Chapter IV: Circumgalactic Ly 𝛼 Emission and Its Host Galaxies
4.4 Looking Forward
Using preliminary results, we have demonstrated the potential of analyzing the composite CP2D spectra in the KBSS-KCWI survey, and the connection between Ly𝛼 emission and their host galaxies. We plan to expand our analyses in the following aspects.
We demonstrated that certain Ly𝛼emission does not change proportionally to the host galaxy properties through CP2D spectra. This will be further quantified by measuring the change in Ly𝛼spatial profile as shown in §4.2, which will demonstrate how the host galaxy affects Ly𝛼emission in different parts of the CP2D spectrum.
Meanwhile, radiative transfer simulations have predicted that the spectral profile of Ly𝛼emission reflects the H i gas properties in the CGM. For example, Gronke et al.
(2016) showed that in an outflowing clumpy H i medium, 𝐹blue(Ly𝛼)/𝐹red(Ly𝛼) correlates with outflow velocity and covering factor. Since outflow velocity and covering factor can also affect other spectral properties of Ly𝛼, e.g., peak separation, Figure 4.13 provides a testing ground for similar theoretical predictions. In the future, we will compare them quantitatively.
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.050 N = 29
E(B-V)
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.090 N = 30
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 0.125 N = 29
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.6: The composite CP2D spectra for three sets of galaxies divided into bins of𝐸(𝐵−𝑉). The top left corner of each panel shows the median value of𝐸(𝐵−𝑉), and the number of galaxies that went into each bin. The colormap is in log space, while the white contours are linear. Both are shown in the colorbars on the right side. The unit of the colorbars is normalized SB units.
0 1 2 3 4 5
tran
(a rc se c)
Med = 9.0 N = 29
log(M
*/ M )
0 1 2 3 4 5
tran
(a rc se c)
Med = 9.6 N = 30
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 10.3 N = 29
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.7: Same as in Figure 4.6, for galaxies binned in log(𝑀∗/𝑀).
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.60 N = 29
log(SFR / M yr
1)
0 1 2 3 4 5
tran
(a rc se c)
Med = 1.04 N = 30
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 1.43 N = 29
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.8: Same as in Figure 4.6, for galaxies binned in log(SFR), where SFR is based on best-fit SED models.
0 1 2 3 4 5
tran
(a rc se c)
Med = -9.3 N = 29
log(sSFR / yr
1)
0 1 2 3 4 5
tran
(a rc se c)
Med = -8.6 N = 30
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = -7.9 N = 29
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.9: Same as in Figure 4.6, for galaxies binned in log(sSFR).
0 1 2 3 4 5
tran
(a rc se c)
Med = 1.58 N = 14
F
H(10
17erg s
1cm
2)
0 1 2 3 4 5
tran
(a rc se c)
Med = 5.26 N = 14
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 8.22 N = 14
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.10: Same as in Figure 4.6, for galaxies binned in observed𝐹H𝛼from 1D extracted slit-spectroscopy.
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.24 N = 17
log([OIII] / H )
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.63 N = 18
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 0.83 N = 17
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.11: Same as in Figure 4.6, for galaxies binned in log( [OIII]/H𝛽).
0 1 2 3 4 5
tran
(a rc se c)
Med = -8.75 N = 36
W (Ly ) (Å)
0 1 2 3 4 5
tran
(a rc se c)
Med = 9.00 N = 37
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 43.75 N = 36
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.12: Same as in Figure 4.6, for galaxies binned in the DTB𝑊𝜆(Ly𝛼).
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.14 N = 37
F
blue(tot) / F
red(tot)
0 1 2 3 4 5
tran
(a rc se c)
Med = 0.30 N = 36
1000 500 0 500 1000
v (km s
1) 0
1 2 3 4 5
tran
(a rc se c)
Med = 0.57 N = 37
0 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
00 10 20 30 40
D
tran(p kp c)
10
110
0Figure 4.13: Same as in Figure 4.6, for galaxies binned in𝐹blue(tot)/𝐹red(tot).
Furthermore, low-ionization metal lines in the 1D spectra of the host galaxies are indicators of the cold gas covering fraction. The rest-frame equivalent width of the combined metal absorption (𝑊LIS) was found to be correlated with the Ly𝛼emission in DTB spectra (Shapley et al., 2003; Trainor et al., 2019). We will measure𝑊LIS in our sample, and measure its effect on the composite CP2D spectra.
References
Chen, Yuguang et al. (Dec. 2020). “The Keck Baryonic Structure Survey: Using foreground/background galaxy pairs to trace the structure and kinematics of cir- cumgalactic neutral hydrogen at z ~ 2”. MNRAS 499.2, pp. 1721–1746. doi:
10.1093/mnras/staa2808. arXiv:2006.13236 [astro-ph.GA].
Chen, Yuguang et al. (Apr. 2021). “The KBSS-KCWI Survey: The connection be- tween extended Ly𝛼halos and galaxy azimuthal angle at𝑧∼ 2−3”, arXiv:2104.10173.
(in press with MNRAS), arXiv:2104.10173. arXiv:2104.10173 [astro-ph.GA].
Dijkstra, Mark (Oct. 2014). “Ly𝛼 Emitting Galaxies as a Probe of Reionisation”.
Publ. Astron. Soc. Australia 31, e040, e040. doi: 10 . 1017 / pasa . 2014 . 33.
arXiv:1406.7292 [astro-ph.CO].
Du, Xinnan et al. (Feb. 2020). “Searching for z > 6.5 Analogs Near the Peak of Cosmic Star Formation”. ApJ 890.1, 65, p. 65. doi: 10 . 3847 / 1538 - 4357 / ab67b8. arXiv:1910.11877 [astro-ph.GA].
Erb, Dawn K. et al. (Oct. 2016). “A High Fraction of Ly𝛼Emitters among Galaxies with Extreme Emission Line Ratios at z ~2”.ApJ830.1, 52, p. 52. doi:10.3847/
0004-637X/830/1/52. arXiv:1605.04919 [astro-ph.GA].
Gronke, Max, Mark Dijkstra, Michael McCourt, and S. Peng Oh (Dec. 2016).
“From Mirrors to Windows: Lyman-alpha Radiative Transfer in a Very Clumpy Medium”. ApJ 833.2, L26, p. L26. doi: 10.3847/2041- 8213/833/2/L26.
arXiv:1611.01161 [astro-ph.GA].
Mesinger, Andrei et al. (Jan. 2015). “Can the intergalactic medium cause a rapid drop in Ly𝛼 emission at z > 6?” MNRAS446.1, pp. 566–577. doi: 10.1093/
mnras/stu2089. arXiv:1406.6373 [astro-ph.CO].
Pahl, Anthony J., Alice Shapley, Charles C. Steidel, Yuguang Chen, and Naveen A.
Reddy (Aug. 2021). “An uncontaminated measurement of the escaping Lyman continuum at z 3”. MNRAS 505.2, pp. 2447–2467. doi: 10 . 1093 / mnras / stab1374. arXiv:2104.02081 [astro-ph.GA].
Pettini, Max et al. (June 2001). “The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics”.ApJ554.2, pp. 981–1000. doi:10.1086/321403. arXiv:astro-ph/0102456 [astro-ph].
Reddy, Naveen A. and Charles C. Steidel (Feb. 2009). “A Steep Faint-End Slope of the UV Luminosity Function at z ~2-3: Implications for the Global Stellar Mass Density and Star Formation in Low-Mass Halos”.ApJ 692.1, pp. 778–803. doi:
10.1088/0004-637X/692/1/778. arXiv:0810.2788 [astro-ph].
Rudie, Gwen C., Charles C. Steidel, Alice E. Shapley, and Max Pettini (June 2013).
“The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4”.ApJ769.2, 146, p. 146.
doi:10.1088/0004-637X/769/2/146. arXiv:1304.6719 [astro-ph.CO].
Shapley, Alice E., Charles C. Steidel, Max Pettini, and Kurt L. Adelberger (May 2003). “Rest-Frame Ultraviolet Spectra of z~3 Lyman Break Galaxies”. ApJ 588.1, pp. 65–89. doi:10.1086/373922. arXiv:astro-ph/0301230 [astro-ph].
Stanway, E. R. and J. J. Eldridge (Sept. 2018). “Re-evaluating old stellar popu- lations”. MNRAS 479.1, pp. 75–93. doi: 10 . 1093 / mnras / sty1353. arXiv:
1805.08784 [astro-ph.GA].
Steidel, Charles C. et al. (July 2010). “The Structure and Kinematics of the Cir- cumgalactic Medium from Far-ultraviolet Spectra of z ~= 2-3 Galaxies”. ApJ 717.1, pp. 289–322. doi:10.1088/0004-637X/717/1/289. arXiv:1003.0679 [astro-ph.CO].
Steidel, Charles C. et al. (Aug. 2011). “Diffuse Ly𝛼 Emitting Halos: A Generic Property of High-redshift Star-forming Galaxies”.ApJ 736.2, 160, p. 160. doi:
10.1088/0004-637X/736/2/160. arXiv:1101.2204 [astro-ph.CO].
Steidel, Charles C. et al. (Aug. 2016). “Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies”. ApJ 826.2, 159, p. 159. doi: 10 . 3847 / 0004 - 637X/826/2/159. arXiv:1605.07186 [astro-ph.GA].
Steidel, Charles C. et al. (Dec. 2018). “The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z ∼ 3”. ApJ 869.2, 123, p. 123. doi: 10.3847/1538- 4357/aaed28. arXiv: 1805.06071 [astro-ph.GA].
Strom, Allison L. et al. (Feb. 2017). “Nebular Emission Line Ratios in z'2-3 Star- forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio”. ApJ 836.2, 164, p. 164. doi: 10 . 3847/1538-4357/836/2/164. arXiv:1608.02587 [astro-ph.GA].
Theios, Rachel L. et al. (Jan. 2019). “Dust Attenuation, Star Formation, and Metal- licity in z∼ 2-3 Galaxies from KBSS-MOSFIRE”.ApJ871.1, 128, p. 128. doi:
10.3847/1538-4357/aaf386. arXiv:1805.00016 [astro-ph.GA].
Trainor, Ryan F. et al. (Dec. 2019). “Predicting Ly𝛼 Emission from Galaxies via Empirical Markers of Production and Escape in the KBSS”.ApJ887.1, 85, p. 85.
doi:10.3847/1538-4357/ab4993. arXiv:1908.04794 [astro-ph.GA].
Verhamme, A., D. Schaerer, and A. Maselli (Dec. 2006). “3D Ly𝛼radiation transfer.
I. Understanding Ly𝛼line profile morphologies”.A&A460.2, pp. 397–413. doi:
10.1051/0004-6361:20065554. arXiv:astro-ph/0608075 [astro-ph].
Weiss, Laurel H. et al. (May 2021). “The HETDEX Survey: The Ly𝛼Escape Fraction from 3D-HST Emission-Line Galaxies at z∼ 2”. ApJ 912.2, 100, p. 100. doi:
10.3847/1538-4357/abedb9. arXiv:2103.12126 [astro-ph.GA].
C h a p t e r 5
CONCLUSION
In this thesis, we have presented novel results from observations of the Ly𝛼line – in both absorption and emission – in the circumgalactic medium surrounding galaxies in the Keck Baryonic Structure Survey at𝑧' 2−3. Figure 5.1 provides a schematic illustration of what has been discovered in this thesis.
We first constructed the KGPS sample with > 200,000 independent sightlines that have projected distances . 3 pMpc from the foreground galaxies. The average Ly𝛼 absorption shows distinctive spatial and spectral distributions. The apparent Ly𝛼optical depth exhibits a “core” component at 𝐷tran . 50 pkpc and|Δ𝑣| < 500 km s−1. At 𝐷tran & 100 pkpc, the absorption gradually transitions to a diffuse component whose spectral profile broadens as 𝐷tran increases. By comparing the observed 𝜏ap map with the projected 𝑁HI distribution in the FIRE simulation, we found qualitative agreement. After fitting the observed absorption map to a simple analytic model consistsing of outflow, inflow, and Hubble expansion, we found that outflow dominates the H i kinematics at 𝐷tran . 50 pkpc. Accretion flows and Hubble expansion gradually takes over as we move outward, with Hubble expansion becoming dominant at𝐷tran & 150 pkpc. Between'50−150 pkpc, Ly𝛼absorption exhibits a narrow spectral profile that is consistent with the spectral resolution, where the confluence of outflow, accretion, and Hubble expansion create a caustic-like distortion in the 𝑣LOS. By comparing the characteriztic outflow velocity with the escape velocity, we also confirmed that the majority of the outflowing H i does not carry enough kinetic energy to escape from the gravitational potential of an NFW halo. Furthermore, by comparing the Ly𝛼absorption profiles as functions of𝐷LOS (assuming pure Hubble expansion) and 𝐷tran, we found that the peculiar velocity from inflow and outflow results in significant reshift-space distortion at𝐷tran . 500 pkpc.
The physical scale of outflows in the CGM is well reflected by the Ly𝛼 emission profile in the average CP2D spectrum from the KBSS-KCWI survey. The averaged CP2D spectrum shows a dominant redshifted component withΔ𝑣∼300 km s−1 and a weaker blueshifted component atΔ𝑣 ∼ −300 km s−1, matching the Ly𝛼spectral profile expected from resonant scattering through a radially outflowing medium.
Figure 5.1: A schematic diagram for H i in the CGM around a typical star-forming galaxy at 𝑧 = 2−3, as a qualitative summary of the major results of this thesis.
Outflows originating from regions of rapid star formation inside galaxies from star- forming regions inside galaxies dominates the H i kinematics in all directions at 𝐷tran . 50 pkpc. At 𝐷tran & 100 pkpc, accretion flows and/or ambient CGM that carries H i from> 1 pMpc, likely in the form of “cold accretion” streams based on recent cosmological simulations, gradually takes over.