• Tidak ada hasil yang ditemukan

Overview and Outline of This Thesis

Figure 1-10. a) SEM and TEM image of prepared sulfur-TiO2 yolk-shell hierarchical nanostructures, b) Capacity retention of sulfur-TiO2 cycled at 0.5C, in comparison with bare sulfur and sulphur-TiO2 core-shell nanoparticles, c) Charge/discharge capacity of sulfur-TiO2 yolk-shell nanostructures cycled at various current rates from 0.2 to 2 C. Reproduced with the permission from ref. 50 (Copyright 2013 Nature Publishing Group).

understanding structure-property relationships and returning to the synthesis process for better materials. The connecting theme among all the materials research in this work is the ultimate enhancement of LIBs by applying surface modification methods, and the detail objectives in this thesis are shown as follows:

1. Synthesis of Surface-Modified Nanomaterials

1) To develop scalable methods to produce morphology controlled TiO2, Li4Ti5O12, and MoS2 as potential anode materials, such as, nanosheet-based spheres TiO2, porous Li4Ti5O12 and so on. A relation between different experimental parameters and the morphology of prepared samples was established.

2) To explore feasible and energy-efficient ion-exchange methods to modify the surface of TiO2 and Li4Ti5O12 nanostructures for potential anode application. The influence of these treatments on the crystal structure and morphology of these materials were investigated.

3) To investigate the enhanced effect of TiO2 phase on the electrochemical performance of Li4Ti5O12/TiO2 nanocomposite. In addition, the underlying mechanism of TiO2 second phase was revealed and discussed.

4) To develop kinds of hierarchical nanomaterials (Li4Ti5O12/MoS2, TiO2/MoS2) with high electrochemical performance in LIBs. Different substrates, including Li4Ti5O12

nanosheet arrays and MoS2 nanospheres were used in the various systems.

2. Morphology and Structural Characterization

The morphology of obtained samples was characterized with scanning electron microscopy and Transmission electron microscopy, respectively. The phase structure

was determined by X-ray diffraction. The surface element composition was measured by energy dispersive spectroscopy and X-ray photoelectron spectroscopy. And the specific surface area of the obtained samples was calculated using the nitrogen adsorption-desorption measurements.

3. Electrochemical Performance Evaluation

Lithium ion battery performance tests were carried out with a half-cell configuration using CR-2032 coin cells. Li foil was used as both the counter and reference electrode. The electrodes were assembled in an Argon-filled glove box.

Galvanostatic discharge/charge tests were performed using an Arbin-BT 2000 measurement system at different current densities at various temperatures (25, 55 °C and so on). Electrochemical impedance spectroscopy and cyclic voltammetry studies were carried out on a CHI650E electrochemical workstation.

References

[1] M.E. Mann, R.S. Bradley, and M.K. Hughes, “Global-Scale Temperature Patterns and Climate Forcing Over the Pase Six Centuries,” Nature, 392 779 (1998).

[2] M.E. Mann, Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, and F. Ni, “Proxy-based Reconstructions of Hemispheric and Global Surface Temperature Variations Over the Past Two Millennia,” Proc. Natl. Acad. Sci., USA 105 13252 (2008).

[3] N. Armaroli, and V. Balzani, “The Future of Energy Supply: Challenges and Opportunities,”Angew. Chem. Int. Ed., 46 52-66 (2007).

[4] Y. Wang, and G. Cao, “Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries,” Adv. Mater., 20 2251-2269 (2008).

[5] L. Carrette, K.A. Friedrich, and U. Stimming, “Fuel Cells-Fundamentals and Applications,” Fuel Cells, 1 5-33 (2001).

[6] H.B. Goyal, Diptendu Seal, and R.C. Saxena, “Bio-fuels from Thermochemical Conversion of Renewable Resources: A Review,” Renew Sust. Energy Rev., 12 504-517 (2008).

[7] J.M. Tarascon, and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature, 414 359 (2001).

[8] Advances in Lithium-Ion Batteries (Eds: W. van Schalkwijk, B.Scrosati), Springer, Berlin 2002.

[9] P.G. Bruce, B. Scrosati, and J.-M. Tarascon, “Nanomaterials for Rechargeable Lithium Batteries,” Angew. Chem. Int. Ed., 47 2930-2946 (2008).

[10] IPS, “The Rocking Chair Battery (Lithium Ion Battery)” (2013) Availabe at <https://physicsandsocietybc.wordpress.com/2013/04/03/the-rocking -chair-battery- lithium-ion-battery/>.

[11] Lithium Batteries Science and Technology (Eds.: G.-A. Nazri, G. Pistoia), Kluwer Academic/Plenum, Boston, 2004.

[12] Y. Cho, S. Lee, Y. Lee, T. Hong, and J. Cho, “Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries,” Adv. Energy Mater., 1 821-828 (2011).

[13] M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chem. Rev., 104 4271-4301 (2004).

[14] Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, and K. Amine,

“High-energy Cathode Material for Long-life and Safe Lithium Batteries,” Nat.

Mater., 8 320-324 (2009).

[15] K. Ariyoshi, Y. Maeda, T. Kawai, and T. Ohzuku, “Effect of Primary Particle Size upon Polarization and Cycling Stabliltiy of 5-V Lithium Insertion Material of Li[Ni1/2Mn3/2]O4,” J. Electrochem. Soc., 158 A281-A284 (2011).

[16] W.B. Luo, X.H. Li, and J.R. Dahn, “Synthesis, Characterization, and Thermal Stability of Li[Ni1/3Mn1/3Co1/3-z(MnMg)z/2]O2,” Chem. Mater., 22 5065-5073 (2010).

[17] M.S. Whittingham, “Mechansim of Reduction of the Fluorographite Cathode,”

J. Electrochem. Soc., 122 526-527 (1975).

[18] W.C. West, N.V. Myung, J.F. Whitacre, and B.V. Ratnakumar,

“Electrodeposited Amorphous Manganese Oxide Nanowire Arrays for High Energy and Power Density Electrodes,” J. Power Sources, 126 203-206 (2004).

[19] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, “A Review of Advanced and Practical Litium Battery Materials,” J. Mater. Chem., 21 9938-9954 (2011).

[20] N.-S Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P.G. Bruce, “Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors,” Angew. Chem. Int. Ed., 51 9994-10024 (2012).

[21] M. Armand, and J.M. Tarascon, “Buidling Better Batteries,” Nature, 451 652-657 (2008).

[22] E. Peled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interpahse Model,” J.

Electrochem. Soc., 126 2047-2051 (1979).

[23] R. Fong, U. Von Schen, and J.R. Dahn, “Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells,” J. Electrochem. Soc., 137 2009-2013 (1990).

[24] Z. Chen, Y. Qini, Y. Ren, W. Lu, C. Orendorfff, E.P. Roth, and K. Amine,

“Multi-Scale Study of Thermal Stability of Lithiated Graphite”, Energy Environ. Sci., 4 4023-4030 (2011).

[25] L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, “Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries”, Energy Environ. Sci., 4 2682-2699 (2011).

[26] M. Herstedt, M. Stjerndahl, T. Gustafsson, and K. Edstrom, “Anion Receptor for Enhanced Thermal Stability of the Graphite Anode Interface in a Li-Ion Battery”, Electrochem. Commun., 5 467-472 (2003).

[27] M. Holzapfel, H. Buqa, W. Scheifele, P. Novak and F.M. Petrat, “A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion”, Chem. Commun., 12 1566-1568 (2005).

[28] C.M. Park, J.H. Kim, H. Kim and H.J. Sohn, “Li-Alloy Based Anode Materials for Li Secondary Batteries”, Chem. Soc. Rev., 39 3115-3141 (2010).

[29] W.J. Zhang, “Lithium Insertion/Extraction Mechanism in Alloy Anodes for Lithium-Ion Batteries”, J. Power Sources, 196 877-885 (2011).

[30] L.W. Ji, K.H. Jung, A.J. Medford and X.W. Zhang, “Electrospun Polyacrylonitrile Fibers with Dispersed Si Nanoparticles and Their Electrochemical Behaviors after Carbonization”, J. Mater. Chem., 19 4992-4997 (2009).

[31] J. Jiang, Y. Li , J. Liu, X. Huang, C. Yuan, and D. Lou, “Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage,” Adv. Mater., 24 5166-5180 (2012).

[32] C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, “Li-Alloy Based Anode Materials for Li Secondary Batteries”, Chem. Soc. Rev., 39 3115-3141 (2010).

[33] J. Cabana, L. Monconduit, D. Larcher and M.R. Palacin, “Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions”, Adv. Mater., 22 E170-E192 (2010).

[34] L. J. Zhi, Y. S. Hu, B. El Hamaoui, X. Wang, I. Lieberwirth, U. Kolb, J. Maier and K. Mullen, “Precursor-Controlled Formation of Novel Carbon/Metal and Carbon/Metal Oxide Nanocomposites”, Adv. Mater., 20 1727-1731 (2008).

[35] J. Jiang, Y. Li , J. Liu, X. Huang, C. Yuan, and D. Lou, “Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage,” Adv. Mater., 24 5166-5180 (2012).

[36] S.T. Myung, N. Takahashi, S. Komaba, C.S. Yoon, Y.K. Sun, K. Amine, and H.

Yashiro, “Nanostructured TiO2 and Its Application in Lithium-Ion Storage,”

Adv. Funct. Mater., 21 3231-3241 (2011).

[37] D. Dambournet, I. Belharouak and K. Amine, “Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechansim of Formation and Electrochemical Properties,” Chem. Mater., 22 1173-1179 (2010).

[38] C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma and H. Zhou, “Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase TiO2 Electrode,” J. Power Sources, 166 239-243 (2007).

[39] G.G. Amatucci, F. Badway, A.D. Pasquier, and T. Zheng, “An Asymmetric Hybrid Nonaqueous Energy Storage Cell”, J. Electrochem. Soc., 148 A930-A939 (2001).

[40] Y. Shi, L. Wen, F. Li, H. M. Cheng, “Nanosized Li4Ti5O12/Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteries”, J. Power Sources, 196 8610-8617 (2011).

[41] E.M. Sorensen, S.J. Barry, H.-K. Jung, J.R. Rondinelli, J.T. Vaughey, and K.R.

Poeppelmeier, “Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties”, Chem. Mater., 18 482-489 (2006).

[42] Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara and L.-J. Wan, “Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery,” J. Am. Chem. Soc., 134 7874-7879 (2012).

[43] M. R. Jo, Y. S. Jung and Y.-M. Kang, “Tailored Li4Ti5O12 Nanofibers with Outstanding Kinetics for Lithium Rechargeable Batteries,” Nanoscale, 4 6870-6875 (2012).

[44] S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, and L. Qi, “Self-Supported Li4Ti5O12 Nanosheet Arrays for Lithium Ion Batteries with Excellent Rate Capability and Ultralong Cycle Life,” Energy Environ. Sci., 7 1924-1930 (2014).

[45] R.S. Devan, R.A. Patil, J.-H. Lin, and Y.-R. Ma, “One-Dimensional Metal Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications,” Adv. Funct. Mater., 22 3326-3370 (2012).

[46] A.S. Aricò, P.G. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijc,

“Nanostructured Materials for Advanced Energy Conversion and Storage Devices,” Nat. Mater., 4 366-377 (2005).

[47] M. Pfanzelt, P. Kubiak, U. Hoermann, U. Kaiser, M. Wohlfahrt-Mehrens,

“Preparation, Characterization, and Electrochemical Performances of Carbon-Coated TiO2 Anatase, Ionics, 15 657-663 (2009).

[48] Z. Ali, S.N. Cha, J.I. Sohn, I. Shakir, C. Yan, J.M. Kim, and D.J. Kang, “Design and Evaluation of Novel Zn Doped Mesoporous TiO2 Based Anode Material for Advanced Lithium Ion Batteries,” J. Mater. Chem., 22 17625-17629 (2012).

[49] Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara and L.-J. Wan, “Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery,” J. Am. Chem. Soc., 134 7874-7879 (2012).

[50] Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, and Y. Cui, “Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries”, Nat. commun., 4 133 (2013).

DESIGNING ION-DOPED TIO

2

NANOSTRUCTURES AS ANODE

MATERIALS FOR LITHIUM-ION BATTERIES