• Tidak ada hasil yang ditemukan

Number of Planning Units

Dalam dokumen Marxan Good Practices Handbook (Halaman 80-84)

quickly. 

• We advise to be opportunistic when considering planning units. Where possible  match the analysis with the management scheme or objective be planned. While it is  sensible to consider size and shape from a modeling standpoint, perhaps conducting  sensitivity analyses between natural and abstract, uniform units, we also suggest  exploring the use of already‐delineated units that may be being used in current  management schemes. 

A review of various studies and the reasons provided for the choices of planning unit  size and shape is provided in Table 7.2. Many the studies outlined do not provide a  reason for choosing the size and/or shape of the planning unit. This is likely due to the  lack of strong theoretical basis for using a specific selection unit (Stoms 1994, Pressey  and Logan 1998). 

 

Box 7.4: A precautionary tale of two different sized planning units in one analysis   By Karin Bodtker, BCMCA 

The BCMCA decided to use two different sized planning units (i.e., 2 km x 2 km square  planning units on‐shelf and 4 km x 4 km square planning units off‐shelf) for an analysis  spanning the entire Canadian Pacific EEZ. The decision was made despite solicited  Marxan expert advise warning that using two different sizes of planning units could  create complicated issues in regards to cost layers and balance’. However, the issues or  problems are not well documented and the decision was made to try the analysis with  two sizes of planning units for a variety of reasons, including: 

• Quite  large  marine  study  area  overall  with  a  natural  break  in  the  physical  environment at the base of the slope. 

• Resolution  of  available data  was  finer  for the  nearshore  and  continental  shelf  regions, and courser for the larger off‐shore deep sea region. 

• The original grid was also designed to align with the 4 km x 4 km grid in which  some of the fisheries catch and effort data were provided.  

• The BCMCA wanted to keep the total number of planning units less than 65 000 for  ease of use in Excel spreadsheets.  

• Past experience with slow processing speeds when using Marxan with more than    65 000 planning units. 

• Many of the ecological features were to be targeted by broad ecosections, of which  there are twelve in the study area, and it was reasoned that this would effectively  spread  solutions  over  the study area and  reduce  bias problems  related to  the  different size planning units. 

• The work to populate existing planning units with roughly half of the ecological  features had already been completed when the advice was received. 

When the time came for Marxan calibration, BCMCA tested for an inherent bias in the  selection of the two sizes of planning units and did discover a consistent bias. To test  this, they created a single feature that occupied each planning unit fully (i.e., the  quantity was equal to the area of the planning unit) and targeted that feature using a  simple proportional target. The BLM was set to zero and a random distribution of  selected planning units was expected. BCMCA expected the summed solutions file to  approximate a normal distribution, with the mean equal to the targeted proportion. 

However, they found that the small planning units were chosen at nearly twice the rate  as big planning units, and the distribution of the values in the summed solution file was  clearly bimodal with a mean higher than the targeted proportion. They found the same  result whether the scenario ran for 1 million iterations or 500 million iterations.  

It may be possible to correct the bias by increasing the boundary cost of the large  planning units, but then the correction factor also interacts with the BLM parameter,  number of iterations, and number and spatial distribution of real features. BCMCA did  not proceed with an analysis using two different sized planning units and, in hindsight,  we would recommend using single sized planning units. 

7.9 NUMBER OF PLANNING UNITS

Many people ask: What is the maximum number of planning units that Marxan can  process? Technically, there was an upper limit of around 20 000 to 30 000 on the number  of planning units that early versions of Marxan could handle (version 1.8.10 and earlier),  though the optimised version (version 2.0+) has less restrictions and has been successful  at processing much larger numbers, over 100 000, or even 150 000 planning units on  newer computers with ample RAM memory. However, computer horsepower aside,  there are  mathematical reasons why Marxan, with its algorithms that try to do a  reasonable job with optimality, will struggle to successfully process large numbers of  PUs and features into an efficient, and hence meaningful, solution. 

The number of possible network solutions is 2 to the power of the number of PUs. Thus,  100 000 PUs is more than 10 to the power 10 000 possible solutions which is greater than  number of atoms in universe! That said, there are some cases where the decision space is  so constrained by the arrangement of its features that even with huge numbers of PUs,  near‐optimal results are still tractable. However, these situations are the exception, and  in general, when there are lots of possible network configurations, optimal solutions will  be hard to find when using over 50 000 PUs.  

 Considering issues of scale and precision, blocking fine‐scale raster data into sub‐

catchments and hexagons really does not cause you to lose any data and it should not be  seen as a problem. Ultimately, it is all about the spatial scale of decision‐making. If  decision‐making in a large study area is still on the scale of individual hectares then the  problem has to be divided into sub‐regional analyses. However, usually this is not the 

case. If required, sequential or greedy algorithms can work on such huge numbers of  PUs but it is very unlikely that the solutions produced would be anywhere near optimal. 

Thus, good practice would dictate either aggregating data into larger PUs or sub‐

dividing the study area. If you do decide to use a large number of PUs, you will need to  do  extensive  testing to find  the  number  of  iterations  required  whereby  the good  solutions begin to converge. Even with the latest desktop computers, getting meaningful  near‐optimal solutions could increase processing time dramatically, perhaps 24 hours or  longer per Marxan scenario. 

Table 7.2: Summary of planning unit choices in various studies. 

AUTHOR/

TITLE SHAPE SIZE REASON PROVIDED Leslie et al.

2003.

Square 1-km2 and 100- km2

No – preferred 1 km2 to 100 km2 because solution area decreased.

Airame et al.

2003.

Square 1 x 1 min Socioeconomic information collected at this scale because they are the CA Department of Fish and Game planning units.

Beck and Odaya 2001.

Bays/

Eco-region

Vary Goal of project was to identify priority sites (i.e., eco-regions) for conservation.

Ardron et al.

2002.

Hexagon 250 ha No

Lewis, et al.

2003.

Hexagon 30 km2 and 10 km2, reefs

Used different planning units to reflect the spatial scale of management and administrative and physical boundaries. No reason for choosing hexagon.

Chan et al.

2006.

Square 1 x 1 min Socioeconomic information collected at this scale because they are the CA Department of Fish and Game planning units.

Richardson et al.

Square 2 x 2 min No

Stewart and Possingham 2003.

Square 5 x 5 km No

Geselbracht et al. 2005.

Hexagon 1500 ha Hexagons provide more natural appearing clumps as sites have six sides shared among individual units. The size of the PU was selected to provide fine enough detail for state-wide analysis while not overwhelming processing capabilities with

excessive units that may add little to analytical resolutions.

CLF and WWF 2006.

Square 5 x 5 min Size consistent with regional planning for which outputs were intended and scale and constraints of available data.

Tallis, H, Ferdana, Z, Gray, E 2008.

Hexagon 500 Ha

Hexagons, &

Hexagons split at the shoreline to account for terrestrial and coastal features

Hexagons integrated terrestrial and near shore area selection. Reasons for size: (1) consideration of scales of input data for ecological features; (2) promoting ecological accuracy between terrestrial and coastal realms by splitting units at the shoreline thereby accounting for a natural shared boundary

AUTHOR/

TITLE SHAPE SIZE REASON PROVIDED Ferdana

2005

Hexagon, and shoreline unit

750 Ha Hexagons, &

Hexagons and Variable length shorelines

Hexagons integrated terrestrial and near shore area selection. No reason for size

Shoreline was a more natural unit with ecological boundaries

Ferrar and Lötter 2007

DEM

modeled sub- catchments

5820 ha Freshwater assessment needed to protect intact wetlands and rivers, within healthy sub-

catchments Pence

(2008)

Segmented satellite image or landcover image (eCognition)

23 ha (range 0.25-550 ha)

Land-cover based planning units; ensuring homogenous contents of planning units (also ensure features not artificially dissected by planning unit boundaries); improves translation of product into management plan/guidelines

Klein et al.

(2008)

Sub- catchments

Average of 50 km2 and 800 km2 in the intensive and extensive land- use zones, respectively

To facilitate the protection of the integrity and function of ecosystem processes occurring on a sub-catchment scale

Dalam dokumen Marxan Good Practices Handbook (Halaman 80-84)