• Tidak ada hasil yang ditemukan

Proof of Sufficient Conditions ReviewReview

WITHOUT DELTA CONNECTIONS

3.6 Proof of Sufficient Conditions ReviewReview

The existing works [15, 67] prove that the optimal solution of SDP relaxation is of rank 1 in single phase networks. A crucial step in their proof uses the strong duality to show that the product of the primal optimal solutionπ‘Ύβˆ— and the dual matrix π‘¨βˆ— is a zero matrix, and hence the rank ofπ‘Ύβˆ—cannot exceed the dimension of π‘¨βˆ—β€™s null space. Under certain conditions [15, 67] prove that π‘¨βˆ—β€™s null space is of dimension at most 1. Hence the optimal primal solutionπ‘Ύβˆ— must be of rank at most 1.

This argument however breaks down in a multiphase network for the following two reasons. First, although the underlying graph forπ‘šphase network is still a tree, each

3For example, if Re(𝑠

πœ™

𝑗)is minimized in the objective function, then the lower bound of Re(𝑠

πœ™ 𝑗) should not be active in the constraints.

bus now has π‘š different phases and might haveπ‘š unbalanced voltages in general.

If we extend each phase to a separate vertex in the new graph and connect every phase pair between every two neighboring buses, then theπ‘š phase network will be transformed into an (π‘š 𝑛)-node meshed network with multiple cycles [7, 22, 44].

Hence the theory for single-phase radial network is not applicable. Second, in anπ‘š phase network, it is unknown wether the null space of π‘¨βˆ—at the optimal point is still of dimension 1. It is therefore not clear how to prove rank(π‘Ύβˆ—) = 1 via analyzing the dimension of null(π‘¨βˆ—).

In the following argument, we use a similar proof framework to that in [15], but the proof will be based on the eigenvectors ofπ‘Ύβˆ—instead of the dimension of null(π‘¨βˆ—).

From now on, we suppose A1, A2, A3, and A5 hold.

Preliminaries

Our strategy is to prove the exactness of the perturbed OPF problem and then use Lemma 12 to show (3.4) is also exact. It is important to make sure that all the non-active constraints will remain non-active in the perturbation neighborhood.

Lemma 13. For any nonzeroπ‘ͺ1, there exists a positive sequenceπœ€β†“0such that for each πœ€in the sequence, one can collect (πœ‡

πœ™

𝑗(πœ€), πœ‡πœ™

𝑗

(πœ€), πœ‚

πœ™ 𝑗(πœ€), πœ‚πœ™

𝑗

(πœ€)) from at least one of its KKT multiplier tuples satisfying

𝑓𝑝(𝑗 , πœ™)=0 =β‡’ πœ‡πœ™

𝑗(πœ€) =πœ‡πœ™

𝑗

(πœ€) =0 (3.14a)

𝑓𝑝(𝑗 , πœ™) β‰ 0 =β‡’ 𝑓𝑝(𝑗 , πœ™) Β· (πœ‡

πœ™

𝑗(πœ€) βˆ’πœ‡πœ™

𝑗

(πœ€)) β‰₯0 (3.14b) π‘“π‘ž(𝑗 , πœ™)=0 =β‡’ πœ‚

πœ™

𝑗(πœ€) =πœ‚πœ™

𝑗

(πœ€) =0 (3.14c)

π‘“π‘ž(𝑗 , πœ™) β‰ 0 =β‡’ π‘“π‘ž(𝑗 , πœ™) Β· (πœ‚

πœ™

𝑗(πœ€) βˆ’πœ‚πœ™

𝑗

(πœ€)) β‰₯0. (3.14d)

Proof. First consider any positive sequence {πœ€π‘™}∞

𝑙=1such that limπ‘™β†’βˆžπœ€π‘™ =0. Sup- pose the optimal solution to (3.5) underπœ€π‘™is𝑾𝑙(if there are multiple solutions then select one of them). As (3.5b) prescribes a compact set, using a similar argument as in the proof of Lemma 12 we know there must be a subsequence of {πœ€π‘™}∞

𝑙=1, denoted by{πœ€π‘§

𝑑}∞

𝑑=1, such that𝑾𝑧𝑑 converges toπ‘Ύβˆ—in the max norm. The difference

βˆ₯π‘Ύπ‘§π‘‘βˆ’π‘Ύβˆ—βˆ₯∞can be arbitrarily small for sufficiently large𝑑. When𝑑is large enough, the non-active constraints in (3.5b) underπ‘Ύβˆ—will remain non-active under𝑾𝑧𝑑, and

the corresponding KKT multipliers will remain 0. As a result, 𝑓𝑝(𝑗 , πœ™) =0 =β‡’ π‘πœ™

𝑗

< tr(πš½πœ™π‘—π‘Ύβˆ—) < 𝑝

πœ™ 𝑗

=β‡’ π‘πœ™

𝑗

< tr(πš½πœ™π‘—π‘Ύπ‘§π‘‘) < 𝑝

πœ™

𝑗 =β‡’ πœ‡

πœ™ 𝑗(πœ€π‘§

𝑑) =πœ‡πœ™

𝑗

(πœ€π‘§

𝑑) =0, 𝑓𝑝(𝑗 , πœ™) =+1 =β‡’ π‘πœ™

𝑗

< tr(πš½πœ™π‘—π‘Ύβˆ—)

=β‡’ π‘πœ™

𝑗

< tr(πš½πœ™π‘—π‘Ύπ‘§π‘‘) =β‡’ πœ‡πœ™

𝑗

(πœ€π‘§

𝑑) =0

=β‡’ 𝑓𝑝(𝑗 , πœ™) Β· (πœ‡

πœ™ 𝑗(πœ€π‘§

𝑑) βˆ’πœ‡πœ™

𝑗

(πœ€π‘§

𝑑)) β‰₯ 0, 𝑓𝑝(𝑗 , πœ™) =βˆ’1 =β‡’ tr(πš½πœ™π‘—π‘Ύβˆ—) < 𝑝

πœ™ 𝑗

=β‡’ tr(πš½πœ™

𝑗𝑾𝑧𝑑) < 𝑝

πœ™

𝑗 =β‡’ πœ‡

πœ™ 𝑗(πœ€π‘§

𝑑) =0

=β‡’ 𝑓𝑝(𝑗 , πœ™) Β· (πœ‡

πœ™ 𝑗(πœ€π‘§

𝑑) βˆ’πœ‡πœ™

𝑗

(πœ€π‘§

𝑑)) β‰₯0

all hold. A similar argument can also be applied to prove (3.14c) and (3.14d).

Properties of Dual Matrix π‘¨βˆ—(πœ€)

In order to apply Lemma 12, we constructπ‘ͺ1 ∈Cπ‘š π‘›Γ—π‘š 𝑛in the following manner:

[π‘ͺ1]𝑗 𝑗 =0∈Cπ‘šΓ—π‘š, for 𝑗 ∈ V [π‘ͺ1]𝑗 π‘˜ =0∈Cπ‘šΓ—π‘š, for (𝑗 , π‘˜) βˆ‰E.

When (𝑗 , π‘˜) ∈ E, we assume 𝑗 < π‘˜. If neither 𝑗 nor π‘˜ is in So βˆͺ Sc, then we construct[π‘ͺ1]𝑗 π‘˜ =𝒀𝑗 π‘˜.

If 𝑗 ∈ Soβˆͺ Sc, then A3 guarantees π‘˜ βˆ‰Soβˆͺ Sc. βˆ€πœ™ ∈ M, we set [π‘ͺ1]πœ™,:

𝑗 π‘˜ toπ’€πœ™,𝑗 π‘˜:if 𝑐

πœ™ 𝑗 ,r𝑒 =𝑐

πœ™

𝑗 ,iπ‘š = 𝑓𝑝(𝑗 , πœ™) = π‘“π‘ž(𝑗 , πœ™) =0, and to (𝑓𝑝(𝑗 , πœ™) + π‘“π‘ž(𝑗 , πœ™)π’Š)π’€πœ™,𝑗 π‘˜:otherwise.

If π‘˜ ∈ So βˆͺ Sc, then A3 guarantees 𝑗 βˆ‰ So βˆͺ Sc. βˆ€πœ™ ∈ M, we similarly set [π‘ͺ1]:,πœ™

𝑗 π‘˜ to (π’€πœ™,:

π‘˜ 𝑗)H if 𝑐

πœ™ π‘˜ ,r𝑒 = 𝑐

πœ™

π‘˜ ,iπ‘š = 𝑓𝑝(π‘˜ , πœ™) = π‘“π‘ž(π‘˜ , πœ™) = 0, and to (𝑓𝑝(π‘˜ , πœ™) βˆ’ π‘“π‘ž(π‘˜ , πœ™)π’Š) (π’€πœ™,:

π‘˜ 𝑗)Hotherwise.

Finally, we set[π‘ͺ1]π‘˜ 𝑗 := [π‘ͺ1]H

𝑗 π‘˜ for all 𝑗 < π‘˜ to makeπ‘ͺ1Hermitian.

The next theorem provides a key intermediate result to prove Theorem 10. Suppose under suchπ‘ͺ1, the sequence guaranteed by Lemma 13 is{πœ€π‘™}∞

𝑙=1.

Theorem 11. Under A1, A2, A3, and A5, for each πœ€π‘™, the dual matrix π‘¨βˆ—(πœ€π‘™) is G-invertible. 4

4If the KKT multiplier tuple atπœ€π‘™is non-unique, thenπ‘¨βˆ—(πœ€π‘™)is evaluated at the multiplier tuple in Lemma 13 satisfying (3.14).

Proof. The value ofπ‘¨βˆ—(πœ€π‘™)is the same as the right hand side of (3.11) when all dual variables take values at their corresponding KKT multipliers (with respect to πœ€π‘™).

If not otherwise specified, all the (πœ‡

πœ™ 𝑗, πœ‡πœ™

𝑗

, πœ‚

πœ™ 𝑗, πœ‚πœ™

𝑗

) in this proof refer to the tuple in Lemma 13 with respect toπœ€π‘™. Since for allπ‘Žβ‰  𝑏, [π‘¬πœ™π‘—]π‘Ž 𝑏 and[Ξ (πœ…)]π‘Ž 𝑏 are always zero matrices, it is sufficient to show

𝑸:=βˆ‘οΈ

𝑗 ,πœ™

(πœ‡

πœ™ 𝑗 βˆ’πœ‡πœ™

𝑗

)πš½πœ™

𝑗 + (πœ‚

πœ™ 𝑗 βˆ’πœ‚πœ™

𝑗

)πšΏπœ™

𝑗

+π‘ͺ0+πœ€π‘™π‘ͺ1 satisfies the two conditions in Definition 15.5

Forπ‘Ž β‰  𝑏 and (π‘Ž, 𝑏) βˆ‰ E, recall that π‘ͺ0 is the linear combination ofπš½πœ™

𝑗 and πšΏπœ™

𝑗. When (π‘Ž, 𝑏) βˆ‰ E, π’€π‘Ž 𝑏 is a zero matrix and so are all [πš½πœ™

𝑗]π‘Ž 𝑏 and [πšΏπœ™

𝑗]π‘Ž 𝑏. The construction of π‘ͺ1 also guarantees [π‘ͺ1]π‘Ž 𝑏 is all zero. Hence [𝑸]π‘Ž 𝑏 is all zero as well.

Now assumeπ‘Ž < 𝑏. If(π‘Ž, 𝑏) ∈ E, we have [𝑸]π‘Ž 𝑏

=βˆ‘οΈ

πœ™

(πœ‡

πœ™ π‘Žβˆ’ πœ‡πœ™

π‘Ž

+𝑐

πœ™

π‘Ž,r𝑒) [πš½πœ™π‘Ž]π‘Ž 𝑏+ (πœ‚

πœ™ π‘Žβˆ’πœ‚πœ™

π‘Ž

+𝑐

πœ™

π‘Ž,iπ‘š) [πšΏπœ™π‘Ž]π‘Ž 𝑏

+βˆ‘οΈ

πœ™

(πœ‡

πœ™ π‘βˆ’ πœ‡πœ™

𝑏

+𝑐

πœ™

𝑏,r𝑒) [πš½πœ™

𝑏]π‘Ž 𝑏+ (πœ‚

πœ™ π‘βˆ’πœ‚πœ™

𝑏

+𝑐

πœ™

𝑏,iπ‘š) [πšΏπœ™

𝑏]π‘Ž 𝑏

+πœ€π‘™[π‘ͺ1]π‘Ž 𝑏. (3.15)

If neitherπ‘Žnor𝑏is inSoβˆͺ Sc, then by definition, for allπœ™ ∈ M there must be 𝑐

πœ™ π‘Ž,r𝑒 =𝑐

πœ™

π‘Ž,iπ‘š = 𝑓𝑝(π‘Ž, πœ™) = π‘“π‘ž(π‘Ž, πœ™) =0, (3.16a) 𝑐

πœ™ 𝑏,r𝑒 =𝑐

πœ™

𝑏,iπ‘š = 𝑓𝑝(𝑏, πœ™) = π‘“π‘ž(𝑏, πœ™) =0. (3.16b) Equation (3.15) and Lemma 13 imply[𝑸]π‘Ž 𝑏 =πœ€π‘™[π‘ͺ1]π‘Ž 𝑏. By construction,[π‘ͺ1]π‘Ž 𝑏 = π’€π‘Ž 𝑏 is invertible, and so is [𝑸]π‘Ž 𝑏.

If π‘Ž ∈ So βˆͺ Sc, then A3 guarantees 𝑏 βˆ‰ So βˆͺ Sc. Thus (3.16b) holds for all πœ™ ∈ M. For a given πœ™ ∈ M, if (3.16a) holds, then by construction, we have [𝑸]πœ™,:

π‘Ž 𝑏 =πœ€π‘™[π‘ͺ1]πœ™,:

π‘Ž 𝑏 =πœ€π‘™π’€πœ™,:

π‘Ž 𝑏. If (3.16a) does not hold for the givenπœ™, then we have [𝑸]πœ™,:

π‘Ž 𝑏 =(πœ‡

πœ™ π‘Žβˆ’ πœ‡πœ™

π‘Ž

+𝑐

πœ™

π‘Ž,r𝑒+2πœ€π‘™π‘“π‘(π‘Ž, πœ™))π’€πœ™,:

π‘Ž 𝑏

2 + (πœ‚πœ™

π‘Žβˆ’πœ‚πœ™

π‘Ž

+π‘πœ™

π‘Ž,iπ‘š +2πœ€π‘™π‘“π‘ž(π‘Ž, πœ™))π’€π‘Ž π‘πœ™,: 2 π’Š.

5The matrix𝑸 itself might not be G-invertible as 𝑸 might not be positive semidefinite, but π‘¨βˆ—β‰₯0 always holds.

Note that Condition A5 and Lemma 13 imply both {πœ‡

πœ™ π‘Ž βˆ’ πœ‡πœ™

π‘Ž

, 𝑓𝑝(π‘Ž, πœ™), 𝑐

πœ™

π‘Ž,r𝑒} and {πœ‚πœ™

π‘Žβˆ’πœ‚πœ™

π‘Ž

, π‘“π‘ž(π‘Ž, πœ™), π‘πœ™

π‘Ž,iπ‘š}are sign-semidefinite sets, respectively. When (3.16a) does not hold, at least one of {𝑐

πœ™ π‘Ž,r𝑒, 𝑐

πœ™ π‘Ž,iπ‘š

, 𝑓𝑝(π‘Ž, πœ™), π‘“π‘ž(π‘Ž, πœ™)} is non-zero. As a result, there exists some non-zero𝜎

πœ™,:

π‘Ž 𝑏 ∈Csuch that [𝑸]πœ™,π‘Ž 𝑏: =𝜎

πœ™,:

π‘Ž π‘π’€π‘Ž π‘πœ™,:. In short, in the case π‘Ž ∈ Soβˆͺ Sc, [𝑸]πœ™,π‘Ž 𝑏: is always a non-zero multiple ofπ’€π‘Ž π‘πœ™,:. The invertibility ofπ’€π‘Ž 𝑏

indicates all theπ’€π‘Ž π‘πœ™,:are independent forπœ™βˆˆ M, so[𝑸]π‘Ž 𝑏is also invertible.

If 𝑏 ∈ So βˆͺ Sc, then A3 guarantees π‘Ž βˆ‰ So βˆͺ Sc. Then (3.16a) holds for all πœ™ ∈ M. For a given πœ™ ∈ M, if (3.16b) holds, then by construction, we have [𝑸]:,πœ™

π‘Ž 𝑏 =πœ€π‘™[π‘ͺ1]:,πœ™

π‘Ž 𝑏 =πœ€π‘™(π’€πœ™,:

𝑏 π‘Ž)H. If (3.16b) does not hold, then similar to the previous case, there exists some non-zero 𝜎:

,πœ™

π‘Ž 𝑏 ∈ C such that [𝑸]:π‘Ž 𝑏,πœ™ = 𝜎:

,πœ™

π‘Ž 𝑏(𝒀𝑏 π‘Žπœ™,:)H. Hence [𝑸]:π‘Ž 𝑏,πœ™is always a non-zero multiple of(𝒀𝑏 π‘Žπœ™,:)H. The invertibility of𝒀𝑏 π‘Žindicates all the𝒀𝑏 π‘Žπœ™,:are independent forπœ™ ∈ M, so[𝑸]π‘Ž 𝑏 is also invertible.

Proof of Theorem 10

Theorem 11 and Corollary 9 imply that (3.5) is exact under conditions A1, A2, A3, and A5 for anyπœ€. By Lemma 12, Theorem 10 is proved.

3.7 Discussion and Example

Dokumen terkait