• Tidak ada hasil yang ditemukan

Chapter III: Lifts of Borel actions on quotient spaces

3.4 Outer actions

A lift of an outer action is a solution to the following lifting problem:

Aut๐ต(๐ธ)

๐บ Out๐ต(๐ธ)

๐‘๐ธ .

Many outer actions arise from the following construction:

Example 3.4.1. Given a Borel action๐บ โ†ท ๐‘‹ of a countable group๐บ and a normal subgroup๐‘ โŠณ ๐บ, there is a morphism๐บ โ†’ Out๐ต(๐ธ๐‘‹

๐‘)defined by ๐‘”ยท [๐‘ฅ]๐ธ๐‘‹

๐‘

= [๐‘”ยท๐‘ฅ]๐ธ๐‘‹

๐‘

, and this descends to a morphism๐บ/๐‘ โ†’Out๐ต(๐ธ๐‘‹

๐‘).

Normal subequivalence relations

The concept of normality is central to the study of outer actions:

Definition 3.4.2. Let ๐ธ โІ ๐น be CBERs. We say that๐ธ isnormalin ๐น, denoted ๐ธ โŠณ ๐น, if any of the following equivalent conditions hold:

(1) There is an action๐บ โ†ท๐ต (๐‘‹ , ๐ธ)of a countable group๐บsuch that๐น =๐ธโˆจ๐บ. (2) There is a morphism ๐บ โ†’ Out๐ต(๐ธ) from a countable group ๐บ such that

๐น =๐ธโˆจ๐บ.

(3) There is a countable subgroup๐บ โ‰ค Aut๐ต(๐ธ)such that๐น =๐ธโˆจ๐บ. (4) There is a countable subgroup๐บ โ‰ค Out๐ต(๐ธ) such that๐น =๐ธโˆจ๐บ.

To see the equivalence, note that(3) =โ‡’ (1) =โ‡’ (2)is immediate,(2) =โ‡’ (4) holds by taking the image of๐บ in Out๐ต(๐ธ), and(4) =โ‡’ (3)holds by fixing a lift ๐‘‡๐‘” โˆˆAut๐ต(๐ธ)of each๐‘” โˆˆ๐บ and taking the subgroup of Aut๐ต(๐ธ) generated by the ๐‘‡๐‘”.

For CBERs๐ธ โІ ๐น, it is possible that๐ธ is not normal in๐น, but that there is still a Borel action๐บ โ†ท๐ต ๐‘‹/๐ธ such that ๐น = ๐ธโˆจ๐บ, as witnessed by the example at the beginning ofSection 3.3. For more discussion concerning the weaker notion, see Section 3.8.

Proposition 3.4.3. Let๐ธ โŠณ ๐น be CBERs on๐‘‹. (1) If๐นโ€ฒis a CBER with๐ธ โІ ๐นโ€ฒ โІ ๐น, then๐ธ โŠณ ๐นโ€ฒ.

(2) For any๐ธ-invariant subset๐‘Œ โІ ๐‘‹, we have๐ธ โ†พ๐‘Œ โŠณ ๐น โ†พ๐‘Œ.

Proof. Note that(2)follows immediately from(1)by taking๐นโ€ฒ= (๐น โ†พ๐‘Œ) โŠ• (๐น โ†พ (๐‘‹\๐‘Œ)), so it suffices to prove(1).

We first assume that๐น =๐ธโˆจ๐‘‡ for some๐‘‡ โˆˆAut๐ต(๐ธ). We will show that๐นโ€ฒ=๐ธโˆจ๐‘‡

โ€ฒ

for some๐‘‡โ€ฒโˆˆAut๐ต(๐ธ).

For each๐‘ฅ โˆˆ ๐‘‹, letโ‰ค๐‘ฅ be the preorder on[๐‘ฅ]๐นโ€ฒ/๐ธ defined by[๐‘ฆ]๐ธ โ‰ค๐‘ฅ [๐‘ง]๐ธ iff there exists some๐‘›โ‰ฅ 0 such that๐‘‡๐‘›(๐‘ฆ) ๐ธ ๐‘ง. Ifโ‰ค๐‘ฅis isomorphic toZor not antisymmetric, then set๐‘‡โ€ฒ(๐‘ฅ) =๐‘‡๐‘›(๐‘ฅ), where๐‘› >0 is least such that๐‘‡๐‘›(๐‘ฅ) ๐นโ€ฒ๐‘ฅ. Otherwise, there is a unique isomorphism fromโ‰ค๐‘ฅto either the negative integers ({ยท ยท ยท ,โˆ’3,โˆ’2,โˆ’1},โ‰ค)

or to an initial segment of(N,โ‰ค). So by fixing a transitiveZ-action on each of these linear orders, we obtain a transitiveZ-action on[๐‘ฅ]๐นโ€ฒ/๐ธ, and we set๐‘‡โ€ฒ(๐‘ฅ) =๐‘‡๐‘›(๐‘ฅ), where๐‘›is unique such that๐‘‡๐‘›(๐‘ฅ) โˆˆ 1ยท [๐‘ฅ]๐ธ.

Now suppose that ๐น = ๐ธโˆจ๐บ for some๐บ โ‰ค Aut๐ต(๐ธ). By above, for each๐‘‡ โˆˆ ๐บ, we can fix some๐‘‡โ€ฒโˆˆAut๐ต(๐ธ) such that๐ธโˆจ๐‘‡

โ€ฒ =๐นโ€ฒโˆฉ๐ธโˆจ๐‘‡. Then๐นโ€ฒ=๐ธโˆจ๐ป, where

๐ป = โŸจ๐‘‡โ€ฒโŸฉ๐‘‡โˆˆ๐บ. โ–ก

We next make some remarks about smooth links. Let๐ธ โŠณ ๐น be CBERs. Suppose that๐ธ is aperiodic and[๐น : ๐ธ] =โˆž, since the finite parts have smooth links via the forthcomingTheorem 3.5.1andProposition 3.4.6. If๐ธ is compressible, then there is a smooth link byTheorem 3.3.6. On the other hand, if there is a smooth link ๐ฟ, then๐นmust be compressible, since it contains the aperiodic smooth ๐ฟ.

Thus the existence of a link does not imply the existence of a smooth link. For instance, fix a free pmp Borel actionZ2 โ†ท ๐‘‹, and consider๐ธ =๐ธ๐‘‹

Zร—{0} and๐น =๐ธ๐‘‹

Z2. Then there is a link given by the action of{0} ร—Z, but there is no smooth link, since๐น is not compressible. If๐‘‹is the circle and theZ2-action is by two linearly independent irrational rotations, then๐ธ and๐น are both uniquely ergodic, and by taking copies of these, one can obtain an example with any number of ergodic measures.

If๐ธ โŠณ ๐นwith๐ธfinitely ergodic, then๐นis not compressible, since if EINV๐ธ = (๐‘’๐‘–)๐‘– <๐‘›, then 1๐‘›(๐‘’0+ ยท ยท ยท +๐‘’๐‘›โˆ’1) โˆˆEINV๐น. Thus there is no smooth link. If EINV๐ธ is infinite, it is still possible for a smooth link to exist. For instance, consider๐ธ =๐ธ0ร—ฮ”Nand ๐น =๐ธ0ร—๐ผ

N. In general, the following is open:

Problem 3.4.4. Let ๐ธ โŠณ ๐น be CBERs with ๐น is compressible. Is there a smooth (๐ธ , ๐น)โ€“link?

Another open question, related toTheorem 3.3.6, is as follows:

Problem 3.4.5. Let๐ธ โŠณ ๐น โŠณ ๐นโ€ฒbe compressible CBERs. Can every(๐ธ , ๐น)โ€“link be extended to an(๐ธ , ๐นโ€ฒ)โ€“link?

If this were true, then assuming the Continuum Hypothesis, for any compressible CBER๐ธ, the epimorphism๐‘๐ธ: Aut๐ต(๐ธ) โ† Out๐ต(๐ธ)would split, i.e., there would exist a morphism๐‘ : Out๐ต(๐ธ) โ†’Aut๐ต(๐ธ) with๐‘๐ธ โ—ฆ๐‘ equal to the identity. To see this, write Out๐ต(๐ธ) as an increasing unionร

๐›ผ <๐œ”1๐บ๐›ผ of countable subgroups. It suffices to obtain class-bijective lifts๐บ๐›ผโ†’ Aut๐ต(๐ธ)such that if๐›ผ < ๐›ฝ, then the๐บ๐›ฝ

lift extends the๐บ๐›ผ lift. For๐œ†limit, take the union of the corresponding links for the ๐บ๐›ผwith๐›ผ < ๐œ†, and for๐›ฝ=๐›ผ+1 a successor, use a positive answer toProblem 3.4.5.

Basic results

Proposition 3.4.6. Let๐ธ be a smooth CBER.

(1) If๐นis a CBER with๐ธ โŠณ ๐น, then there is an (๐ธ , ๐น)โ€“link.

(2) Every outer action on ๐‘‹/๐ธ has a class-bijective lift.

Proof. ByProposition 3.3.4, it suffices to show(1).

By normality, any two ๐ธ-classes contained in the same ๐น-class have the same cardinality, so by partitioning the space into๐น-invariant Borel sets, we can assume that there is some๐‘› โˆˆ {1,2,ยท ยท ยท ,N}such that every ๐ธ-class has cardinality๐‘›. Then there is a partition ๐‘‹ = รƒ

๐‘˜ <๐‘›๐‘†๐‘˜ such that each๐‘†๐‘˜ is a transversal for ๐ธ. Thus the CBER๐ฟdefined by

๐‘ฅ ๐ฟ ๐‘ฆ โ‡โ‡’ (๐‘ฅ ๐น ๐‘ฆ)& (โˆƒ๐‘˜ < ๐‘›[๐‘ฅ , ๐‘ฆ โˆˆ๐‘†๐‘˜])

is an (๐ธ , ๐น)โ€“link. โ–ก

It is clear that if๐บ is a free group, then every outer action of๐บ has a lift. There are also some basic closure properties for the class of groups for which every outer action admits a (class-bijective) lift.

Proposition 3.4.7. Let๐ป โ‰ค ๐บ. If every outer action of๐บhas a (class-bijective) lift, then the same holds for๐ป.

Proof. Let ๐ธ be a CBER, and fix a morphism๐ป โ†’ Out๐ต(๐ธ). Let๐น =ร‰

๐บ/๐ป๐ธ. Then there is a morphism๐บ โ†’Out๐ต(๐น), induced by the action of๐บ on๐บ/๐ป, so we get a lift๐บ โ†’Aut๐ต(๐น). Restricting to๐ป and๐ธ gives the desired lift. โ–ก Proposition 3.4.8. Let๐บ โ†  ๐ปbe an epimorphism. If every outer action of๐บhas a class-bijective lift, then the same holds for๐ป.

Proof. Fix a morphism ๐ป โ†’ Out๐ต(๐ธ). This gives a morphism ๐บ โ†’ Out๐ต(๐ธ). Since by surjectivity๐ธโˆจ๐บ =๐ธโˆจ๐ป, we are done byProposition 3.3.4. โ–ก At this point, it is good to show that not every outer action has a lift.

Definition 3.4.9. A countable group๐บ is treeableif it admits a free pmp Borel action whose induced equivalence relation is treeable.

Example 3.4.10. There are many examples of groups which are not treeable (see [KM04, p. 30], [Kec22, p. 10.8]):

โ€ข Infinite property (T) groups.

โ€ข ๐บร—๐ป, where๐บ is infinite and๐ป is non-amenable.

โ€ข More generally, lattices in products of locally compact Polish groups๐บร—๐ป, where๐บis non-compact and ๐ปis non-amenable.

The proof of the next result is motivated by [CJ85, Theorem 5] and the remark following the proof of [FSZ89, Theorem 3.4].

Proposition 3.4.11. Suppose that every outer action of๐บ lifts. Then๐บ is treeable.

Proof. We can assume that ๐บ = ๐นโˆž/๐‘ for some ๐‘ โŠณ ๐นโˆž, where ๐นโˆž is the free group on infinitely many generators. Fix a free pmp Borel action๐นโˆž โ†ท๐ต (๐‘‹ , ๐œ‡) (for instance, the Bernoulli shift on 2๐นโˆž), and consider the induced free outer action ๐บ โ†’Out๐ต(๐ธ๐‘‹

๐‘)(seeExample 3.4.1). By assumption, there is a lift๐บ โ†’Aut๐ต(๐ธ๐‘‹

๐‘), which is also a free action. Then ๐ธ๐‘‹

๐บ is treeable and preserves๐œ‡, since๐ธ๐‘‹

๐นโˆž satisfies these properties and contains๐ธ๐‘‹

๐บ. โ–ก

Note that we have no control over the treeable CBER in the proof ofProposition 3.4.11.

In particular, the following is open:

Problem 3.4.12. Does every outer action on๐‘‹/๐ธ0lift?

Dokumen terkait