€)π‘Žπ‘‘ + πœ€ π‘Žπ‘‘, and since π‘Žπ‘‘ > π‘₯0 > 1, πœ€ π‘Žπ‘‘ > (1βˆ’πœ€)πœ€, and so

𝑏𝑑+1 > (1βˆ’πœ€)π‘Žπ‘‘+ (1βˆ’πœ€)πœ€ . Now,πœ€ > 𝐴(π‘Žπ‘‘) sinceπ‘Žπ‘‘ > π‘₯0, and so

𝑏𝑑+1 > (1βˆ’πœ€)π‘Žπ‘‘+ (1βˆ’πœ€)𝐴(π‘Žπ‘‘)

=(1βˆ’πœ€)π‘Žπ‘‘+1. Thus

(1βˆ’πœ€)π‘Žπ‘‘+1 < 𝑏𝑑+1< (1+πœ€)π‘Žπ‘‘+1, (2.8) as required.

β–‘ Proof of Lemma 10. We restrict the domain of 𝑓 to the interval(𝑑0,∞)such that for 𝑑 > 𝑑0 it already holds that 𝑓′(𝑑) = 𝐴(𝑓(𝑑)). Since 𝐴is continuous, limπ‘‘β†’βˆž 𝑓(𝑑) =

∞, and so we can also assume that in the interval(𝑓(𝑑0),∞)it holds that𝐴is convex and differentiable.

Since 𝑓 is strictly increasing in (𝑑0,∞), it has an inverse π‘“βˆ’1. Forπ‘₯ large enough define𝐡(π‘₯) = 𝑓(π‘“βˆ’1(π‘₯) +1) βˆ’π‘₯.

Now, let(𝑏𝑑)be any sequence satisfying the recurrence relation 𝑏𝑑+1=𝑏𝑑+𝐡(𝑏𝑑).

In order to apply Lemma 9, we will first show that

π‘₯β†’βˆžlim 𝐡(π‘₯) 𝐴(π‘₯) =1.

Let𝑑 = π‘“βˆ’1(π‘₯). Such a𝑑 exists and is unique for all sufficiently largeπ‘₯, because 𝑓 is monotone. Notice that by the definitions of𝐡(π‘₯)and 𝑓′(π‘₯)

𝐡(π‘₯)= 𝑓(π‘“βˆ’1(π‘₯) +1) βˆ’π‘₯

= 𝑓(π‘“βˆ’1(π‘₯) +1) βˆ’π‘₯βˆ’ 𝑓′(π‘“βˆ’1(π‘₯)) + 𝑓′(π‘“βˆ’1(π‘₯))

= 𝑓(𝑑+1) βˆ’ 𝑓(𝑑) βˆ’ 𝑓′(𝑑) +𝐴(𝑓(𝑑)),

where in the last equality we substitute 𝑑 = π‘“βˆ’1(π‘₯). Because 𝑓′ is positive and decreasing (𝑓 is concave) then 𝑓(𝑑 +1) βˆ’ 𝑓(𝑑) β‰₯ 𝑓′(𝑑+1), and so

𝐡(π‘₯) β‰₯ 𝑓′(𝑑+1) βˆ’ 𝑓′(𝑑) +𝐴(𝑓(𝑑)). By the definition of 𝑓, 𝑓′(𝑑) = 𝐴(𝑓(𝑑)), and so

𝐡(π‘₯) β‰₯ 𝐴(𝑓(𝑑+1)) βˆ’π΄(𝑓(𝑑)) +𝐴(𝑓(𝑑))= 𝐴(𝑓(𝑑+1)).

Again, due to concavity of 𝑓 we have 𝑓(𝑑+1) ≀ 𝑓(𝑑) + 𝑓′(𝑑)and as𝐴is decreasing and convex we get

𝐡(π‘₯) β‰₯ 𝐴(𝑓(𝑑) + 𝑓′(𝑑))

β‰₯ 𝐴′(𝑓(𝑑))𝑓′(𝑑) +𝐴(𝑓(𝑑))

= 𝐴′(𝑓(𝑑))𝐴(𝑓(𝑑)) +𝐴(𝑓(𝑑)). We now substitute backπ‘₯ = 𝑓(𝑑):

𝐡(π‘₯) β‰₯ 𝐴′(π‘₯)𝐴(π‘₯) +𝐴(π‘₯)

= 𝐴(π‘₯) (𝐴′(π‘₯) +1) so in particular, since 𝐴′(π‘₯) β†’0 asπ‘₯ β†’ ∞,

lim inf

π‘₯β†’βˆž

𝐡(π‘₯) 𝐴(π‘₯) β‰₯ 1.

Now we are going to show that lim supπ‘₯β†’βˆž 𝐡(π‘₯)𝐴(π‘₯) ≀ 1 which will conclude the proof.

By the definitions of π‘“βˆ’1(π‘₯)and𝐡(π‘₯)

𝐡(π‘₯) =𝐡(𝑓(𝑑))= 𝑓(𝑑+1) βˆ’ 𝑓(𝑑) =

∫ 𝑑+1 𝑑

𝑓′(𝜁)d𝜁 . As 𝑓′is decreasing it follows that

𝐡(π‘₯) ≀

∫ 𝑑+1 𝑑

𝑓′(𝑑)d𝜁 = 𝑓′(𝑑) = 𝐴(𝑓(𝑑)) = 𝐴(π‘₯). Therefore,

lim sup

π‘₯β†’βˆž

𝐡(π‘₯) 𝐴(π‘₯) ≀ 1. Hence, from these two inequalities we get that

lim

π‘₯β†’βˆž

𝐡(π‘₯) 𝐴(π‘₯) =1.

Now notice that, by construction, 𝑓(𝑑+1) = 𝑓(𝑑) +𝐡(𝑓(𝑑)). Thus, by Lemma 9, lim

π‘›β†’βˆž

𝑓(𝑑) π‘Žπ‘‘

=1.

β–‘

Monotonicity of solutions to a differential equation

We now prove a general lemma regarding differential equations of the formπ‘Žβ€²(𝑑) = 𝐴(π‘Ž(𝑑)). It shows that the solutions to this equation are monotone in 𝐴. This is useful for calculating approximate analytic solutions whenever it is impossible to find analytic exact solutions, as is the case of Gaussian signals, in which we use this lemma.

Lemma 11. Let 𝐴, 𝐡: R>0β†’R>0be continuous, and letπ‘Ž, 𝑏: R>0β†’R>0satisfy π‘Žβ€²(𝑑) = 𝐴(π‘Ž(𝑑))and𝑏′(𝑑) =𝐡(𝑏(𝑑))for all sufficiently large𝑑.

Suppose that

lim inf

π‘₯β†’βˆž

𝐴(π‘₯) 𝐡(π‘₯) > 1. Thenπ‘Ž(𝑑) > 𝑏(𝑑) for all sufficiently large𝑑.

Proof. Notice that π‘Ž(𝑑) and 𝑏(𝑑) are eventually monotone increasing and tend to infinity as𝑑 tends to infinity. Thus for allπ‘₯ greater than someπ‘₯0 > 0 large enough, π‘Žand𝑏have inverses that satisfy the following differential equations:

d dπ‘₯

π‘Žβˆ’1(π‘₯) = 1 𝐴(π‘₯) d

dπ‘₯

π‘βˆ’1(π‘₯) = 1 𝐡(π‘₯)Β·

Since lim infπ‘₯ 𝐴(π‘₯)/𝐡(π‘₯) > 1, we can furthermore chooseπ‘₯0so that for allπ‘₯ β‰₯ π‘₯0, 𝐴(π‘₯) > (1+πœ€)𝐡(π‘₯) for someπœ€ >0. Thus, forπ‘₯ > π‘₯0

π‘Žβˆ’1(π‘₯)=π‘Žβˆ’1(π‘₯0) +

∫ π‘₯

π‘₯0

1 𝐴(π‘₯) dπ‘₯ π‘βˆ’1(π‘₯)=π‘βˆ’1(π‘₯0) +

∫ π‘₯

π‘₯0

1 𝐡(π‘₯)dπ‘₯ and so

π‘Žβˆ’1(π‘₯) < π‘Žβˆ’1(π‘₯0) + 1 1+πœ€

∫ π‘₯

π‘₯0

1 𝐡(π‘₯) dπ‘₯

=π‘Žβˆ’1(π‘₯0) + 1 1+πœ€

(π‘βˆ’1(π‘₯) βˆ’π‘βˆ’1(π‘₯0)) and thus

π‘Žβˆ’1(π‘₯) βˆ’π‘βˆ’1(π‘₯) <βˆ’ πœ€ 1+πœ€

π‘βˆ’1(π‘₯) +

π‘Žβˆ’1(π‘₯0) βˆ’ 1 1+πœ€

π‘βˆ’1(π‘₯0)

.

Sinceπ‘βˆ’1(π‘₯)tends to infinity asπ‘₯tends to infinity, it follows that for all sufficiently largeπ‘₯, π‘Žβˆ’1(π‘₯) < π‘βˆ’1(π‘₯). Thus, for all sufficiently large𝑑

𝑑 =π‘Žβˆ’1(π‘Ž(𝑑)) < π‘βˆ’1(π‘Ž(𝑑)), and so, since𝑏(𝑑) is monotone increasing,

𝑏(𝑑) < π‘Ž(𝑑).

β–‘

Eventual monotonicity of public belief update

We end this section with a lemma that shows that under some technical conditions on the left tail of πΊβˆ’, the function 𝑒+(π‘₯) = π‘₯ + 𝐷+(π‘₯) (i.e., the function that determines how the public log-likelihood ratio is updated when the action +1 is taken) is eventually monotone increasing.

Lemma 12. Suppose πΊβˆ’ has a convex and differentiable left tail. Then the map 𝑒+(π‘₯) =π‘₯+𝐷+(π‘₯)is monotone increasing for all sufficiently largeπ‘₯.

Proof. Recall that

𝐷+(π‘₯)=log1βˆ’πΊ+(βˆ’π‘₯) 1βˆ’πΊβˆ’(βˆ’π‘₯)Β·

Since πΊβˆ’ has a differentiable left tail, it has a derivative π‘”βˆ’(βˆ’π‘₯) for all π‘₯ large enough. It then follows from (2.4) that𝐺+ also has a derivative in this domain, and

𝑒′+(π‘₯) =1+ 𝑔+(βˆ’π‘₯)

1βˆ’πΊ+(βˆ’π‘₯) βˆ’ π‘”βˆ’(βˆ’π‘₯) 1βˆ’πΊβˆ’(βˆ’π‘₯)

=1+ eβˆ’π‘₯π‘”βˆ’(βˆ’π‘₯)

1βˆ’πΊ+(βˆ’π‘₯) βˆ’ π‘”βˆ’(βˆ’π‘₯) 1βˆ’πΊβˆ’(βˆ’π‘₯)Β· Since 1βˆ’πΊβˆ’(βˆ’π‘₯)and 1βˆ’πΊ+(βˆ’π‘₯)tend to 1 asπ‘₯tends to infinity,

lim

π‘₯β†’βˆž

𝑒′+(π‘₯) = lim

π‘₯β†’βˆž1+eβˆ’π‘₯π‘”βˆ’(βˆ’π‘₯) βˆ’π‘”βˆ’(βˆ’π‘₯). SinceπΊβˆ’ is eventually convex,π‘”βˆ’(βˆ’π‘₯) tends to zero, and therefore

π‘₯β†’βˆžlim

𝑒′+(π‘₯) =1.

In particular, 𝑒′+(π‘₯) is positive for π‘₯ large enough, and hence 𝑒+(π‘₯) is eventually

monotone increasing. β–‘

2.7 Gaussian private signals

Dalam dokumen Essays on social learning and social choice (Halaman 43-50)

Dokumen terkait