• Tidak ada hasil yang ditemukan

DIRAC SOLITONS IN OPTICAL MICRORESONATORS

6.7 Methods

Solving the conservative coupled LLE

We copy the conservative coupled LLE here for convenience:

๐œ• ๐ธ1

๐œ• ๐‘ก

=โˆ’๐‘– ๐›ฟ๐œ” ๐ธ1+๐‘–๐‘”c๐ธ2โˆ’๐›ฟ ๐ท1

๐œ• ๐ธ1

๐œ• ๐œƒ

+๐‘–(๐‘”11|๐ธ1|2๐ธ1+๐‘”12|๐ธ2|2๐ธ1), (6.11)

๐œ• ๐ธ2

๐œ• ๐‘ก

=โˆ’๐‘– ๐›ฟ๐œ” ๐ธ2+๐‘–๐‘”c๐ธ1+๐›ฟ ๐ท1

๐œ• ๐ธ2

๐œ• ๐œƒ

+๐‘–(๐‘”22|๐ธ2|2๐ธ2+๐‘”12|๐ธ1|2๐ธ2). (6.12) We seek soliton solutions in the form of ๐ธ1,2(๐œƒ โˆ’ ๐‘ฃ๐‘ก), where ๐‘ฃ is the repetition rate shift in the symmetric co-moving frame, which reduces the partial differential

equations to ordinary differential equations:

(๐›ฟ ๐ท1โˆ’๐‘ฃ)๐œ•๐œƒ๐ธ1 =โˆ’๐‘– ๐›ฟ๐œ” ๐ธ1+๐‘–๐‘”c๐ธ2+๐‘–(๐‘”11|๐ธ1|2๐ธ1+๐‘”12|๐ธ2|2๐ธ1), (6.13)

โˆ’(๐›ฟ ๐ท1+๐‘ฃ)๐œ•๐œƒ๐ธ2 =โˆ’๐‘– ๐›ฟ๐œ” ๐ธ2+๐‘–๐‘”c๐ธ1+๐‘–(๐‘”22|๐ธ2|2๐ธ2+๐‘”12|๐ธ1|2๐ธ2). (6.14) Continuous symmetries of the system result in conservation laws [74], which can reduce the dimensions of the system. As the system is conservative, we expect the equations will have a Hamiltonian structure. Indeed, the following quantity is conserved when๐œƒ is viewed as an evolution coordinate [46]:

ยฏ

๐ป =โˆ’๐›ฟ๐œ”(|๐ธ1|2+ |๐ธ2|2) +๐‘”c(๐ธโˆ—

1๐ธ2+๐ธโˆ—

2๐ธ1) + 1

2

๐‘”11|๐ธ1|4+๐‘”22|๐ธ2|4+2๐‘”12|๐ธ1|2|๐ธ2|2

. (6.15)

The conservation of ยฏ๐ป can be verified by rewriting (๐›ฟ ๐ท1โˆ’ ๐‘ฃ)๐œ•๐œƒ๐ธ1 = ๐‘– ๐œ•๐ธโˆ— 1

ยฏ ๐ป and

โˆ’(๐›ฟ ๐ท1+๐‘ฃ)๐œ•๐œƒ๐ธ2 =๐‘– ๐œ•๐ธโˆ— 2

ยฏ ๐ป.

Another quantity that is conserved is the photon number flow along the๐œƒ-axis:

ยฏ

๐‘ =(๐›ฟ ๐ท1โˆ’๐‘ฃ) |๐ธ1|2โˆ’ (๐›ฟ ๐ท1+๐‘ฃ) |๐ธ2|2. (6.16) The conservation of ยฏ๐‘ can be verified by observing that all the nonlinear terms do not change the individual numbers of particles, while the coupling terms do not change the total number of particles.

For soliton solutions, these two conserved quantities can be determined as ยฏ๐ป =

ยฏ

๐‘ = 0 since the solution should vanish exponentially as ๐œƒ โ†’ โˆž without periodic boundary conditions. This determination leads to the following amplitude-phase parametrization of the solutions:

๐ธ1 = 1

โˆš

๐›ฟ ๐ท1โˆ’๐‘ฃ

๐œ“exp(๐‘– ๐œ’1), ๐ธ2=โˆ’ 1

โˆš

๐›ฟ ๐ท1+๐‘ฃ

๐œ“exp(๐‘– ๐œ’2), (6.17) ๐œ“ =p

๐›ฟ ๐ท1โˆ’๐‘ฃ|๐ธ1|=p

๐›ฟ ๐ท1+๐‘ฃ|๐ธ2|, ๐œ’1,2= 1

2๐‘– ln๐ธ1,2 ๐ธโˆ—

1,2

, (6.18)

which automatically satisfies the ยฏ๐‘conservation (the negative sign is added for later convenience). The ยฏ๐ป conservation reads as:

0=โˆ’ 2๐›ฟ ๐ท1๐›ฟ๐œ” ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐œ“2โˆ’ 2๐‘”c q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐œ“2cos(๐œ’2โˆ’ ๐œ’1)

+

"

๐‘”11

2(๐›ฟ ๐ท1โˆ’๐‘ฃ)2 + ๐‘”22

2(๐›ฟ ๐ท1+๐‘ฃ)2 + ๐‘”12 ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

#

๐œ“4, (6.19)

from which the cosine of the phase difference ๐œ’2โˆ’๐œ’1can be solved as:

cos(๐œ’2โˆ’ ๐œ’1)= ๐บ ๐œ“2โˆ’2๐›ฟ ๐ท1๐›ฟ๐œ” 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

, (6.20)

where for convenience, we defined a combined nonlinear coefficient:

๐บ = ๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11

2 + ๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22

2 +๐‘”12. (6.21)

Turning back to the original equations of evolution along๐œƒ, we substitute ๐ธ1,2with the parametrization and split the real and imaginary parts:

๐œ• ๐œ“2

๐œ• ๐œƒ

= 2๐‘”c q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐œ“2sin(๐œ’2โˆ’ ๐œ’1), (6.22)

๐œ• ๐œ’1

๐œ• ๐œƒ

=โˆ’ ๐›ฟ๐œ” ๐›ฟ ๐ท1โˆ’๐‘ฃ

โˆ’ ๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

cos(๐œ’2โˆ’ ๐œ’1) + ๐‘”11

(๐›ฟ ๐ท1โˆ’๐‘ฃ)2 + ๐‘”12 ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

! ๐œ“2,

(6.23)

โˆ’๐œ• ๐œ’2

๐œ• ๐œƒ

=โˆ’ ๐›ฟ๐œ” ๐›ฟ ๐ท1+๐‘ฃ

โˆ’ ๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

cos(๐œ’2โˆ’ ๐œ’1) + ๐‘”22

(๐›ฟ ๐ท1+๐‘ฃ)2 + ๐‘”12 ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

! ๐œ“2.

(6.24) For the differential equation for๐œ“2, expressing sin(๐œ’2โˆ’ ๐œ’1)in terms of๐œ“2gives:

๐œ• ๐œ“2

๐œ• ๐œƒ

=ยฑ 2๐‘”c q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ๐œ“2

vu uu uu t

1โˆ’ยฉ

ยญ

ยญ

ยซ

๐บ ๐œ“2โˆ’2๐›ฟ ๐ท1๐›ฟ๐œ” 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ยช

ยฎ

ยฎ

ยฌ

2

, (6.25)

which can be integrated (with the boundary condition๐œ“2 โ†’0 as๐œƒ โ†’ โˆž) in terms of elementary functions:

๐œ“2= ๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ๐บ

2(1โˆ’๐œ‰หœ2) cosh

2p

1โˆ’๐œ‰หœ2๐œƒหœ

โˆ’๐œ‰หœ

, (6.26)

where the pulse center is chosen as๐œƒ =0 without loss of generality and the reduced detuning and coordinate are defined as:

หœ

๐œ‰ = ๐›ฟ ๐ท1 q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ๐›ฟ๐œ”

๐‘”c

, (6.27)

หœ

๐œƒ = ๐‘”c q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐œƒ , (6.28)

As an aside, we also obtain that:

cos(๐œ’2โˆ’๐œ’1) =

1โˆ’๐œ‰หœcosh 2p

1โˆ’๐œ‰หœ2๐œƒหœ

cosh 2p

1โˆ’๐œ‰หœ2๐œƒหœ

โˆ’๐œ‰หœ

. (6.29)

The differential equation for ๐œ’1,2 can be integrated after substitution of the above solution for๐œ“2and cos(๐œ’2โˆ’๐œ’1). Because the equation has global phase symmetry (๐ธ1,2โ†’ ๐‘’๐‘– ๐œ™๐ธ1,2, where๐œ™is an arbitrary constant phase), we can fix ๐œ’1(๐œƒ =0) =0, which also forces๐œ’2=0 through cos(๐œ’1โˆ’ ๐œ’2) |๐œƒ=0=1. We obtain:

๐œ’1=โˆ’ ๐‘ฃ ๐›ฟ ๐ท1

๐œ‰หœ๐œƒหœ

+ 1

๐บ

๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11โˆ’ ๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22

+1

arctan

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ s

1+๐œ‰หœ 1โˆ’๐œ‰หœ

tanh q

1โˆ’๐œ‰หœ2๐œƒหœ ๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป , (6.30) ๐œ’2=โˆ’ ๐‘ฃ

๐›ฟ ๐ท1

หœ ๐œ‰๐œƒหœ

โˆ’ 1

๐บ

๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22โˆ’ ๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11

+1

arctan

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ s

1+๐œ‰หœ 1โˆ’๐œ‰หœ

tanh q

1โˆ’๐œ‰หœ2๐œƒหœ ๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป . (6.31) With these results, the soliton solutions can be expressed as:

๐ธ1=+ r2๐‘”c

๐บ q

1โˆ’๐œ‰หœ2(๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

)1/4

ร—

h cosh

2p

1โˆ’๐œ‰หœ2๐œƒหœ

โˆ’๐œ‰หœ i๐›พ/2

hp1โˆ’๐œ‰หœcoshp

1โˆ’๐œ‰หœ2๐œƒหœ

โˆ’๐‘–

p1+๐œ‰หœsinhp

1โˆ’๐œ‰หœ2๐œƒหœ

i1+๐›พ exp

โˆ’๐‘– ๐‘ฃ ๐›ฟ ๐ท1

หœ ๐œ‰๐œƒหœ

,

(6.32) ๐ธ2=โˆ’

r2๐‘”c ๐บ

q

1โˆ’๐œ‰หœ2(๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

)1/4

ร—

h cosh

2p

1โˆ’๐œ‰หœ2๐œƒหœ

โˆ’๐œ‰หœ iโˆ’๐›พ/2

hp1โˆ’๐œ‰หœcoshp

1โˆ’๐œ‰หœ2๐œƒหœ

+๐‘–

p1+๐œ‰หœsinhp

1โˆ’๐œ‰หœ2๐œƒหœ

i1โˆ’๐›พ exp

โˆ’๐‘– ๐‘ฃ ๐›ฟ ๐ท1

หœ ๐œ‰๐œƒหœ

,

(6.33)

where we introduce the phase exponent:

๐›พ = 1 ๐บ

๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11โˆ’ ๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22

. (6.34)

Although we have not been very rigorous for multivalued functions encountered in the calculations, direct substitution shows that the ๐ธ1,2obtained above is indeed a solution to the original conservative LLE when principal branches are used.

Resonance line and the band gap

The general bright soliton solution includes the square root of 1โˆ’๐œ‰หœ2, which requires that|๐œ‰หœ| < 1. Expanded with resonator parameters, this gives:

|๐›ฟ๐œ”| โ‰ค q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ๐›ฟ ๐ท1

๐‘”c. (6.35)

For a fixed ๐‘ฃ, the inequality gives the detuning range where the solution is well defined. A quick plot of the range (Fig. 6.2b) shows that the boundaries are tangent to the mode spectrum curves. Indeed, using coupled mode theory, the frequencies can be described as:

๐œ”ยฑ =โˆ“ q

๐›ฟ ๐ท2

1๐‘˜2+๐‘”2c, (6.36)

where๐œ”+ (๐œ”โˆ’) is the eigenfrequency for the lower symmetric branch (upper anti- symmetric branch) and๐‘˜is the wavenumber. The tangent lines for the upper branch with slope๐‘ฃsatisfy:

๐‘ฃ= ๐œ• ๐œ”โˆ’

๐œ• ๐‘˜

=

๐›ฟ ๐ท2

1๐‘˜ q

๐›ฟ ๐ท2

1๐‘˜2+๐‘”2

c

. (6.37)

Eliminating ๐‘˜ recovers the previous boundaries. Thus, the soliton resonance lines can stay only in the band gap and cannot cut through the band curves.

We note that in dissipative cases,๐‘ฃis not fixed but depends on the pumping details (as discussed in the main text), so this point should not be understood as a limitation on detuning when pumping the soliton. Instead, the detuning range should be determined from the momentum constraints imposed on the soliton at fixed ๐‘˜ (the longitudinal mode being pumped).

Reduction of a DS to a KS

Following the above discussions on resonance lines, we focus on the case in which

หœ

๐œ‰ โ†’ โˆ’1+, where the resonance line is almost tangent to the upper branch of the

mode spectrum. Taking the limits and expanding the reduced quantities results in ๐ธ1,2=ยฑ

r2๐‘”c ๐บ

q

1+๐œ‰หœ(๐›ฟ ๐ท1ยฑ๐‘ฃ ๐›ฟ ๐ท1โˆ“๐‘ฃ

)1/4sech q

2(1+๐œ‰หœ)๐œƒหœ

exp

๐‘– ๐‘ฃ ๐›ฟ ๐ท1

หœ ๐œƒ

, (6.38)

๐ธ1,2=ยฑ s

2๐›ฟ ๐ท1(๐›ฟ๐œ”โˆ’๐›ฟ๐œ”min)

๐บ(๐›ฟ ๐ท1โˆ“๐‘ฃ) sech p

2(๐›ฟ๐œ”โˆ’๐›ฟ๐œ”min) s

๐‘”c๐›ฟ ๐ท1 (๐›ฟ ๐ท2

1โˆ’๐‘ฃ2)3/2 ๐œƒ

!

ร—expยฉ

ยญ

ยญ

ยซ ๐‘–

๐‘”c๐‘ฃ ๐›ฟ ๐ท1

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2 ๐œƒยช

ยฎ

ยฎ

ยฌ

, (6.39)

where๐›ฟ๐œ”min =โˆ’๐‘”c q

๐›ฟ ๐ท2

1โˆ’๐‘ฃ2/๐›ฟ ๐ท1. The hyperbolic secant form is now apparent, and to complete the reduction, we explicitly calculate the local quantities of the mode spectrum.

When the resonance line is tangent to the mode spectrum, the wavenumber ๐‘˜ can be solved from the previous section:

๐‘˜ = ๐‘”c๐‘ฃ ๐›ฟ ๐ท1

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

, (6.40)

which matches the exponential term. The minimum detuning that can be achieved at this particular๐‘šalso matches๐›ฟ๐œ”min. The local second-order dispersion is given by:

๐œ•2๐œ”โˆ’

๐œ• ๐‘˜2

=

๐‘”2

c๐›ฟ ๐ท2

1

(๐›ฟ ๐ท2

1๐‘˜2+๐‘”c2)3/2 = (๐›ฟ ๐ท2

1โˆ’๐‘ฃ2)3/2 ๐‘”c๐›ฟ ๐ท1

, (6.41)

where we have eliminated๐‘˜ using๐‘ฃand it matches the dispersion term. The mode composition can be found using coupled mode theory and can be found as:

๐ธ1 ๐ธ2

=โˆ’๐œ”โˆ’+๐›ฟ ๐ท1๐‘˜ ๐‘”c

=

โˆš

๐›ฟ ๐ท1+๐‘ฃ

โˆš

๐›ฟ ๐ท1โˆ’๐‘ฃ

, (6.42)

which agrees with the prefactors in๐ธ1,2and is also consistent with the conservation of ยฏ๐‘. Finally, the effective nonlinear coefficient ๐บ(๐›ฟ ๐ท2

1 โˆ’ ๐‘ฃ2)/(2๐›ฟ ๐ท2

1) can be calculated as a weighted average of the nonlinear coefficients, the weight being the power proportions on each mode derived above. It matches the nonlinear coefficient except for the extra factor (๐›ฟ ๐ท1ยฑ ๐‘ฃ)/(2๐›ฟ ๐ท1), which is the power ratio of each mode component to the total power and is a result of expressing the solution using components rather than the hybridized field.

To complete the discussion of reducing a DS to a KS, we also present a perturbative approach that is explicitly based on the hybridized field. We begin by defining the following auxiliary fields:

๐œ“โˆ’ = r

๐›ฟ ๐ท1โˆ’๐‘ฃ 2๐›ฟ ๐ท1

๐ธ1โˆ’ r

๐›ฟ ๐ท1+๐‘ฃ 2๐›ฟ ๐ท1

๐ธ2

! exp

๐‘–

๐‘ฃ ๐›ฟ ๐ท1

หœ ๐œ‰๐œƒหœ

, (6.43)

๐œ“+ = r

๐›ฟ ๐ท1โˆ’๐‘ฃ 2๐›ฟ ๐ท1

๐ธ1+ r

๐›ฟ ๐ท1+๐‘ฃ 2๐›ฟ ๐ท1

๐ธ2

! exp

๐‘–

๐‘ฃ ๐›ฟ ๐ท1

หœ ๐œ‰๐œƒหœ

. (6.44)

We note that while the ๐œ“+ component is the normalized linear eigenstate of the lower branch at the wavenumber corresponding to๐‘ฃ, the๐œ“โˆ’ term defined here is, in general, not the eigenstate of the upper branch, and๐œ“โˆ’ and๐œ“+ are not orthogonal (although in the special case ๐œ“+ = 0, ๐œ“โˆ’ becomes proportional to the true field amplitude). Rewriting the conservative coupled LLE in terms of๐œ“ยฑresults in:

๐œ• ๐œ“+

๐œ•๐œƒหœ

=โˆ’๐‘–(1+๐œ‰หœ)๐œ“โˆ’+ ๐‘– ๐›ฟ ๐ท1 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11

2 |๐œ“++๐œ“โˆ’|2(๐œ“++๐œ“โˆ’)

โˆ’๐‘”12(๐œ“+2โˆ’๐œ“โˆ’2)๐œ“โˆ—โˆ’

โˆ’๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22

2 |๐œ“+โˆ’๐œ“โˆ’|2(๐œ“+โˆ’๐œ“โˆ’)

, (6.45)

๐œ• ๐œ“โˆ’

๐œ•๐œƒหœ

=๐‘–(1โˆ’๐œ‰หœ)๐œ“++ ๐‘– ๐›ฟ ๐ท1 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐›ฟ ๐ท1+๐‘ฃ ๐›ฟ ๐ท1โˆ’๐‘ฃ

๐‘”11

2 |๐œ“++๐œ“โˆ’|2(๐œ“++๐œ“โˆ’) +๐‘”12(๐œ“2+โˆ’๐œ“2โˆ’)๐œ“+โˆ—

+๐›ฟ ๐ท1โˆ’๐‘ฃ ๐›ฟ ๐ท1+๐‘ฃ

๐‘”22

2 |๐œ“+โˆ’๐œ“โˆ’|2(๐œ“+โˆ’๐œ“โˆ’)

, (6.46) where we have substituted๐›ฟ๐œ”and๐œƒwith หœ๐œ‰and หœ๐œƒ, respectively, for later convenience.

Based on the structure of the above equation, we seek the following solution near

หœ

๐œ‰ โ†’ โˆ’1+:

๐œ“โˆ’ โˆผ๐‘‚(1+๐œ‰หœ)1/2, ๐œ“+ โˆผ ๐‘‚(1+๐œ‰หœ), (6.47) Keeping the lowest-order terms gives:

๐œ• ๐œ“+

๐œ•๐œƒหœ

=โˆ’๐‘–(1+๐œ‰หœ)๐œ“โˆ’+ ๐‘– ๐›ฟ ๐ท1 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐บ|๐œ“โˆ’|2๐œ“โˆ’, (6.48)

๐œ• ๐œ“โˆ’

๐œ•๐œƒหœ

=2๐‘–๐œ“+. (6.49)

Combining gives:

1 2

๐œ•2๐œ“โˆ’

๐œ•๐œƒหœ2

โˆ’ (1+๐œ‰หœ)๐œ“โˆ’+ ๐›ฟ ๐ท1 2๐‘”c

q ๐›ฟ ๐ท2

1โˆ’๐‘ฃ2

๐บ|๐œ“โˆ’|2๐œ“โˆ’ =0, (6.50) which is the steady-state single-mode LLE and its solution is the same as the limit of๐ธ1,2as derived above.

Repetition rate shifts in the DS

We copy the dissipative coupled LLE here for convenience:

๐œ• ๐ธ1

๐œ• ๐‘ก

=โˆ’๐‘– ๐›ฟ๐œ” ๐ธ1+๐‘–๐‘”c๐ธ2โˆ’๐›ฟ ๐ท1

๐œ• ๐ธ1

๐œ• ๐œƒ

+๐‘–(๐‘”11|๐ธ1|2๐ธ1+๐‘”12|๐ธ2|2๐ธ1) โˆ’ ๐œ…1

2 ๐ธ1+ ๐‘“1, (6.51)

๐œ• ๐ธ2

๐œ• ๐‘ก

=โˆ’๐‘– ๐›ฟ๐œ” ๐ธ2+๐‘–๐‘”c๐ธ1+๐›ฟ ๐ท1

๐œ• ๐ธ2

๐œ• ๐œƒ

+๐‘–(๐‘”22|๐ธ2|2๐ธ2+๐‘”12|๐ธ1|2๐ธ2) โˆ’ ๐œ…2

2๐ธ2+ ๐‘“2. (6.52) We define the following momentum integral in the hybrid system:

๐‘ƒ =

โˆซ ๐ธโˆ—

1

โˆ’๐‘–

๐œ• ๐ธ1

๐œ• ๐œƒ

+๐ธโˆ—

2

โˆ’๐‘–

๐œ• ๐ธ2

๐œ• ๐œƒ

๐‘‘๐œƒ . (6.53)

For a steady-state solution, ๐‘ƒ should be a constant in time. We thus calculate the first derivative of๐‘ƒwith respect to๐‘ก:

0= ๐œ• ๐‘ƒ

๐œ• ๐‘ก

=

โˆซ

โˆ’๐‘–

๐œ• ๐ธโˆ—

1

๐œ• ๐‘ก

๐œ• ๐ธ1

๐œ• ๐œƒ +๐‘–

๐œ• ๐ธ1

๐œ• ๐‘ก

๐œ• ๐ธโˆ—

1

๐œ• ๐œƒ

โˆ’๐‘–

๐œ• ๐ธโˆ—

2

๐œ• ๐‘ก

๐œ• ๐ธ2

๐œ• ๐œƒ +๐‘–

๐œ• ๐ธ2

๐œ• ๐‘ก

๐œ• ๐ธโˆ—

2

๐œ• ๐œƒ

๐‘‘๐œƒ , (6.54) where we have used integration by parts to move the spatial derivatives to the conjugated field. After plugging the equations of motion into the integral, all the conservative terms cancel each other out and the pumping terms vanish by integration by parts. We are left with:

๐œ…1 2

โˆซ ๐‘– ๐ธโˆ—

1

๐œ• ๐ธ1

๐œ• ๐œƒ

โˆ’๐‘– ๐ธ1

๐œ• ๐ธโˆ—

1

๐œ• ๐œƒ

๐‘‘๐œƒ+ ๐œ…2 2

โˆซ ๐‘– ๐ธโˆ—

2

๐œ• ๐ธ2

๐œ• ๐œƒ

โˆ’๐‘– ๐ธ2

๐œ• ๐ธโˆ—

2

๐œ• ๐œƒ

๐‘‘๐œƒ=0. (6.55) Rewriting the above equation using arguments gives:

๐œ…1

โˆซ

|๐ธ1|2๐œ•arg๐ธ1

๐œ• ๐œƒ

๐‘‘๐œƒ+๐œ…2

โˆซ

|๐ธ2|2๐œ•arg๐ธ2

๐œ• ๐œƒ

๐‘‘๐œƒ =0. (6.56) To proceed further, we take the soliton ansatz as the exact solution of the DS derived earlier. In this case, the integration can be carried out analytically:

โˆซ

|๐ธ1,2|2๐œ•arg๐ธ1,2

๐œ• ๐œƒ ๐‘‘๐œƒ

=2๐‘”c ๐บ

r

๐›ฟ ๐ท1ยฑ๐‘ฃ ๐›ฟ ๐ท1โˆ“๐‘ฃ

โˆ’ ๐‘ฃ ๐›ฟ ๐ท1

+๐›พยฑ1

(๐œ‹โˆ’arccos หœ๐œ‰)๐œ‰หœ+ (๐›พยฑ1) q

1โˆ’๐œ‰หœ2

. (6.57)

All the quantities can be explicitly expressed in๐‘ฃ, and the resulting equation can be solved numerically.

In the special case of๐œ…1=๐œ…2and๐›ฟ๐œ” =0, we have หœ๐œ‰ =0 independent of๐‘ฃ, and the criterion is greatly simplified:

๐‘ฃ ๐›ฟ ๐ท1

=โˆ’๐›พ . (6.58)

Expanding๐›พ gives a cubic equation in๐‘ฃand is used in the plot of Fig. 6.3a.

First-order perturbation calculation of mode coupling in wedge resonators Here, using first-order degeneracy perturbation theory and the integral form of the propagation constant, we derive the mode coupling in wedge resonators as an overlap integral of the unperturbed modes.

For a circular waveguide, the angular momentum number (angular propagation constant) of a mode can be expressed as [61]:

๐‘š= ๐œ”0 2๐‘

โˆซ ๐‘›2(๐ธโˆ—

๐‘Ÿ๐ธ๐‘Ÿ +๐ธโˆ—

๐‘ง๐ธ๐‘งโˆ’๐ธโˆ—

๐œƒ๐ธ๐œƒ) +๐‘2(๐ตโˆ—

๐‘Ÿ๐ต๐‘Ÿ +๐ตโˆ—

๐‘ง๐ต๐‘งโˆ’๐ตโˆ—

๐œƒ๐ต๐œƒ) ๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง

โˆซ

๐‘(๐ธ๐‘Ÿ๐ตโˆ—๐‘งโˆ’๐ธ๐‘ง๐ตโˆ—๐‘Ÿ)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง

, (6.59) where ๐œ”0 is the angular frequency of the light and ๐ธ๐‘Ÿ, ๐ธ๐‘ง, ๐ธ๐œƒ (๐ต๐‘Ÿ, ๐ต๐‘ง, ๐ต๐œƒ) are the mode electric field (magnetic flux density) components (the coordinate system in use is shown in Fig. 6.6). The linear propagation of a field (with fixed ๐œ”0) is described by๐‘‘๐ธ1/๐‘‘๐œƒ =๐‘– ๐‘š ๐ธ1, where๐ธ1 is the field amplitude at different angular positions. If the mode profile in another waveguide with a slightly different shape is nearly identical to the current waveguide, which is usually true up to the first order of the geometry differences, then the same integral can be used to calculate the propagation constant using the known field profile and the perturbed refractive index profile.

For a pair of nearly degenerate modes, the propagation constant generalizes into a matrix:

๐‘‘ ๐‘‘๐œƒ

๐ธ1 ๐ธ2

!

=๐‘–

๐‘š11 ๐‘š12 ๐‘š21 ๐‘š22

! ๐ธ1 ๐ธ2

!

, (6.60)

๐‘š๐‘– ๐‘—= ๐œ”0 2๐‘

ร—

โˆซ h ๐‘›2(๐ธโˆ—

๐‘Ÿ ,๐‘–๐ธ๐‘Ÿ , ๐‘—+๐ธโˆ—

๐‘ง ,๐‘–๐ธ๐‘ง , ๐‘— โˆ’๐ธโˆ—

๐œƒ ,๐‘–๐ธ๐œƒ , ๐‘—) +๐‘2(๐ตโˆ—

๐‘Ÿ ,๐‘–๐ต๐‘Ÿ , ๐‘—+๐ตโˆ—

๐‘ง ,๐‘–๐ต๐‘ง , ๐‘— โˆ’๐ตโˆ—

๐œƒ ,๐‘–๐ต๐œƒ , ๐‘—)i ๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,๐‘–๐ตโˆ—

๐‘ง ,๐‘–โˆ’๐ธ๐‘ง ,๐‘–๐ตโˆ—

๐‘Ÿ ,๐‘–)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ , ๐‘—๐ตโˆ—

๐‘ง , ๐‘—โˆ’๐ธ๐‘ง , ๐‘—๐ตโˆ—

๐‘Ÿ , ๐‘—)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง

. (6.61)

The off-diagonal elements ๐‘š12 and๐‘š21 have an overlap integral structure and are proportional to๐‘”c. Since the modes are orthogonal in the original waveguide, only the changes in refractive index induce coupling:

๐‘š๐‘– ๐‘— = ๐œ”0 2๐‘

โˆซ ฮ”(๐‘›2) (๐ธโˆ—

๐‘Ÿ ,๐‘–๐ธ๐‘Ÿ , ๐‘—+๐ธโˆ—

๐‘ง,๐‘–๐ธ๐‘ง, ๐‘— โˆ’๐ธโˆ—

๐œƒ ,๐‘–๐ธ๐œƒ , ๐‘—)๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,๐‘–๐ตโˆ—

๐‘ง,๐‘–โˆ’๐ธ๐‘ง,๐‘–๐ตโˆ—

๐‘Ÿ ,๐‘–)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ , ๐‘—๐ตโˆ—

๐‘ง, ๐‘— โˆ’๐ธ๐‘ง, ๐‘—๐ตโˆ—

๐‘Ÿ , ๐‘—)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง

, (6.62)

whereฮ”(๐‘›2)is the change in๐‘›2of the perturbed waveguide compared to the original waveguide.

The introduction of the wedge angle adds a dielectric triangle to the lower-right part and subtracts a dielectric triangle to the upper-right part (Fig. 6.6). As these are the only areas in which the refractive index changes, the overlap integral is effectively restricted to the triangles. If ๐œ‹/2โˆ’๐›ผis small, we can further replace all the fields by their values on the vertical boundary of the wedge. This replacement results in:

๐‘š12โ‰ˆ ๐œ”0 2๐‘

(๐‘›2

Mโˆ’1)

โˆ’โˆซ๐‘ก/2

โˆ’๐‘ก/2(๐ธโˆ—

๐‘Ÿ ,1๐ธ๐‘Ÿ ,2+๐ธโˆ—

๐‘ง,1๐ธ๐‘ง,2โˆ’๐ธโˆ—

๐œƒ ,1๐ธ๐œƒ ,2) (๐ท/2) (๐œ‹/2โˆ’๐›ผ)๐‘ง ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,1๐ตโˆ—

๐‘ง,1โˆ’๐ธ๐‘ง,1๐ตโˆ—

๐‘Ÿ ,1)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,2๐ตโˆ—

๐‘ง,2โˆ’๐ธ๐‘ง,2๐ตโˆ—

๐‘Ÿ ,2)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง , (6.63) where๐‘›Mis the dielectric index. The integral can be further reduced by symmetry, using ๐ธ๐‘Ÿ ,1(๐‘ง) = ๐ธ๐‘Ÿ ,1(โˆ’๐‘ง), ๐ธ๐‘ง,1(๐‘ง) = โˆ’๐ธ๐‘ง,1(โˆ’๐‘ง) and ๐ธ๐œƒ ,1(๐‘ง) = ๐ธ๐œƒ ,1(โˆ’๐‘ง) for the TE mode and๐ธ๐‘Ÿ ,2(๐‘ง) =โˆ’๐ธ๐‘Ÿ ,2(โˆ’๐‘ง),๐ธ๐‘ง,2(๐‘ง) =๐ธ๐‘ง,2(โˆ’๐‘ง)and๐ธ๐œƒ ,2(๐‘ง)=โˆ’๐ธ๐œƒ ,2(โˆ’๐‘ง)for the TM mode. This process reduces the integration limits by half:

๐‘š12 โ‰ˆ ๐œ”0 ๐‘

๐ท 2(๐‘›2

Mโˆ’1)

ร—

โˆ’โˆซ๐‘ก/2 0 [(๐‘›2

M+1)๐ทโˆ—

๐‘Ÿ ,1๐ท๐‘Ÿ ,2/(2๐‘›2

M๐œ€2

0) +๐ธโˆ—

๐‘ง,1๐ธ๐‘ง,2โˆ’๐ธโˆ—

๐œƒ ,1๐ธ๐œƒ ,2]๐‘Ÿ=๐ท/2๐‘ง ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,1๐ตโˆ—

๐‘ง,1โˆ’๐ธ๐‘ง,1๐ตโˆ—

๐‘Ÿ ,1)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,2๐ตโˆ—

๐‘ง,2โˆ’๐ธ๐‘ง,2๐ตโˆ—

๐‘Ÿ ,2)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง (๐œ‹

2 โˆ’๐›ผ), (6.64) where the radial electric field is replaced by the electric displacement field ๐ท๐‘Ÿ to prevent ambiguities across the dielectric boundary;๐œ€0is the vacuum permittivity.

Finally, ๐‘š12 can be converted to ๐‘”c in the same way that the effective index is

z r ฮธ

r

r = 0 z = t/2

z = -t/2

r = D/2

Figure 6.6: Illustration of the perturbation induced by the wedge angle in the wedge resonator. The light grey area indicates the dielectric removed compared to a symmetric resonator, while the dark grey area indicates the dielectric added. The cylindrical coordinates used to describe the resonator are also shown.

converted to the mode spectrum:

๐‘”c = 2๐‘ ๐‘›eff๐ท

|๐‘š12|

โ‰ˆ ๐œ”0 ๐‘›eff

(๐‘›2

Mโˆ’1)

ร—

โˆซ๐‘ก/2 0 [(๐‘›2

M+1)๐ทโˆ—

๐‘Ÿ ,1๐ท๐‘Ÿ ,2/(2๐‘›2

M๐œ€2

0) +๐ธโˆ—

๐‘ง,1๐ธ๐‘ง,2โˆ’๐ธโˆ—

๐œƒ ,1๐ธ๐œƒ ,2]๐‘Ÿ=๐ท/2๐‘ง ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,1๐ตโˆ—

๐‘ง,1โˆ’๐ธ๐‘ง,1๐ตโˆ—

๐‘Ÿ ,1)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง qโˆซ

๐‘(๐ธ๐‘Ÿ ,2๐ตโˆ—

๐‘ง,2โˆ’๐ธ๐‘ง,2๐ตโˆ—

๐‘Ÿ ,2)๐‘‘๐‘Ÿ ๐‘‘ ๐‘ง (๐œ‹

2 โˆ’๐›ผ). (6.65) Given a target hybridization wavelength, modes in symmetric resonators with dif- ferent thicknesses can be simulated to find the degeneracy point, and the mode coupling in the asymmetric case can be estimated from the above overlap integral without actually simulating the asymmetric resonators. For 780-nm-wavelength silica resonators (using๐‘›M=1.454), the prefactor in๐‘”cis 15.78 GHz, or 0.275 GHz per degree angle. This estimate agrees with the full simulation results for wedge resonators for๐›ผclose to 90โ—ฆ(Fig. 6.4e).