5 Conclusions
Dexterous hand movements are important for everyday tasks (Yan et al., 2020), and restoring hand function is a top priority for people with tetraplegia (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a). In this dissertation, we demonstrate that brain-computer interfaces could help to restore fine motor function. Finger-related cortical circuits in two tetraplegic participants remained functional even years after paralysis, allowing neural decoding of finger movements in a variety of tasks. Decoding performance was strong even in the grasping areas of the posterior parietal cortex (PPC), outside of the primary sensorimotor cortex. These findings suggest that manual dexterity may be supported by a broader neuronal network than is commonly thought. By combining signals from both the motor cortex and posterior parietal cortex, we were able to achieve state-of-the-art finger classification accuracies. We further studied the temporal structure of neural activity during BCI control. External inputs, such as sensory feedback, are important for robust BCI control during everyday usage.
References
Adams, R.A., Shipp, S., Friston, K.J., 2013. Predictions not commands: active inference in the motor system.
Brain Struct. Funct. 218, 611–643. doi:10.1007/s00429-012-0475-5
Aflalo, T., Chivukula, S., Zhang, C., Rosario, E.R., Pouratian, N., Andersen, R.A., 2022. Cognition through internal models: Mirror neurons as one manifestation of a broader mechanism. BioRxiv.
doi:10.1101/2022.09.06.506071
Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C., Andersen, R.A., 2015. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348, 906–910. doi:10.1126/science.aaa5417
Aflalo, T., Zhang, C.Y., Rosario, E.R., Pouratian, N., Orban, G.A., Andersen, R.A., 2020. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Sci. Adv. 6.
doi:10.1126/sciadv.abb3984
Aflalo, T.N., Graziano, M.S.A., 2006. Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proc. Natl. Acad. Sci. USA 103, 2909–2914. doi:10.1073/pnas.0511139103
Aflalo, T.N., Graziano, M.S.A., 2007. Relationship between unconstrained arm movements and single-neuron firing in the macaque motor cortex. J. Neurosci. 27, 2760–2780. doi:10.1523/JNEUROSCI.3147- 06.2007
Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., Peckham, P.H., Simeral, J.D., Donoghue, J.P., Hochberg, L.R., Kirsch, R.F., 2017. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830.
doi:10.1016/S0140-6736(17)30601-3
Allison, J.D., Meador, K.J., Loring, D.W., Figueroa, R.E., Wright, J.C., 2000. Functional MRI cerebral activation and deactivation during finger movement. Neurology 54, 135–142.
doi:10.1212/wnl.54.1.135
Andersen, R.A., Aflalo, T., 2022. Preserved cortical somatotopic and motor representations in tetraplegic humans. Curr. Opin. Neurobiol. 74, 102547. doi:10.1016/j.conb.2022.102547
Andersen, R.A., Aflalo, T., Kellis, S., 2019. From thought to action: The brain-machine interface in posterior parietal cortex. Proc. Natl. Acad. Sci. USA. doi:10.1073/pnas.1902276116
Andersen, R.A., Andersen, K.N., Hwang, E.J., Hauschild, M., 2014. Optic ataxia: from Balint’s syndrome to the parietal reach region. Neuron 81, 967–983. doi:10.1016/j.neuron.2014.02.025
Andersen, R.A., Essick, G.K., Siegel, R.M., 1985. Encoding of spatial location by posterior parietal neurons.
Science 230, 456–458. doi:10.1126/science.4048942
Andersen, R.A., Essick, G.K., Siegel, R.M., 1987. Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp. Brain Res. 67, 316–322. doi:10.1007/bf00248552
Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J., 1997. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330.
doi:10.1146/annurev.neuro.20.1.303
Anderson, K.D., 2004. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383. doi:10.1089/neu.2004.21.1371
Anumanchipalli, G.K., Chartier, J., Chang, E.F., 2019. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498. doi:10.1038/s41586-019-1119-1
Arbuckle, S.A., Weiler, J., Kirk, E.A., Rice, C.L., Schieber, M., Pruszynski, J.A., Ejaz, N., Diedrichsen, J., 2020. Structure of population activity in primary motor cortex for single finger flexion and extension.
J. Neurosci. 40, 9210–9223. doi:10.1523/JNEUROSCI.0999-20.2020
Ariani, G., Pruszynski, J.A., Diedrichsen, J., 2022. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. Elife 11. doi:10.7554/eLife.69517
Armenta Salas, M., Bashford, L., Kellis, S., Jafari, M., Jo, H., Kramer, D., Shanfield, K., Pejsa, K., Lee, B., Liu, C.Y., Andersen, R.A., 2018. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Elife 7. doi:10.7554/eLife.32904
Armour, B.S., Courtney-Long, E.A., Fox, M.H., Fredine, H., Cahill, A., 2016. Prevalence and Causes of Paralysis-United States, 2013. Am. J. Public Health 106, 1855–1857.
doi:10.2105/AJPH.2016.303270
Baldwin, M.K.L., Cooke, D.F., Goldring, A.B., Krubitzer, L., 2018. Representations of Fine Digit Movements in Posterior and Anterior Parietal Cortex Revealed Using Long-Train Intracortical Microstimulation in Macaque Monkeys. Cereb. Cortex 28, 4244–4263. doi:10.1093/cercor/bhx279
Baseler, H.A., Gouws, A., Haak, K.V., Racey, C., Crossland, M.D., Tufail, A., Rubin, G.S., Cornelissen, F.W., Morland, A.B., 2011. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14, 649–655. doi:10.1038/nn.2793
Bernardi, S., Benna, M.K., Rigotti, M., Munuera, J., Fusi, S., Salzman, C.D., 2020. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967.e21.
doi:10.1016/j.cell.2020.09.031
Billard, A., Kragic, D., 2019. Trends and challenges in robot manipulation. Science 364.
doi:10.1126/science.aat8414
Binkofski, F., Dohle, C., Posse, S., Stephan, K.M., Hefter, H., Seitz, R.J., Freund, H.J., 1998. Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study.
Neurology 50, 1253–1259. doi:10.1212/wnl.50.5.1253
Bockbrader, M., 2019. Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis. Current Opinion in Biomedical Engineering 11, 85–101.
doi:10.1016/j.cobme.2019.09.002
Bonnasse-Gahot, L., Nadal, J.-P., 2008. Neural coding of categories: information efficiency and optimal population codes. J. Comput. Neurosci. 25, 169–187. doi:10.1007/s10827-007-0071-5
Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M., Sharma, G., Sederberg, P.B., Glenn, B.C., Mysiw, W.J., Morgan, A.G., Deogaonkar, M., Rezai, A.R., 2016.
Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–
250. doi:10.1038/nature17435
Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis. 10, 433–436. doi:10.1163/156856897X00357
Brandman, D.M., Hosman, T., Saab, J., Burkhart, M.C., Shanahan, B.E., Ciancibello, J.G., Sarma, A.A., Milstein, D.J., Vargas-Irwin, C.E., Franco, B., Kelemen, J., Blabe, C., Murphy, B.A., Young, D.R., Willett, F.R., Pandarinath, C., Stavisky, S.D., Kirsch, R.F., Walter, B.L., Bolu Ajiboye, A., Cash, S.S., Eskandar, E.N., Miller, J.P., Sweet, J.A., Shenoy, K.V., Henderson, J.M., Jarosiewicz, B., Harrison, M.T., Simeral, J.D., Hochberg, L.R., 2018. Rapid calibration of an intracortical brain- computer interface for people with tetraplegia. J. Neural Eng. 15, 026007. doi:10.1088/1741- 2552/aa9ee7
Bruurmijn, M.L.C.M., Pereboom, I.P.L., Vansteensel, M.J., Raemaekers, M.A.H., Ramsey, N.F., 2017.
Preservation of hand movement representation in the sensorimotor areas of amputees. Brain 140, 3166–3178. doi:10.1093/brain/awx274
Bundy, D.T., Szrama, N., Pahwa, M., Leuthardt, E.C., 2018. Unilateral, 3D arm movement kinematics are encoded in ipsilateral human cortex. J. Neurosci. 38, 10042–10056. doi:10.1523/JNEUROSCI.0015- 18.2018
Buneo, C.A., Andersen, R.A., 2006. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44, 2594–2606.
doi:10.1016/j.neuropsychologia.2005.10.011
Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.L., 2003. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, E42. doi:10.1371/journal.pbio.0000042
Cavina-Pratesi, C., Connolly, J.D., Monaco, S., Figley, T.D., Milner, A.D., Schenk, T., Culham, J.C., 2018.
Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex 98, 128–148. doi:10.1016/j.cortex.2017.05.018
Chestek, C.A., Gilja, V., Nuyujukian, P., Foster, J.D., Fan, J.M., Kaufman, M.T., Churchland, M.M., Rivera- Alvidrez, Z., Cunningham, J.P., Ryu, S.I., Shenoy, K.V., 2011. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng.
8, 045005. doi:10.1088/1741-2560/8/4/045005
Chivukula, S., Zhang, C.Y., Aflalo, T., Jafari, M., Pejsa, K., Pouratian, N., Andersen, R.A., 2021. Neural encoding of actual and imagined touch within human posterior parietal cortex. Elife 10.
doi:10.7554/eLife.61646
Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V., 2012. Neural population dynamics during reaching. Nature 487, 51–56. doi:10.1038/nature11129 Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.I., Shenoy, K.V., 2010. Cortical preparatory
activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400.
doi:10.1016/j.neuron.2010.09.015
Churchland, M.M., Shenoy, K.V., 2007. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 4235–4257. doi:10.1152/jn.00095.2007
Clancy, K.B., Koralek, A.C., Costa, R.M., Feldman, D.E., Carmena, J.M., 2014. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17, 807–809.
doi:10.1038/nn.3712
Cluff, T., Scott, S.H., 2015. Apparent and actual trajectory control depend on the behavioral context in upper limb motor tasks. J. Neurosci. 35, 12465–12476. doi:10.1523/JNEUROSCI.0902-15.2015
Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates, New Jersey, NJ. doi:10.4324/9780203771587
Collinger, J.L., Boninger, M.L., Bruns, T.M., Curley, K., Wang, W., Weber, D.J., 2013a. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J Rehabil Res Dev 50, 145–160. doi:10.1682/jrrd.2011.11.0213
Collinger, J.L., Foldes, S., Bruns, T.M., Wodlinger, B., Gaunt, R., Weber, D.J., 2013b. Neuroprosthetic technology for individuals with spinal cord injury. J Spinal Cord Med 36, 258–272.
doi:10.1179/2045772313Y.0000000128
Collinger, J.L., Gaunt, R.A., Schwartz, A.B., 2018. Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Current Opinion in Biomedical Engineering 8, 84–92. doi:10.1016/j.cobme.2018.11.005
Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B., 2013c. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564. doi:10.1016/S0140-6736(12)61816- 9
Cooke, D.F., Taylor, C.S.R., Moore, T., Graziano, M.S.A., 2003. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl. Acad. Sci. USA 100, 6163–6168.
doi:10.1073/pnas.1031751100
Dabagia, M., Kording, K.P., Dyer, E.L., 2022. Aligning latent representations of neural activity. Nat. Biomed.
Eng. doi:10.1038/s41551-022-00962-7
Degenhart, A.D., Bishop, W.E., Oby, E.R., Tyler-Kabara, E.C., Chase, S.M., Batista, A.P., Yu, B.M., 2020.
Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. 4, 672–685. doi:10.1038/s41551-020-0542-9
Dekleva, B.M., Weiss, J.M., Boninger, M.L., Collinger, J.L., 2021. Generalizable cursor click decoding using grasp-related neural transients. J. Neural Eng. 18. doi:10.1088/1741-2552/ac16b2
Desmurget, M., Grafton, S., 2000. Forward modeling allows feedback control for fast reaching movements.
Trends Cogn. Sci. (Regul. Ed.) 4, 423–431. doi:10.1016/s1364-6613(00)01537-0
Diedrichsen, J., Berlot, E., Mur, M., Schütt, H.H., Shahbazi, M., Kriegeskorte, N., 2021. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Neurons, Behavior, Data analysis, and Theory. doi:10.51628/001c.27664
Diedrichsen, J., Kriegeskorte, N., 2017. Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508. doi:10.1371/journal.pcbi.1005508
Diedrichsen, J., Shadmehr, R., Ivry, R.B., 2010. The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. (Regul. Ed.) 14, 31–39. doi:10.1016/j.tics.2009.11.004
Diedrichsen, J., Wiestler, T., Krakauer, J.W., 2013. Two distinct ipsilateral cortical representations for individuated finger movements. Cereb. Cortex 23, 1362–1377. doi:10.1093/cercor/bhs120
Dienes, Z., 2014. Using Bayes to get the most out of non-significant results. Front. Psychol. 5, 781.
doi:10.3389/fpsyg.2014.00781
Dimitriou, M., Wolpert, D.M., Franklin, D.W., 2013. The temporal evolution of feedback gains rapidly update to task demands. J. Neurosci. 33, 10898–10909. doi:10.1523/JNEUROSCI.5669-12.2013
Downey, J.E., Brane, L., Gaunt, R.A., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., 2017. Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci. Rep. 7, 16947.
doi:10.1038/s41598-017-17222-3
Downey, J.E., Quick, K.M., Schwed, N., Weiss, J.M., Wittenberg, G.F., Boninger, M.L., Collinger, J.L., 2020.
The motor cortex has independent representations for ipsilateral and contralateral arm movements but correlated representations for grasping. Cereb. Cortex 30, 5400–5409. doi:10.1093/cercor/bhaa120 Downey, J.E., Weiss, J.M., Muelling, K., Venkatraman, A., Valois, J.-S., Hebert, M., Bagnell, J.A., Schwartz,
A.B., Collinger, J.L., 2016. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J Neuroeng Rehabil 13, 28.
doi:10.1186/s12984-016-0134-9
Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. J. Am. Stat. Assoc. 97, 77–87.
doi:10.1198/016214502753479248
Dunnett, C.W., 1964. New Tables for Multiple Comparisons with a Control. Biometrics 20, 482.
doi:10.2307/2528490
Eickhoff, S.B., Constable, R.T., Yeo, B.T.T., 2018. Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170, 332–347. doi:10.1016/j.neuroimage.2017.02.018
Eisenberg, M., Shmuelof, L., Vaadia, E., Zohary, E., 2011. The representation of visual and motor aspects of reaching movements in the human motor cortex. J. Neurosci. 31, 12377–12384.
doi:10.1523/JNEUROSCI.0824-11.2011
Ejaz, N., Hamada, M., Diedrichsen, J., 2015. Hand use predicts the structure of representations in sensorimotor cortex. Nat. Neurosci. 18, 1034–1040. doi:10.1038/nn.4038
Elsayed, G.F., Cunningham, J.P., 2017. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318. doi:10.1038/nn.4617
Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., Cunningham, J.P., 2016. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239.
doi:10.1038/ncomms13239
Ethier, C., Oby, E.R., Bauman, M.J., Miller, L.E., 2012. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371. doi:10.1038/nature10987
Evarts, E.V., 1968. Relation of pyramidal tract activity to force exerted during voluntary movement. J.
Neurophysiol. 31, 14–27. doi:10.1152/jn.1968.31.1.14
Even-Chen, N., Stavisky, S.D., Kao, J.C., Ryu, S.I., Shenoy, K.V., 2017. Augmenting intracortical brain- machine interface with neurally driven error detectors. J. Neural Eng. 14, 066007. doi:10.1088/1741- 2552/aa8dc1
Fetz, E.E., 1969. Operant conditioning of cortical unit activity. Science 163, 955–958.
doi:10.1126/science.163.3870.955
Fetz, E.E., 1992. Are movement parameters recognizably coded in the activity of single neurons? Behav.
Brain Sci. 15, 679–690.
Fifer, M.S., McMullen, D.P., Osborn, L.E., Thomas, T.M., Christie, B.P., Nickl, R.W., Candrea, D.N., Pohlmeyer, E.A., Thompson, M.C., Anaya, M.A., Schellekens, W., Ramsey, N.F., Bensmaia, S.J., Anderson, W.S., Wester, B.A., Crone, N.E., Celnik, P.A., Cantarero, G.L., Tenore, F.V., 2021.
Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal cord injury. Neurology. doi:10.1212/WNL.0000000000013173
Flesher, S.N., Collinger, J.L., Foldes, S.T., Weiss, J.M., Downey, J.E., Tyler-Kabara, E.C., Bensmaia, S.J., Schwartz, A.B., Boninger, M.L., Gaunt, R.A., 2016. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141. doi:10.1126/scitranslmed.aaf8083
Flesher, S.N., Downey, J.E., Weiss, J.M., Hughes, C.L., Herrera, A.J., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., Gaunt, R.A., 2021. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836. doi:10.1126/science.abd0380
Flint, R.D., Wright, Z.A., Scheid, M.R., Slutzky, M.W., 2013. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng. 10, 056005.
doi:10.1088/1741-2560/10/5/056005
Fougner, A., Stavdahl, O., Kyberd, P.J., Losier, Y.G., Parker, P.A., 2012. Control of upper limb prostheses:
terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng 20, 663–677. doi:10.1109/TNSRE.2012.2196711
Frankland, S.M., Greene, J.D., 2020. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303. doi:10.1146/annurev-psych-122216-011829
Franklin, D.W., Wolpert, D.M., 2011. Computational mechanisms of sensorimotor control. Neuron 72, 425–
442. doi:10.1016/j.neuron.2011.10.006
Friel, K.M., Barbay, S., Frost, S.B., Plautz, E.J., Hutchinson, D.M., Stowe, A.M., Dancause, N., Zoubina, E.V., Quaney, B.M., Nudo, R.J., 2005. Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation. J. Neurophysiol. 94, 1312–1324.
doi:10.1152/jn.01251.2004
Fu, Z., Beam, D., Chung, J.M., Reed, C.M., Mamelak, A.N., Adolphs, R., Rutishauser, U., 2022. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922. doi:10.1126/science.abm9922
Gail, A., Klaes, C., Westendorff, S., 2009. Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex. J. Neurosci. 29, 9490–9499.
doi:10.1523/JNEUROSCI.1095-09.2009
Gallego, J.A., Perich, M.G., Chowdhury, R.H., Solla, S.A., Miller, L.E., 2020. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270.
doi:10.1038/s41593-019-0555-4
Gallese, V., Murata, A., Kaseda, M., Niki, N., Sakata, H., 1994. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529. doi:10.1097/00001756-199407000- 00029
Gallivan, J.P., Culham, J.C., 2015. Neural coding within human brain areas involved in actions. Curr. Opin.
Neurobiol. 33, 141–149. doi:10.1016/j.conb.2015.03.012
Gallivan, J.P., McLean, D.A., Valyear, K.F., Culham, J.C., 2013. Decoding the neural mechanisms of human tool use. Elife 2, e00425. doi:10.7554/eLife.00425
Gámez, J., Mendoza, G., Prado, L., Betancourt, A., Merchant, H., 2019. The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol. 17, e3000054.
doi:10.1371/journal.pbio.3000054
Ganguly, K., Carmena, J.M., 2009. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153. doi:10.1371/journal.pbio.1000153
Gao, P., Trautmann, E., Yu, B.M., Santhanam, G., Ryu, S., Shenoy, K., Ganguli, S., 2017. A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv. doi:10.1101/214262
Georgopoulos, A.P., Ashe, J., Smyrnis, N., Taira, M., 1992. The motor cortex and the coding of force. Science 256, 1692–1695. doi:10.1126/science.256.5064.1692
Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T., 1982. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–
1537. doi:10.1523/JNEUROSCI.02-11-01527.1982
Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E., 1986. Neuronal population coding of movement direction.
Science 233, 1416–1419. doi:10.1126/science.3749885
Ghez, C., Gordon, J., Ghilardi, M.F., 1995. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J. Neurophysiol. 73, 361–372.
doi:10.1152/jn.1995.73.1.361
Gilbert, C.D., Wiesel, T.N., 1992. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–
152. doi:10.1038/356150a0
Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I., Shenoy, K.V., 2012. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757. doi:10.1038/nn.3265
Gilja, V., Pandarinath, C., Blabe, C.H., Nuyujukian, P., Simeral, J.D., Sarma, A.A., Sorice, B.L., Perge, J.A., Jarosiewicz, B., Hochberg, L.R., Shenoy, K.V., Henderson, J.M., 2015. Clinical translation of a high- performance neural prosthesis. Nat. Med. 21, 1142–1145. doi:10.1038/nm.3953
Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178. doi:10.1038/nature18933
Golub, M.D., Chase, S.M., Batista, A.P., Yu, B.M., 2016. Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 37, 53–58.
doi:10.1016/j.conb.2015.12.005
Golub, M.D., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Chase, S.M., Yu, B.M., 2018. Learning by neural reassociation. Nat. Neurosci. 21, 607–616. doi:10.1038/s41593- 018-0095-3
Golub, M.D., Yu, B.M., Chase, S.M., 2015. Internal models for interpreting neural population activity during sensorimotor control. Elife 4. doi:10.7554/eLife.10015
Goodman, J.M., Tabot, G.A., Lee, A.S., Suresh, A.K., Rajan, A.T., Hatsopoulos, N.G., Bensmaia, S., 2019.
Postural representations of the hand in the primate sensorimotor cortex. Neuron 104, 1000–1009.e7.
doi:10.1016/j.neuron.2019.09.004
Gruenwald, J., Znobishchev, A., Kapeller, C., Kamada, K., Scharinger, J., Guger, C., 2019. Time-Variant Linear Discriminant Analysis Improves Hand Gesture and Finger Movement Decoding for Invasive Brain-Computer Interfaces. Front. Neurosci. 13, 901. doi:10.3389/fnins.2019.00901
Guan, C., Aflalo, T., Kadlec, K., Gámez de Leon, J., Rosario, E.R., Bari, A., Pouratian, N., Andersen, R.A., 2022a. Compositional coding of individual finger movements in human posterior parietal cortex and motor cortex enables ten-finger decoding. medRxiv. doi:10.1101/2022.12.07.22283227
Guan, C., Aflalo, T., Zhang, C.Y., Amoruso, E., Rosario, E.R., Pouratian, N., Andersen, R.A., 2022b. Stability of motor representations after paralysis. Elife 11. doi:10.7554/eLife.74478
Guest, O., Love, B.C., 2017. What the success of brain imaging implies about the neural code. Elife 6.
doi:10.7554/eLife.21397
Häger-Ross, C., Schieber, M.H., 2000. Quantifying the independence of human finger movements:
comparisons of digits, hands, and movement frequencies. J. Neurosci. 20, 8542–8550.
Haghi, B., Aflalo, T., Kellis, S., Kadlec, K., Pouratian, N., Andersen, R.A., Emami, A., 2021. FENet: Feature Extraction Neural Network for Brain Machine Interfaces. Presented at the Society for Neuroscience Annual Meeting, Society for Neuroscience.
Hall, T.M., de Carvalho, F., Jackson, A., 2014. A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation. Neuron 83, 1185–1199.
doi:10.1016/j.neuron.2014.07.022
Ho, E., Hettick, M., Papageorgiou, D., Poole, A.J., Monge, M., Vomero, M., Gelman, K.R., Hanson, T., Tolosa, V., Mager, M., Rapoport, B.I., 2022. The layer 7 cortical interface: A scalable and minimally invasive brain–computer interface platform. BioRxiv. doi:10.1101/2022.01.02.474656
Ho, J., Tumkaya, T., Aryal, S., Choi, H., Claridge-Chang, A., 2019. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566. doi:10.1038/s41592-019-0470-3
Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., van der Smagt, P., Donoghue, J.P., 2012. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375. doi:10.1038/nature11076
Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171. doi:10.1038/nature04970
Hotson, G., McMullen, D.P., Fifer, M.S., Johannes, M.S., Katyal, K.D., Para, M.P., Armiger, R., Anderson, W.S., Thakor, N.V., Wester, B.A., Crone, N.E., 2016. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017–026017. doi:10.1088/1741-2560/13/2/026017
Hubel, D.H., Wiesel, T.N., 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436. doi:10.1113/jphysiol.1970.sp009022
Huggins, J.E., Moinuddin, A.A., Chiodo, A.E., Wren, P.A., 2015. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch. Phys. Med. Rehabil. 96, S38–45.e1. doi:10.1016/j.apmr.2014.05.028
Hwang, E.J., Bailey, P.M., Andersen, R.A., 2013. Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23, 353–361. doi:10.1016/j.cub.2013.01.027
Ingram, J.N., Körding, K.P., Howard, I.S., Wolpert, D.M., 2008. The statistics of natural hand movements.
Exp. Brain Res. 188, 223–236. doi:10.1007/s00221-008-1355-3
Inoue, Y., Mao, H., Suway, S.B., Orellana, J., Schwartz, A.B., 2018. Decoding arm speed during reaching.
Nat. Commun. 9, 5243. doi:10.1038/s41467-018-07647-3
Irwin, Z.T., Schroeder, K.E., Vu, P.P., Bullard, A.J., Tat, D.M., Nu, C.S., Vaskov, A., Nason, S.R., Thompson, D.E., Bentley, J.N., Patil, P.G., Chestek, C.A., 2017. Neural control of finger movement via intracortical brain-machine interface. J. Neural Eng. 14, 066004. doi:10.1088/1741-2552/aa80bd Jain, N., Qi, H.-X., Collins, C.E., Kaas, J.H., 2008. Large-scale reorganization in the somatosensory cortex
and thalamus after sensory loss in macaque monkeys. J. Neurosci. 28, 11042–11060.
doi:10.1523/JNEUROSCI.2334-08.2008
James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning, Springer Texts in Statistics. Springer New York, New York, NY. doi:10.1007/978-1-4614-7138-7
Jarosiewicz, B., Masse, N.Y., Bacher, D., Cash, S.S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, L.R., 2013. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia. J. Neural Eng. 10, 046012. doi:10.1088/1741-2560/10/4/046012
Jarosiewicz, B., Sarma, A.A., Bacher, D., Masse, N.Y., Simeral, J.D., Sorice, B., Oakley, E.M., Blabe, C., Pandarinath, C., Gilja, V., Cash, S.S., Eskandar, E.N., Friehs, G., Henderson, J.M., Shenoy, K.V., Donoghue, J.P., Hochberg, L.R., 2015. Virtual typing by people with tetraplegia using a self- calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179.
doi:10.1126/scitranslmed.aac7328
Johansson, R.S., Flanagan, J.R., 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359. doi:10.1038/nrn2621
Jorge, A., Royston, D.A., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., 2020. Classification of individual finger movements using intracortical recordings in human motor cortex. Neurosurgery 87, 630–638. doi:10.1093/neuros/nyaa026
Jozwik, K.M., Kriegeskorte, N., Mur, M., 2016. Visual features as stepping stones toward semantics:
Explaining object similarity in IT and perception with non-negative least squares. Neuropsychologia 83, 201–226. doi:10.1016/j.neuropsychologia.2015.10.023
Kakei, S., Hoffman, D.S., Strick, P.L., 1999. Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139. doi:10.1126/science.285.5436.2136
Kalidindi, H.T., Cross, K.P., Lillicrap, T.P., Omrani, M., Falotico, E., Sabes, P.N., Scott, S.H., 2021.
Rotational dynamics in motor cortex are consistent with a feedback controller. Elife 10.
doi:10.7554/eLife.67256
Kambi, N., Halder, P., Rajan, R., Arora, V., Chand, P., Arora, M., Jain, N., 2014. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity. Nat.
Commun. 5, 3602. doi:10.1038/ncomms4602
Kao, J.C., Nuyujukian, P., Ryu, S.I., Churchland, M.M., Cunningham, J.P., Shenoy, K.V., 2015. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759.
doi:10.1038/ncomms8759
Karpowicz, B.M., Ali, Y.H., Wimalasena, L.N., Sedler, A.R., Keshtkaran, M.R., Bodkin, K., Ma, X., Miller, L.E., Pandarinath, C., 2022. Stabilizing brain-computer interfaces through alignment of latent dynamics. BioRxiv. doi:10.1101/2022.04.06.487388
Katyal, K.D., Johannes, M.S., Kellis, S., Aflalo, T., Klaes, C., McGee, T.G., Para, M.P., Shi, Y., Lee, B., Pejsa, K., Liu, C., Wester, B.A., Tenore, F., Beaty, J.D., Ravitz, A.D., Andersen, R.A., McLoughlin, M.P., 2014. A collaborative BCI approach to autonomous control of a prosthetic limb system, in:
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Presented at the 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC, IEEE, pp. 1479–1482.
doi:10.1109/SMC.2014.6974124
Kaufman, M.T., Churchland, M.M., Ryu, S.I., Shenoy, K.V., 2014. Cortical activity in the null space:
permitting preparation without movement. Nat. Neurosci. 17, 440–448. doi:10.1038/nn.3643 Kaufman, M.T., Seely, J.S., Sussillo, D., Ryu, S.I., Shenoy, K.V., Churchland, M.M., 2016. The largest
response component in the motor cortex reflects movement timing but not movement type. eNeuro 3. doi:10.1523/ENEURO.0085-16.2016
Keck, T., Mrsic-Flogel, T.D., Vaz Afonso, M., Eysel, U.T., Bonhoeffer, T., Hübener, M., 2008. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat.
Neurosci. 11, 1162–1167. doi:10.1038/nn.2181
Kieliba, P., Clode, D., Maimon-Mor, R.O., Makin, T.R., 2021. Robotic hand augmentation drives changes in neural body representation. Sci. Robot. 6. doi:10.1126/scirobotics.abd7935
Kietzmann, T.C., Spoerer, C.J., Sörensen, L.K.A., Cichy, R.M., Hauk, O., Kriegeskorte, N., 2019. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl. Acad.
Sci. USA 116, 21854–21863. doi:10.1073/pnas.1905544116