• Tidak ada hasil yang ditemukan

The elastic modulus of prestressing wires is the same as that for normal reinforcing steel, 29,000 ksi. Because of the helical winding of seven-wire strands, their effective elas- tic modulus is normally taken as 27,000 ksi. The various alloys used to produce prestress- ing bars result is a slightly lower elastic modulus of 28,000 ksi.

REFERENCES

3-1 Thomas T. C. Hsu, F. O. Slate, G. M. Sturman, and George Winter, “Micro-cracking of Plain Concrete and the Shape of the Stress–Strain Curve,” ACI Journal, Proceedings, Vol. 60, No. 2, February 1963, pp. 209–224.

3-2 K. Newman and J. B. Newman, “Failure Theories and Design Criteria for Plain Concrete,” Part 2 in M. Te’eni (ed.), Solid Mechanics and Engineering Design, Wiley-Interscience, New York, 1972, pp. 83/1–83/33.

3-3 F. E. Richart, A. Brandtzaeg, and R. L. Brown, A Study of the Failure of Concrete under Combined Compressive Stresses, Bulletin 185, University of Illinois Engineering Experiment Station, Urbana, IL, November 1928, 104 pp.

3-4 Hubert Rüsch, “Research toward a General Flexural Theory for Structural Concrete,” ACI Journal, Proceedings, Vol. 57, No. 1, July 1960, pp. 1–28.

3-5 Llewellyn E. Clark, Kurt H. Gerstle, and Leonard G. Tulin, “Effect of Strain Gradient on Stress–Strain Curve of Mortar and Concrete,” ACI Journal, Proceedings, Vol. 64, No. 9, September 1967, pp. 580–586.

3-6 Comité Euro-International du Béton, CEB-FIP Model Code 1990, Thomas Telford Services, Ltd., London, 1993, 437 pp.

3-7 Aïtcin, P-C., Miao, B., Cook, W.D., and Mitchell, D., “Effects of Size and Curing on Cylinder Compressive Strength of Normal and High-Strength Concretes,” ACI Materials Journal, Vol. 91, No. 4, July–August 1994, pp. 349–354.

3-8 ACI Committee 363, “Report on High-Strength Concrete (ACI 363R-92, Reapproved 1997),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 55 pp.

3-9 ACI Committee 214, “Evaluation of Strength Test Results of Concrete (ACI 214R-02),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 20 pp.

3-10 Andrzej Nowak and Maria Szerszen, “Calibration of Design Code for Buildings (ACI 318): Part 1—

Statistical Models for Resistance,” pp. 377–382; and “Part 2—Reliability Analysis and Resistance Factors,” pp. 383–389, ACI Structural Journal,Vol. 100, No. 3, May–June 2003.

3-11 Andrzej S. Nowak and Maria Szerszen, “Reliability-Based Calibration for Structural Concrete, Phase 1,”

Report UMCEE 01–04, University of Michigan, 2001, 73 pp.

3-12 Michael L. Leming, “Probabilities of Low Strength Events in Concrete,” ACI Structural Journal, Vol.

96, No. 3, May–June 1999, pp. 369–376.

3-13 H. F. Gonnerman and W. Lerch, Changes in Characteristics of Portland Cement as Exhibited by Laboratory Tests over the Period 1904 to 1950, ASTM Special Publication 127, American Society for Testing and Materials, Philadelphia, PA, 1951.

3-14 ACI Committee 211, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete(ACI 211.1-91, Reapproved 2002), American Concrete Institute, Farmington Hills, MI, 2002.

3-15 ACI Committee 232, Use of Fly Ash in Concrete(ACI 232.2R-03), American Concrete Institute, Farmington Hills, MI, 2003.

3-16 ACI Committee 232, Use of Raw and Processed Natural Pozzolans in Concrete(ACI 232.1R-00), American Concrete Institute, Farmington Hills, MI, 2000.

3-17 Adam M. Neville, “Water, Cinderella Ingredient of Concrete,” Concrete International, Vol. 22, No. 9, pp. 66–71.

3-18 Adam M. Neville, “Seawater in the Mixture,” Concrete International, Vol. 23, No. 1, January 2001, pp. 48–51.

3-19 Walter H. Price, “Factors Influencing Concrete Strength,” ACI Journal, Proceedings, Vol. 47, No. 6, December 1951, pp. 417–432.

3-20 Paul Klieger, “Effect of Mixing and Curing Temperature on Concrete Strength,” ACI Journal, Proceedings, Vol. 54, No. 12, June 1958, pp. 1063–1081.

3-21 ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures (ACI 209R-92, Reapproved 1997),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 47 pp.

3-22 V. M. Malhotra, “Maturity Concept and the Estimation of Concrete Strength: A Review,” Indian Concrete Journal, Vol. 48, No. 4, April 1974, pp. 122–126 and 138; No. 5, May 1974, pp. 155–159 and 170.

3-23 H. S. Lew and T. W. Reichard, “Prediction of Strength of Concrete from Maturity,” Accelerated Strength Testing, ACI Publication SP-56, American Concrete Institute, Detroit, 1978, pp. 229–248.

3-24 Adam M. Neville, “Core Tests: Easy to Perform, not Easy to Interpret”, Concrete International, Vol. 23, No. 11, November, 2001.

3-25 F.M. Bartlett, and J.G. MacGregor, “Effect of Moisture Content on Concrete core Strengths,” ACI Materials Journal, Vol. 91, No. 3, May–June 1994, pp. 227–236.

3-26 F. Michael Bartlett and James G. MacGregor, “Equivalent Specified Concrete Strength from Core Test Data,” Concrete International, Vol. 17, No. 3, March 1995, pp. 52–58.

3-27 F. Michael Bartlett and James G. MacGregor, “Statistical Analysis of the Compressive Strength of Concrete in Structures,” ACI Materials Journal, Vol. 93, No. 2, March–April 1996, pp. 158–168.

3-28 Jerome M. Raphael, “Tensile Strength of Concrete,” ACI Journal, Proceedings, Vol. 81, No. 2, March–April 1984, pp. 158–165.

3-29 D. J. McNeely and Stanley D. Lash, “Tensile Strength of Concrete,” Journal of the American Concrete Institute, Proceedings, Vol. 60, No. 6, June 1963, pp. 751–761.

3-30 Proposed Complements to the CEB-FIP International Recommendations—1970, Bulletin d’Information 74, Comité Européen du Béton, Paris, March 1972 revision, 77 pp.

3-31 H. S. Lew and T. W. Reichard, “Mechanical Properties of Concrete at Early Ages,” ACI Journal, Proceedings, Vol. 75, No. 10, October 1978, pp. 533–542.

3-32 H. Kupfer, Hubert K. Hilsdorf, and Hubert Rüsch, “Behavior of Concrete under Biaxial Stress,” ACI Journal, Proceedings, Vol. 66, No. 8, August 1969, pp. 656–666.

3-33 Frank J. Vecchio and Michael P. Collins, The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses, Publication 82-03, Department of Civil Engineering, University of Toronto, Toronto, March 1982, 332 pp.

3-34 Frank J. Vecchio and Michael P. Collins, “The Modified Compression Field Theory for Reinforced Concrete Elements Subjected To Shear,” ACI Journal, Proceedings, Vol. 83, No. 2, March–April 1986, pp. 219–231.

3-35 J. A. Hansen, “Strength of Structural Lightweight Concrete under Combined Stress,” Journal of the Research and Development Laboratories, Portland Cement Association, Vol. 5, No. 1, January 1963, pp. 39–46.

3-36 Paul H. Kaar, Norman W. Hanson, and H. T. Capell, “Stress–Strain Characteristics of High-Strength Concrete,” Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI Publication SP-55, American Concrete Institute, Detroit, 1978, pp. 161–186.

3-37 Adrian Pauw, “Static Modulus of Elasticity as Affected by Density,” ACI Journal, Proceedings, Vol. 57, No. 6, December 1960, pp. 679–683.

3-38 Eivind Hognestad, Norman W. Hanson, and Douglas McHenry, “Concrete Stress Distribution in Ultimate Strength Design,” ACI Journal, Proceedings, Vol. 52, No. 4, December 1955, pp. 475–479.

3-39 Eivind Hognestad, A Study of Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin 399, University of Illinois Engineering Experiment Station, Urbana, Ill., November 1951, 128 pp.

3-40 Popovics, S., “A Review of Stress–Strain Relationships for Concrete, ACI Journal, Proceedings, Vol. 67, No. 3, March 1970, pp. 243–248.

3-41 Claudio E. Todeschini, Albert C. Bianchini, and Clyde E. Kesler, “Behavior of Concrete Columns Reinforced with High Strength Steels,” ACI Journal, Proceedings, Vol. 61, No. 6, June 1964, pp. 701–716.

3-42 Thorenfeldt, E., Tomaszewicz, A. and Jensen, J. J., “Mechanical Properties of High Strength Concrete and Application to Design,” Proceedings of the Symposium: Utilization of High-Strength Concrete,”

Stavanger, Norway, June 1987, Tapir, Trondheim, pp. 149–159.

3-43 Collins, M.P. and Mitchell, D., Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, 1991, 766 pp.

3-44 S. H. Ahmad and Surendra P. Shah, “Stress–Strain Curves of Concrete Confined by Spiral

Reinforcement,” ACI Journal, Proceedings, Vol. 79, No. 6. November–December 1982, pp. 484–490.

3-45 B. P. Sinha, Kurt H. Gerstle, and Leonard G. Tulin, “Stress–Strain Relations for Concrete under Cyclic Loading,” ACI Journal, Proceedings, Vol. 61, No. 2, February 1964, pp. 195–212.

3-46 Surendra P. Shah and V. S. Gopalaratnam, “Softening Responses of Plain Concrete in Direct Tension,”

ACI Journal, Proceedings, Vol. 82, No. 3, May–June 1985, pp. 310–323.

3-47 ACI Committee 209, “Report of Factors Affecting Shrinkage and Creep of Hardened Concrete,”

ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 12 pp.

3-48 fib Special Activity Group 5—New Model Code, “Model Code 2010,” Bulletins 55 and 56, International Federation for Structural Concrete (fib), Lausanne, Switzerland, 2010.

3-49 Sidney Mindess, J. Francis Young, and David Darwin, Concrete, 2nd Edition, Pearson Educational—

Prentice Hall, New Jersey, 2003, 644 pp.

3-50 Zedenek P. Bazant, “Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method,” ACI Journal, Proceedings, Vol. 69, No. 4, April 1972, pp. 212–217.

3-51 Walter H. Dilger, “Creep Analysis of Prestressed Concrete Structures Using Creep-Transformed Section Properties,” PCI Journal, Vol. 27, No. 1, January–February 1982, pp. 99–118.

3-52 Amin Ghali and Rene Favre, Concrete Structures: Stresses and Deformations, Chapman & Hall, New York, 1986, 348 pp.

3-53 Structural Effects of Time-Dependent Behaviour of Concrete, Bulletin d’Information, 215, Comité Euro-International du Béton, Laussane, March 1993, pp. 265–291.

3-54 Joint ACI/TMS Committee 216, “Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies, ACI 216.1-07/TMS-0216-07,” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 28 pp.

3-55 Said Iravani, “Mechanical Properties of High-Performance Concrete,” ACI Materials Journal, Vol. 93, No. 5, September–October 1996, pp. 416–426.

3-56 Said Iravani and James G. MacGregor, “Sustained Load Strength and Short-Term Strain Behavior of High-Strength Concrete,” ACI Materials Journal, Vol. 95, No. 5, September–October 1998, pp. 636–647.

3-57 Boris Bresler, “Lightweight Aggregate Reinforced Concrete Columns,” Lightweight Concrete. ACI Publication SP-29, American Concrete Institute, Detroit, 1971, pp. 81–130.

3-58 ACI Committee 544, “State-of-the-Art Report on Fiber Reinforced Concrete (ACI 544.1R-96, reapproved 2002),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 66 pp.

3-59 D.E. Otter and A.E. Naaman, “Fiber Reinforced Concrete Under Cyclic and Dynamic Compressive Loadings,” Report UMCE 88-9, Department of Civil Engineering, University of Michigan, Ann Arbor, MI, 178 pp.

3-60 A.E. Naaman and H.W. Reinhardt, “Characterization of High Performance Fiber Reinforced Cement Composites–HPFRCC,” High Performance Fiber Reinforced Cement Composites 2 (HPFRCC 2), Proceedings of the Second International RILEM Workshop, Ann Arbor, USA, June 1995, Ed.

A.E. Naaman and H.W. Reinhardt, E & FN Spon, London, UK, pp. 1–24.

3-61 A.E. Naaman, “High-Performance Fiber-Reinforced Cement Composites,” Concrete Structures for the Future, IABSE Symposium, Zurich, pp. 371–376.

3-62 G.J. Parra-Montesinos, “Shear Strength of Beams with Deformed Steel Fibers,” Concrete International, Vol. 28, No. 11, pp. 57–66.

3-63 G.J. Parra-Montesinos, “High-Performance Fiber Reinforced Cement Composites: A New Alternative for Seismic Design of Structures,” ACI Structural Journal, Vol. 102, No. 5, September–October 2005, pp. 668-675.

3-64 ACI Committee 201, “Guide to Durable Concrete, (ACI 201.2R-08),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.

3-65 ACI Committee 222, “Protection of Metals in Concrete Against Corrosion (ACI 222R–01),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.

3-66 Adam M. Neville, Properties of Concrete, 3rd Edition, Pitman, 1981, 779 pp.

3-67 PCI Committee on Durability, “Alkali–Aggregate Reactivity—A Summary,” PCI Journal, Vol. 39, No. 6, November–December, 1994, pp. 26–35.

3-68 ACI Committee 515, “A Guide to the Use of Waterproofing, Dampproofing, Protective, and Decorative Barrier Systems for Concrete (ACI 515.R-85),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.

3-69 Monfore, G.E. and Lentz, A.E., Physical Properties of Concrete at Very Low Temperatures,” Journal of the PCA Research and Development Laboratories, Vol. 4, No. 2, May 1962, pp. 33–39.

3-70 ACI Committee 506, “Guide to Shotcrete (ACI 506R-05),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI, 40 pp.

3-71 Neville, Adam M., “A ‘New’ Look at High-Alumina Cement,” Concrete International, August 1998, pp. 51–55.

3-72 Sher Al Mirza and James G. MacGregor, “Variability of Mechanical Properties of Reinforcing Bars,”

Proceedings ASCE, Journal of the Structural Division, Vol. 105, No. ST5, May 1979, pp. 921–937.

3-73 T. Helgason and John M. Hanson, “Investigation of Design Factors Affecting Fatigue Strength of Reinforcing Bars—Statistical Analysis,” Abeles Symposium on Fatigue of Concrete, ACI Publication SP-41, American Concrete Institute, Detroit, 1974, pp. 107–137.

3-74 ACI Committee 215, “Considerations for Design of Concrete Structures Subjected to Fatigue Loading, (ACI 215R-74, revised 1992/Reapproved 1997),” ACI Manual of Concrete Practice, American Concrete Institute, Farmington Hills, MI.

3-75 Mirza, S.A. and MacGregor, J.G., “Strength and Ductility of Concrete Slabs Reinforced with Welded Wire Fabric,” ACI Journal, Proceedings, Vol. 78, No. 5, September–October 1981, pp. 374–380.

3-76 Griezic, A., Cook, W.D., and Mitchell, D., “Tests to Determine Performance of Deformed Welded Wire Fabric Stirrups,” ACI Structural Journal, Vol. 91, No. 2, March–April 1994, pp. 213–219.

3-77 Guimaraes, G.N. and Kreger, M.E., “Evaluation of Joint-Shear Provisions for Interior Beam-Column Connections Using High-Strength Materials,’ ACI Structural Journal, Vol. 89, No. 1, January–February 1992, pp. 89–98.

3-78 ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, (440.1R-06),” ACI Manual of Concrete Practice,American Concrete Institute, Farmington Hills, MI, 43 pp.

Dalam dokumen Book REINFORCED CONCRETE Mechanics and Design (Halaman 121-125)