• Tidak ada hasil yang ditemukan

Next steps: a neuroprosthetic assistant through hybrid control

5 Conclusions

Dexterous hand movements are important for everyday tasks (Yan et al., 2020), and restoring hand function is a top priority for people with tetraplegia (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a). In this dissertation, we demonstrate that brain-computer interfaces could help to restore fine motor function. Finger-related cortical circuits in two tetraplegic participants remained functional even years after paralysis, allowing neural decoding of finger movements in a variety of tasks. Decoding performance was strong even in the grasping areas of the posterior parietal cortex (PPC), outside of the primary sensorimotor cortex. These findings suggest that manual dexterity may be supported by a broader neuronal network than is commonly thought. By combining signals from both the motor cortex and posterior parietal cortex, we were able to achieve state-of-the-art finger classification accuracies. We further studied the temporal structure of neural activity during BCI control. External inputs, such as sensory feedback, are important for robust BCI control during everyday usage.

References

Adams, R.A., Shipp, S., Friston, K.J., 2013. Predictions not commands: active inference in the motor system.

Brain Struct. Funct. 218, 611–643. doi:10.1007/s00429-012-0475-5

Aflalo, T., Chivukula, S., Zhang, C., Rosario, E.R., Pouratian, N., Andersen, R.A., 2022. Cognition through internal models: Mirror neurons as one manifestation of a broader mechanism. BioRxiv.

doi:10.1101/2022.09.06.506071

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C., Andersen, R.A., 2015. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348, 906–910. doi:10.1126/science.aaa5417

Aflalo, T., Zhang, C.Y., Rosario, E.R., Pouratian, N., Orban, G.A., Andersen, R.A., 2020. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Sci. Adv. 6.

doi:10.1126/sciadv.abb3984

Aflalo, T.N., Graziano, M.S.A., 2006. Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proc. Natl. Acad. Sci. USA 103, 2909–2914. doi:10.1073/pnas.0511139103

Aflalo, T.N., Graziano, M.S.A., 2007. Relationship between unconstrained arm movements and single-neuron firing in the macaque motor cortex. J. Neurosci. 27, 2760–2780. doi:10.1523/JNEUROSCI.3147- 06.2007

Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., Peckham, P.H., Simeral, J.D., Donoghue, J.P., Hochberg, L.R., Kirsch, R.F., 2017. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830.

doi:10.1016/S0140-6736(17)30601-3

Allison, J.D., Meador, K.J., Loring, D.W., Figueroa, R.E., Wright, J.C., 2000. Functional MRI cerebral activation and deactivation during finger movement. Neurology 54, 135–142.

doi:10.1212/wnl.54.1.135

Andersen, R.A., Aflalo, T., 2022. Preserved cortical somatotopic and motor representations in tetraplegic humans. Curr. Opin. Neurobiol. 74, 102547. doi:10.1016/j.conb.2022.102547

Andersen, R.A., Aflalo, T., Kellis, S., 2019. From thought to action: The brain-machine interface in posterior parietal cortex. Proc. Natl. Acad. Sci. USA. doi:10.1073/pnas.1902276116

Andersen, R.A., Andersen, K.N., Hwang, E.J., Hauschild, M., 2014. Optic ataxia: from Balint’s syndrome to the parietal reach region. Neuron 81, 967–983. doi:10.1016/j.neuron.2014.02.025

Andersen, R.A., Essick, G.K., Siegel, R.M., 1985. Encoding of spatial location by posterior parietal neurons.

Science 230, 456–458. doi:10.1126/science.4048942

Andersen, R.A., Essick, G.K., Siegel, R.M., 1987. Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp. Brain Res. 67, 316–322. doi:10.1007/bf00248552

Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J., 1997. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330.

doi:10.1146/annurev.neuro.20.1.303

Anderson, K.D., 2004. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383. doi:10.1089/neu.2004.21.1371

Anumanchipalli, G.K., Chartier, J., Chang, E.F., 2019. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498. doi:10.1038/s41586-019-1119-1

Arbuckle, S.A., Weiler, J., Kirk, E.A., Rice, C.L., Schieber, M., Pruszynski, J.A., Ejaz, N., Diedrichsen, J., 2020. Structure of population activity in primary motor cortex for single finger flexion and extension.

J. Neurosci. 40, 9210–9223. doi:10.1523/JNEUROSCI.0999-20.2020

Ariani, G., Pruszynski, J.A., Diedrichsen, J., 2022. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. Elife 11. doi:10.7554/eLife.69517

Armenta Salas, M., Bashford, L., Kellis, S., Jafari, M., Jo, H., Kramer, D., Shanfield, K., Pejsa, K., Lee, B., Liu, C.Y., Andersen, R.A., 2018. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Elife 7. doi:10.7554/eLife.32904

Armour, B.S., Courtney-Long, E.A., Fox, M.H., Fredine, H., Cahill, A., 2016. Prevalence and Causes of Paralysis-United States, 2013. Am. J. Public Health 106, 1855–1857.

doi:10.2105/AJPH.2016.303270

Baldwin, M.K.L., Cooke, D.F., Goldring, A.B., Krubitzer, L., 2018. Representations of Fine Digit Movements in Posterior and Anterior Parietal Cortex Revealed Using Long-Train Intracortical Microstimulation in Macaque Monkeys. Cereb. Cortex 28, 4244–4263. doi:10.1093/cercor/bhx279

Baseler, H.A., Gouws, A., Haak, K.V., Racey, C., Crossland, M.D., Tufail, A., Rubin, G.S., Cornelissen, F.W., Morland, A.B., 2011. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14, 649–655. doi:10.1038/nn.2793

Bernardi, S., Benna, M.K., Rigotti, M., Munuera, J., Fusi, S., Salzman, C.D., 2020. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967.e21.

doi:10.1016/j.cell.2020.09.031

Billard, A., Kragic, D., 2019. Trends and challenges in robot manipulation. Science 364.

doi:10.1126/science.aat8414

Binkofski, F., Dohle, C., Posse, S., Stephan, K.M., Hefter, H., Seitz, R.J., Freund, H.J., 1998. Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study.

Neurology 50, 1253–1259. doi:10.1212/wnl.50.5.1253

Bockbrader, M., 2019. Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis. Current Opinion in Biomedical Engineering 11, 85–101.

doi:10.1016/j.cobme.2019.09.002

Bonnasse-Gahot, L., Nadal, J.-P., 2008. Neural coding of categories: information efficiency and optimal population codes. J. Comput. Neurosci. 25, 169–187. doi:10.1007/s10827-007-0071-5

Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M., Sharma, G., Sederberg, P.B., Glenn, B.C., Mysiw, W.J., Morgan, A.G., Deogaonkar, M., Rezai, A.R., 2016.

Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–

250. doi:10.1038/nature17435

Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis. 10, 433–436. doi:10.1163/156856897X00357

Brandman, D.M., Hosman, T., Saab, J., Burkhart, M.C., Shanahan, B.E., Ciancibello, J.G., Sarma, A.A., Milstein, D.J., Vargas-Irwin, C.E., Franco, B., Kelemen, J., Blabe, C., Murphy, B.A., Young, D.R., Willett, F.R., Pandarinath, C., Stavisky, S.D., Kirsch, R.F., Walter, B.L., Bolu Ajiboye, A., Cash, S.S., Eskandar, E.N., Miller, J.P., Sweet, J.A., Shenoy, K.V., Henderson, J.M., Jarosiewicz, B., Harrison, M.T., Simeral, J.D., Hochberg, L.R., 2018. Rapid calibration of an intracortical brain- computer interface for people with tetraplegia. J. Neural Eng. 15, 026007. doi:10.1088/1741- 2552/aa9ee7

Bruurmijn, M.L.C.M., Pereboom, I.P.L., Vansteensel, M.J., Raemaekers, M.A.H., Ramsey, N.F., 2017.

Preservation of hand movement representation in the sensorimotor areas of amputees. Brain 140, 3166–3178. doi:10.1093/brain/awx274

Bundy, D.T., Szrama, N., Pahwa, M., Leuthardt, E.C., 2018. Unilateral, 3D arm movement kinematics are encoded in ipsilateral human cortex. J. Neurosci. 38, 10042–10056. doi:10.1523/JNEUROSCI.0015- 18.2018

Buneo, C.A., Andersen, R.A., 2006. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44, 2594–2606.

doi:10.1016/j.neuropsychologia.2005.10.011

Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.L., 2003. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, E42. doi:10.1371/journal.pbio.0000042

Cavina-Pratesi, C., Connolly, J.D., Monaco, S., Figley, T.D., Milner, A.D., Schenk, T., Culham, J.C., 2018.

Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex 98, 128–148. doi:10.1016/j.cortex.2017.05.018

Chestek, C.A., Gilja, V., Nuyujukian, P., Foster, J.D., Fan, J.M., Kaufman, M.T., Churchland, M.M., Rivera- Alvidrez, Z., Cunningham, J.P., Ryu, S.I., Shenoy, K.V., 2011. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng.

8, 045005. doi:10.1088/1741-2560/8/4/045005

Chivukula, S., Zhang, C.Y., Aflalo, T., Jafari, M., Pejsa, K., Pouratian, N., Andersen, R.A., 2021. Neural encoding of actual and imagined touch within human posterior parietal cortex. Elife 10.

doi:10.7554/eLife.61646

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V., 2012. Neural population dynamics during reaching. Nature 487, 51–56. doi:10.1038/nature11129 Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.I., Shenoy, K.V., 2010. Cortical preparatory

activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400.

doi:10.1016/j.neuron.2010.09.015

Churchland, M.M., Shenoy, K.V., 2007. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 4235–4257. doi:10.1152/jn.00095.2007

Clancy, K.B., Koralek, A.C., Costa, R.M., Feldman, D.E., Carmena, J.M., 2014. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17, 807–809.

doi:10.1038/nn.3712

Cluff, T., Scott, S.H., 2015. Apparent and actual trajectory control depend on the behavioral context in upper limb motor tasks. J. Neurosci. 35, 12465–12476. doi:10.1523/JNEUROSCI.0902-15.2015

Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates, New Jersey, NJ. doi:10.4324/9780203771587

Collinger, J.L., Boninger, M.L., Bruns, T.M., Curley, K., Wang, W., Weber, D.J., 2013a. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J Rehabil Res Dev 50, 145–160. doi:10.1682/jrrd.2011.11.0213

Collinger, J.L., Foldes, S., Bruns, T.M., Wodlinger, B., Gaunt, R., Weber, D.J., 2013b. Neuroprosthetic technology for individuals with spinal cord injury. J Spinal Cord Med 36, 258–272.

doi:10.1179/2045772313Y.0000000128

Collinger, J.L., Gaunt, R.A., Schwartz, A.B., 2018. Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Current Opinion in Biomedical Engineering 8, 84–92. doi:10.1016/j.cobme.2018.11.005

Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B., 2013c. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564. doi:10.1016/S0140-6736(12)61816- 9

Cooke, D.F., Taylor, C.S.R., Moore, T., Graziano, M.S.A., 2003. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl. Acad. Sci. USA 100, 6163–6168.

doi:10.1073/pnas.1031751100

Dabagia, M., Kording, K.P., Dyer, E.L., 2022. Aligning latent representations of neural activity. Nat. Biomed.

Eng. doi:10.1038/s41551-022-00962-7

Degenhart, A.D., Bishop, W.E., Oby, E.R., Tyler-Kabara, E.C., Chase, S.M., Batista, A.P., Yu, B.M., 2020.

Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. 4, 672–685. doi:10.1038/s41551-020-0542-9

Dekleva, B.M., Weiss, J.M., Boninger, M.L., Collinger, J.L., 2021. Generalizable cursor click decoding using grasp-related neural transients. J. Neural Eng. 18. doi:10.1088/1741-2552/ac16b2

Desmurget, M., Grafton, S., 2000. Forward modeling allows feedback control for fast reaching movements.

Trends Cogn. Sci. (Regul. Ed.) 4, 423–431. doi:10.1016/s1364-6613(00)01537-0

Diedrichsen, J., Berlot, E., Mur, M., Schütt, H.H., Shahbazi, M., Kriegeskorte, N., 2021. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Neurons, Behavior, Data analysis, and Theory. doi:10.51628/001c.27664

Diedrichsen, J., Kriegeskorte, N., 2017. Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508. doi:10.1371/journal.pcbi.1005508

Diedrichsen, J., Shadmehr, R., Ivry, R.B., 2010. The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. (Regul. Ed.) 14, 31–39. doi:10.1016/j.tics.2009.11.004

Diedrichsen, J., Wiestler, T., Krakauer, J.W., 2013. Two distinct ipsilateral cortical representations for individuated finger movements. Cereb. Cortex 23, 1362–1377. doi:10.1093/cercor/bhs120

Dienes, Z., 2014. Using Bayes to get the most out of non-significant results. Front. Psychol. 5, 781.

doi:10.3389/fpsyg.2014.00781

Dimitriou, M., Wolpert, D.M., Franklin, D.W., 2013. The temporal evolution of feedback gains rapidly update to task demands. J. Neurosci. 33, 10898–10909. doi:10.1523/JNEUROSCI.5669-12.2013

Downey, J.E., Brane, L., Gaunt, R.A., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., 2017. Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci. Rep. 7, 16947.

doi:10.1038/s41598-017-17222-3

Downey, J.E., Quick, K.M., Schwed, N., Weiss, J.M., Wittenberg, G.F., Boninger, M.L., Collinger, J.L., 2020.

The motor cortex has independent representations for ipsilateral and contralateral arm movements but correlated representations for grasping. Cereb. Cortex 30, 5400–5409. doi:10.1093/cercor/bhaa120 Downey, J.E., Weiss, J.M., Muelling, K., Venkatraman, A., Valois, J.-S., Hebert, M., Bagnell, J.A., Schwartz,

A.B., Collinger, J.L., 2016. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J Neuroeng Rehabil 13, 28.

doi:10.1186/s12984-016-0134-9

Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. J. Am. Stat. Assoc. 97, 77–87.

doi:10.1198/016214502753479248

Dunnett, C.W., 1964. New Tables for Multiple Comparisons with a Control. Biometrics 20, 482.

doi:10.2307/2528490

Eickhoff, S.B., Constable, R.T., Yeo, B.T.T., 2018. Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170, 332–347. doi:10.1016/j.neuroimage.2017.02.018

Eisenberg, M., Shmuelof, L., Vaadia, E., Zohary, E., 2011. The representation of visual and motor aspects of reaching movements in the human motor cortex. J. Neurosci. 31, 12377–12384.

doi:10.1523/JNEUROSCI.0824-11.2011

Ejaz, N., Hamada, M., Diedrichsen, J., 2015. Hand use predicts the structure of representations in sensorimotor cortex. Nat. Neurosci. 18, 1034–1040. doi:10.1038/nn.4038

Elsayed, G.F., Cunningham, J.P., 2017. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318. doi:10.1038/nn.4617

Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., Cunningham, J.P., 2016. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239.

doi:10.1038/ncomms13239

Ethier, C., Oby, E.R., Bauman, M.J., Miller, L.E., 2012. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371. doi:10.1038/nature10987

Evarts, E.V., 1968. Relation of pyramidal tract activity to force exerted during voluntary movement. J.

Neurophysiol. 31, 14–27. doi:10.1152/jn.1968.31.1.14

Even-Chen, N., Stavisky, S.D., Kao, J.C., Ryu, S.I., Shenoy, K.V., 2017. Augmenting intracortical brain- machine interface with neurally driven error detectors. J. Neural Eng. 14, 066007. doi:10.1088/1741- 2552/aa8dc1

Fetz, E.E., 1969. Operant conditioning of cortical unit activity. Science 163, 955–958.

doi:10.1126/science.163.3870.955

Fetz, E.E., 1992. Are movement parameters recognizably coded in the activity of single neurons? Behav.

Brain Sci. 15, 679–690.

Fifer, M.S., McMullen, D.P., Osborn, L.E., Thomas, T.M., Christie, B.P., Nickl, R.W., Candrea, D.N., Pohlmeyer, E.A., Thompson, M.C., Anaya, M.A., Schellekens, W., Ramsey, N.F., Bensmaia, S.J., Anderson, W.S., Wester, B.A., Crone, N.E., Celnik, P.A., Cantarero, G.L., Tenore, F.V., 2021.

Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal cord injury. Neurology. doi:10.1212/WNL.0000000000013173

Flesher, S.N., Collinger, J.L., Foldes, S.T., Weiss, J.M., Downey, J.E., Tyler-Kabara, E.C., Bensmaia, S.J., Schwartz, A.B., Boninger, M.L., Gaunt, R.A., 2016. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141. doi:10.1126/scitranslmed.aaf8083

Flesher, S.N., Downey, J.E., Weiss, J.M., Hughes, C.L., Herrera, A.J., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., Gaunt, R.A., 2021. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836. doi:10.1126/science.abd0380

Flint, R.D., Wright, Z.A., Scheid, M.R., Slutzky, M.W., 2013. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng. 10, 056005.

doi:10.1088/1741-2560/10/5/056005

Fougner, A., Stavdahl, O., Kyberd, P.J., Losier, Y.G., Parker, P.A., 2012. Control of upper limb prostheses:

terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng 20, 663–677. doi:10.1109/TNSRE.2012.2196711

Frankland, S.M., Greene, J.D., 2020. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303. doi:10.1146/annurev-psych-122216-011829

Franklin, D.W., Wolpert, D.M., 2011. Computational mechanisms of sensorimotor control. Neuron 72, 425–

442. doi:10.1016/j.neuron.2011.10.006

Friel, K.M., Barbay, S., Frost, S.B., Plautz, E.J., Hutchinson, D.M., Stowe, A.M., Dancause, N., Zoubina, E.V., Quaney, B.M., Nudo, R.J., 2005. Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation. J. Neurophysiol. 94, 1312–1324.

doi:10.1152/jn.01251.2004

Fu, Z., Beam, D., Chung, J.M., Reed, C.M., Mamelak, A.N., Adolphs, R., Rutishauser, U., 2022. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922. doi:10.1126/science.abm9922

Gail, A., Klaes, C., Westendorff, S., 2009. Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex. J. Neurosci. 29, 9490–9499.

doi:10.1523/JNEUROSCI.1095-09.2009

Gallego, J.A., Perich, M.G., Chowdhury, R.H., Solla, S.A., Miller, L.E., 2020. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270.

doi:10.1038/s41593-019-0555-4

Gallese, V., Murata, A., Kaseda, M., Niki, N., Sakata, H., 1994. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529. doi:10.1097/00001756-199407000- 00029

Gallivan, J.P., Culham, J.C., 2015. Neural coding within human brain areas involved in actions. Curr. Opin.

Neurobiol. 33, 141–149. doi:10.1016/j.conb.2015.03.012

Gallivan, J.P., McLean, D.A., Valyear, K.F., Culham, J.C., 2013. Decoding the neural mechanisms of human tool use. Elife 2, e00425. doi:10.7554/eLife.00425

Gámez, J., Mendoza, G., Prado, L., Betancourt, A., Merchant, H., 2019. The amplitude in periodic neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol. 17, e3000054.

doi:10.1371/journal.pbio.3000054

Ganguly, K., Carmena, J.M., 2009. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153. doi:10.1371/journal.pbio.1000153

Gao, P., Trautmann, E., Yu, B.M., Santhanam, G., Ryu, S., Shenoy, K., Ganguli, S., 2017. A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv. doi:10.1101/214262

Georgopoulos, A.P., Ashe, J., Smyrnis, N., Taira, M., 1992. The motor cortex and the coding of force. Science 256, 1692–1695. doi:10.1126/science.256.5064.1692

Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T., 1982. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–

1537. doi:10.1523/JNEUROSCI.02-11-01527.1982

Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E., 1986. Neuronal population coding of movement direction.

Science 233, 1416–1419. doi:10.1126/science.3749885

Ghez, C., Gordon, J., Ghilardi, M.F., 1995. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J. Neurophysiol. 73, 361–372.

doi:10.1152/jn.1995.73.1.361

Gilbert, C.D., Wiesel, T.N., 1992. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–

152. doi:10.1038/356150a0

Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I., Shenoy, K.V., 2012. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757. doi:10.1038/nn.3265

Gilja, V., Pandarinath, C., Blabe, C.H., Nuyujukian, P., Simeral, J.D., Sarma, A.A., Sorice, B.L., Perge, J.A., Jarosiewicz, B., Hochberg, L.R., Shenoy, K.V., Henderson, J.M., 2015. Clinical translation of a high- performance neural prosthesis. Nat. Med. 21, 1142–1145. doi:10.1038/nm.3953

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178. doi:10.1038/nature18933

Golub, M.D., Chase, S.M., Batista, A.P., Yu, B.M., 2016. Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 37, 53–58.

doi:10.1016/j.conb.2015.12.005

Golub, M.D., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Chase, S.M., Yu, B.M., 2018. Learning by neural reassociation. Nat. Neurosci. 21, 607–616. doi:10.1038/s41593- 018-0095-3

Golub, M.D., Yu, B.M., Chase, S.M., 2015. Internal models for interpreting neural population activity during sensorimotor control. Elife 4. doi:10.7554/eLife.10015

Goodman, J.M., Tabot, G.A., Lee, A.S., Suresh, A.K., Rajan, A.T., Hatsopoulos, N.G., Bensmaia, S., 2019.

Postural representations of the hand in the primate sensorimotor cortex. Neuron 104, 1000–1009.e7.

doi:10.1016/j.neuron.2019.09.004

Gruenwald, J., Znobishchev, A., Kapeller, C., Kamada, K., Scharinger, J., Guger, C., 2019. Time-Variant Linear Discriminant Analysis Improves Hand Gesture and Finger Movement Decoding for Invasive Brain-Computer Interfaces. Front. Neurosci. 13, 901. doi:10.3389/fnins.2019.00901

Guan, C., Aflalo, T., Kadlec, K., Gámez de Leon, J., Rosario, E.R., Bari, A., Pouratian, N., Andersen, R.A., 2022a. Compositional coding of individual finger movements in human posterior parietal cortex and motor cortex enables ten-finger decoding. medRxiv. doi:10.1101/2022.12.07.22283227

Guan, C., Aflalo, T., Zhang, C.Y., Amoruso, E., Rosario, E.R., Pouratian, N., Andersen, R.A., 2022b. Stability of motor representations after paralysis. Elife 11. doi:10.7554/eLife.74478

Guest, O., Love, B.C., 2017. What the success of brain imaging implies about the neural code. Elife 6.

doi:10.7554/eLife.21397

Häger-Ross, C., Schieber, M.H., 2000. Quantifying the independence of human finger movements:

comparisons of digits, hands, and movement frequencies. J. Neurosci. 20, 8542–8550.

Haghi, B., Aflalo, T., Kellis, S., Kadlec, K., Pouratian, N., Andersen, R.A., Emami, A., 2021. FENet: Feature Extraction Neural Network for Brain Machine Interfaces. Presented at the Society for Neuroscience Annual Meeting, Society for Neuroscience.

Hall, T.M., de Carvalho, F., Jackson, A., 2014. A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation. Neuron 83, 1185–1199.

doi:10.1016/j.neuron.2014.07.022

Ho, E., Hettick, M., Papageorgiou, D., Poole, A.J., Monge, M., Vomero, M., Gelman, K.R., Hanson, T., Tolosa, V., Mager, M., Rapoport, B.I., 2022. The layer 7 cortical interface: A scalable and minimally invasive brain–computer interface platform. BioRxiv. doi:10.1101/2022.01.02.474656

Ho, J., Tumkaya, T., Aryal, S., Choi, H., Claridge-Chang, A., 2019. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566. doi:10.1038/s41592-019-0470-3

Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., van der Smagt, P., Donoghue, J.P., 2012. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375. doi:10.1038/nature11076

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171. doi:10.1038/nature04970

Hotson, G., McMullen, D.P., Fifer, M.S., Johannes, M.S., Katyal, K.D., Para, M.P., Armiger, R., Anderson, W.S., Thakor, N.V., Wester, B.A., Crone, N.E., 2016. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017–026017. doi:10.1088/1741-2560/13/2/026017

Hubel, D.H., Wiesel, T.N., 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436. doi:10.1113/jphysiol.1970.sp009022

Huggins, J.E., Moinuddin, A.A., Chiodo, A.E., Wren, P.A., 2015. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch. Phys. Med. Rehabil. 96, S38–45.e1. doi:10.1016/j.apmr.2014.05.028

Hwang, E.J., Bailey, P.M., Andersen, R.A., 2013. Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23, 353–361. doi:10.1016/j.cub.2013.01.027

Ingram, J.N., Körding, K.P., Howard, I.S., Wolpert, D.M., 2008. The statistics of natural hand movements.

Exp. Brain Res. 188, 223–236. doi:10.1007/s00221-008-1355-3

Inoue, Y., Mao, H., Suway, S.B., Orellana, J., Schwartz, A.B., 2018. Decoding arm speed during reaching.

Nat. Commun. 9, 5243. doi:10.1038/s41467-018-07647-3

Irwin, Z.T., Schroeder, K.E., Vu, P.P., Bullard, A.J., Tat, D.M., Nu, C.S., Vaskov, A., Nason, S.R., Thompson, D.E., Bentley, J.N., Patil, P.G., Chestek, C.A., 2017. Neural control of finger movement via intracortical brain-machine interface. J. Neural Eng. 14, 066004. doi:10.1088/1741-2552/aa80bd Jain, N., Qi, H.-X., Collins, C.E., Kaas, J.H., 2008. Large-scale reorganization in the somatosensory cortex

and thalamus after sensory loss in macaque monkeys. J. Neurosci. 28, 11042–11060.

doi:10.1523/JNEUROSCI.2334-08.2008

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning, Springer Texts in Statistics. Springer New York, New York, NY. doi:10.1007/978-1-4614-7138-7

Jarosiewicz, B., Masse, N.Y., Bacher, D., Cash, S.S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, L.R., 2013. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia. J. Neural Eng. 10, 046012. doi:10.1088/1741-2560/10/4/046012

Jarosiewicz, B., Sarma, A.A., Bacher, D., Masse, N.Y., Simeral, J.D., Sorice, B., Oakley, E.M., Blabe, C., Pandarinath, C., Gilja, V., Cash, S.S., Eskandar, E.N., Friehs, G., Henderson, J.M., Shenoy, K.V., Donoghue, J.P., Hochberg, L.R., 2015. Virtual typing by people with tetraplegia using a self- calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179.

doi:10.1126/scitranslmed.aac7328

Johansson, R.S., Flanagan, J.R., 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359. doi:10.1038/nrn2621

Jorge, A., Royston, D.A., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., 2020. Classification of individual finger movements using intracortical recordings in human motor cortex. Neurosurgery 87, 630–638. doi:10.1093/neuros/nyaa026

Jozwik, K.M., Kriegeskorte, N., Mur, M., 2016. Visual features as stepping stones toward semantics:

Explaining object similarity in IT and perception with non-negative least squares. Neuropsychologia 83, 201–226. doi:10.1016/j.neuropsychologia.2015.10.023

Kakei, S., Hoffman, D.S., Strick, P.L., 1999. Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139. doi:10.1126/science.285.5436.2136

Kalidindi, H.T., Cross, K.P., Lillicrap, T.P., Omrani, M., Falotico, E., Sabes, P.N., Scott, S.H., 2021.

Rotational dynamics in motor cortex are consistent with a feedback controller. Elife 10.

doi:10.7554/eLife.67256

Kambi, N., Halder, P., Rajan, R., Arora, V., Chand, P., Arora, M., Jain, N., 2014. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity. Nat.

Commun. 5, 3602. doi:10.1038/ncomms4602

Kao, J.C., Nuyujukian, P., Ryu, S.I., Churchland, M.M., Cunningham, J.P., Shenoy, K.V., 2015. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759.

doi:10.1038/ncomms8759

Karpowicz, B.M., Ali, Y.H., Wimalasena, L.N., Sedler, A.R., Keshtkaran, M.R., Bodkin, K., Ma, X., Miller, L.E., Pandarinath, C., 2022. Stabilizing brain-computer interfaces through alignment of latent dynamics. BioRxiv. doi:10.1101/2022.04.06.487388

Katyal, K.D., Johannes, M.S., Kellis, S., Aflalo, T., Klaes, C., McGee, T.G., Para, M.P., Shi, Y., Lee, B., Pejsa, K., Liu, C., Wester, B.A., Tenore, F., Beaty, J.D., Ravitz, A.D., Andersen, R.A., McLoughlin, M.P., 2014. A collaborative BCI approach to autonomous control of a prosthetic limb system, in:

2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Presented at the 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC, IEEE, pp. 1479–1482.

doi:10.1109/SMC.2014.6974124

Kaufman, M.T., Churchland, M.M., Ryu, S.I., Shenoy, K.V., 2014. Cortical activity in the null space:

permitting preparation without movement. Nat. Neurosci. 17, 440–448. doi:10.1038/nn.3643 Kaufman, M.T., Seely, J.S., Sussillo, D., Ryu, S.I., Shenoy, K.V., Churchland, M.M., 2016. The largest

response component in the motor cortex reflects movement timing but not movement type. eNeuro 3. doi:10.1523/ENEURO.0085-16.2016

Keck, T., Mrsic-Flogel, T.D., Vaz Afonso, M., Eysel, U.T., Bonhoeffer, T., Hübener, M., 2008. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat.

Neurosci. 11, 1162–1167. doi:10.1038/nn.2181

Kieliba, P., Clode, D., Maimon-Mor, R.O., Makin, T.R., 2021. Robotic hand augmentation drives changes in neural body representation. Sci. Robot. 6. doi:10.1126/scirobotics.abd7935

Kietzmann, T.C., Spoerer, C.J., Sörensen, L.K.A., Cichy, R.M., Hauk, O., Kriegeskorte, N., 2019. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl. Acad.

Sci. USA 116, 21854–21863. doi:10.1073/pnas.1905544116