25
4. Investigating the surface crystallization of the of heat-treated glass particles, to modify the cross-linking mechanism in the setting reaction, and to improve the mechanical properties of the resultant GPCs.
Next chapter is focused on the structural characterization of the novel Cu- containing glass series and extrapolating their potential to form glass-based adhesives, traditionally known as glass polyalkenoate cement (GPC). The first part of the next chapter describes the chemistry and morphology of the glasses, and the structural effects of Cu incorporation in glass, using DTA, MAS-NMR, XPS. Later on, GPCs will be formulated, and some of the preliminary results regarding the rheological, compressive strength, and antibacterial properties of will be examined.
26
Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2001, 57 (4), 477-484.
11. Barinov, S. M.; Komlev, V. S., Calcium phosphate based bioceramics for bone tissue engineering. Trans Tech Publ: 2008.
12. Downey, P. A.; Siegel, M. I., Bone biology and the clinical implications for osteoporosis. Physical therapy 2006, 86 (1), 77-91.
13. General, O. o. t. S., The basics of bone in health and disease. In Bone Health and Osteoporosis: A Report of the Surgeon General, Office of the Surgeon General (US): 2004.
14. Apt, W. L.; Fierro, J. L.; Calderón, C.; Pérez, C.; Mujica, P., Vertebral hydatid disease: clinical experience with 27 cases. Journal of neurosurgery 1976, 44 (1), 72-76.
15. Maradit Kremers, H.; Larson, D. R.; Crowson, C. S.; Kremers, W. K.;
Washington, R. E.; Steiner, C. A.; Jiranek, W. A.; Berry, D. J., Prevalence of Total Hip and Knee Replacement in the United States. J Bone Joint Surg Am 2015, 97 (17), 1386-1397.
16. Surgeons, A. A. o. O., Projected volume of primary and revision total joint replacement in the US 2030 to 2060. Research News 2018.
17. Mathis, J. M.; Barr, J. D.; Belkoff, S. M.; Barr, M. S.; Jensen, M. E.; Deramond, H., Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. American journal of neuroradiology 2001, 22 (2), 373- 381.
18. Mokhtari S, Wren A (2018) Bioactive glasses 2: Composite bone void fillers, Bioactive Glasses, Elsevier2018, pp. 365-380. doi: https://doi.org/10.1016/B978- 0-08-100936-9.00018-6
19. Lieberman, I.; Dudeney, S.; Reinhardt, M.-K.; Bell, G., Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. spine 2001, 26 (14), 1631-1637.
20. Truumees, E.; Hilibrand, A.; Vaccaro, A. R., Percutaneous vertebral augmentation. The Spine Journal 2004, 4 (2), 218-229.
21. Hulme, P. A.; Krebs, J.; Ferguson, S. J.; Berlemann, U., Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 2006, 31 (17), 1983-2001.
22. Wiles, M. D.; Nowicki, R. W.; Hancock, S. M.; Boszczyk, B., Anaesthesia for vertebroplasty and kyphoplasty. Current Anaesthesia & Critical Care 2009, 20 (1), 38-41.
23. Tsukayama, D. T.; Estrada, R.; Gustilo, R., Infection after total hip arthroplasty. J Bone Joint Surg Am 1996, 78 (4), 512-523.
24. Bozic, K. J.; Kurtz, S. M.; Lau, E.; Ong, K.; Vail, T. P.; Berry, D. J., The
epidemiology of revision total hip arthroplasty in the United States. JBJS 2009, 91 (1), 128-133.
25. Howard, D.; Wall, P.; Fernandez, M.; Parsons, H.; Howard, P., Ceramic-on- ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry. The Bone & Joint Journal 2017, 99 (8), 1012-1019.
27
26. Kavanagh, B. F.; Ilstrup, D. M.; Fitzgerald Jr, R. H., Revision total hip arthroplasty. JBJS 1985, 67 (4), 517-526.
27. Callaghan, J. J.; Albright, J. C.; Goetz, D. D.; Olejniczak, J. P.; Johnston, R. C., Charnley total hip arthroplasty with cement: minimum twenty-five-year follow- up. Jbjs 2000, 82 (4), 487.
28. Sandiford, N.; Jameson, S.; Wilson, M. J.; Hubble, M.; Timperley, A. J.; Howell, J. R., Cement-in-cement femoral component revision in the multiply revised total hip arthroplasty: results with a minimum follow-up of five years. The bone &
joint journal 2017, 99 (2), 199-203.
29. Abdel, M. P.; Ollivier, M.; Parratte, S.; Trousdale, R. T.; Berry, D. J.; Pagnano, M. W., Effect of postoperative mechanical axis alignment on survival and functional outcomes of modern total knee arthroplasties with cement: a concise follow-up at 20 years. JBJS 2018, 100 (6), 472-478.
30. Bergh, M. S.; Gilley, R.; Shofer, F.; Kapatkin, A., Complications and
radiographic findings following cemented total hip replacement. Veterinary and Comparative Orthopaedics and Traumatology 2006, 19 (03), 172-179.
31. Andreykiv, A.; Janssen, D.; Nelissen, R.; Valstar, E., On stabilization of loosened hip stems via cement injection into osteolytic cavities. Clinical Biomechanics 2012, 27 (8), 807-812.
32. Gao, C.; Peng, S.; Feng, P.; Shuai, C., Bone biomaterials and interactions with stem cells. Bone research 2017, 5 (1), 1-33.
33. Kenny, S.; Buggy, M., Bone cements and fillers: a review. Journal of Materials Science: Materials in Medicine 2003, 14 (11), 923-938.
34. Kuehn, K.-D.; Ege, W.; Gopp, U., Acrylic bone cements: composition and properties. Orthopedic Clinics 2005, 36 (1), 17-28.
35. Magnan, B.; Bondi, M.; Maluta, T.; Samaila, E.; Schirru, L.; Dall'Oca, C., Acrylic bone cement: current concept review. Musculoskelet Surg 2013, 97 (2), 93-100.
36. Kuehn, K. D.; Ege, W.; Gopp, U., Acrylic bone cements: composition and properties. The Orthopedic clinics of North America 2005, 36 (1), 17-28, v.
37. Stanczyk, M., Study on modelling of PMMA bone cement polymerisation. J Biomech 2005, 38 (7), 1397-403.
38. Kuehn, K.-D., Bone cements: up-to-date comparison of physical and chemical properties of commercial materials. Springer Science & Business Media: 2012.
39. Provenzano, M. J.; Murphy, K. P.; Riley, L. H., 3rd, Bone cements: review of their physiochemical and biochemical properties in percutaneous vertebroplasty.
AJNR. American journal of neuroradiology 2004, 25 (7), 1286-90.
40. Brauer, D. S.; Gentleman, E.; Farrar, D. F.; Stevens, M. M.; Hill, R. G., Benefits and drawbacks of zinc in glass ionomer bone cements. Biomedical Materials 2011, 6 (4), 045007.
41. Vaishya, R.; Chauhan, M.; Vaish, A., Bone cement. Journal of clinical orthopaedics and trauma 2013, 4 (4), 157-163.
42. Stańczyk, M., Study on modelling of PMMA bone cement polymerisation.
Journal of Biomechanics 2005, 38 (7), 1397-1403.
43. Farrar, D.; Rose, J., Rheological properties of PMMA bone cements during curing. Biomaterials 2001, 22 (22), 3005-3013.
28
44. Lewis, G., Properties of Acrylic Bone Cements:State of the art review. Journal of Biomedical Materials Research 1997, 38, 155-182.
45. Ota, J.; Cook, J. L.; Lewis, D. D.; Tomlinson, J. L.; Fox, D. B.; Cook, C. R.;
Schultz, L. G.; Brumitt, J., Short‐term aseptic loosening of the femoral component in canine total hip replacement: effects of cementing technique on cement mantle grade. Veterinary Surgery 2005, 34 (4), 345-352.
46. Shi, Z.; Neoh, K.; Kang, E.; Wang, W., Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 2006, 27 (11), 2440-2449.
47. Orr, J.; Dunne, N. In Measurement of shrinkage stresses in PMMA bone cement, Applied Mechanics and Materials, Trans Tech Publ: 2004; pp 127-132.
48. Karimzadeh, A.; Ayatollahi, M., Investigation of mechanical and tribological properties of bone cement by nano-indentation and nano-scratch experiments.
Polymer Testing 2012, 31 (6), 828-833.
49. Mousa, W. F.; Kobayashi, M.; Shinzato, S.; Kamimura, M.; Neo, M.; Yoshihara, S.; Nakamura, T., Biological and mechanical properties of PMMA-based
bioactive bone cements. Biomaterials 2000, 21 (21), 2137-2146.
50. Hendriks, J.; Van Horn, J.; Van Der Mei, H.; Busscher, H., Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004, 25 (3), 545-556.
51. Swearingen, M. C.; Granger, J. F.; Sullivan, A.; Stoodley, P., Elution of antibiotics from poly (methyl methacrylate) bone cement after extended
implantation does not necessarily clear the infection despite susceptibility of the clinical isolates. Pathogens and disease 2016, 74 (1).
52. Tyas, M.; Burrow, M., Adhesive restorative materials: a review. Australian dental journal 2004, 49 (3), 112-121.
53. Chen, L.; Shen, H.; Suh, B. I., Bioactive dental restorative materials: a review.
American journal of dentistry 2013, 26 (4), 219-227.
54. Shenoy, A., Is it the end of the road for dental amalgam? A critical review.
Journal of Conservative Dentistry 2008, 11 (3), 99.
55. Davidson, C. L.; Mjör, I. A., Advances in glass-ionomer cements. Quintessence Publishing Co, Inc: 1999.
56. Ladha, K.; Verma, M., Conventional and contemporary luting cements: an overview. The Journal of Indian Prosthodontic Society 2010, 10 (2), 79-88.
57. Khoroushi, M.; Keshani, F., A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer. Dental research journal 2013, 10 (4), 411.
58. Nicholson, J. W., Chemistry of glass-ionomer cements: a review. Biomaterials 1998, 19 (6), 485-494.
59. Mount, G. J., An atlas of glass-ionomer cements: a clinician's guide. CRC Press:
2003.
60. Sidhu, S. K.; Nicholson, J. W., A review of glass-ionomer cements for clinical dentistry. Journal of functional biomaterials 2016, 7 (3), 16.
61. Sidhu, S. K., Glass-ionomers in Dentistry. Springer: 2016.
29
62. Verdonschot, E.; Oortwijn, J.; Roeters, F., Aesthetic properties of three type II glass polyalkenoate (ionomer) cements. Journal of dentistry 1991, 19 (6), 357- 361.
63. Nicholson, J. W.; Wilson, A. D., Acid-Base cements - Their biomedical and industrial applications. Cambridge: 1993; Vol. 3.
64. Lohbauer, U., Dental glass ionomer cements as permanent filling materials?–
properties, limitations and future trends. Materials 2009, 3 (1), 76-96.
65. Nagaraja Upadhya, P.; Kishore, G., Glass ionomer cement: the different generations. Trends Biomater Artif Organs 2005, 18 (2), 158-165.
66. Nicholson, J. W., Chemistry of Glass Ionomer Cements. Biomaterials 1998, 19, 485-494.
67. Xie, D.; Brantley, W.; Culbertson, B.; Wang, G., Mechanical properties and microstructures of glass-ionomer cements. Dental Materials 2000, 16 (2), 129- 138.
68. Williams, J.; Billington, R.; Pearson, G., The comparative strengths of commercial glass-ionomer cements with and without metal additions. British dental journal 1992, 172 (7), 279-282.
69. Smith, D. C., Development of glass-ionomer cement systems. Biomaterials 1998, 19 (6), 467-478.
70. Wan, A. C.; Yap, A. U.; Hastings, G. W., Acid–base complex reactions in resin‐
modified and conventional glass ionomer cements. Journal of biomedical materials research 1999, 48 (5), 700-704.
71. Wilson, A. D., Resin-modified glass-ionomer cements. International Journal of Prosthodontics 1990, 3 (5).
72. Collado-González, M.; Pecci-Lloret, M. R.; Tomás-Catalá, C. J.; García-Bernal, D.; Oñate-Sánchez, R. E.; Llena, C.; Forner, L.; Rosa, V.; Rodríguez-Lozano, F.
J., Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dental Materials 2018, 34 (6), 932-943.
73. Croll, T. P.; Nicholson, J., Glass ionomer cements in pediatric dentistry: review of the literature. Pediatric dentistry 2002, 24 (5), 423-429.
74. Tyas, M. J.; Burrow, M. F., Adhesive restorative materials: a review. Australian dental journal 2004, 49 (3), 112-21; quiz 154.
75. Griffin, S.; Hill, R., Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content. Biomaterials 2000, 21 (4), 399-403.
76. Najeeb, S.; Khurshid, Z.; Zafar, M. S.; Khan, A. S.; Zohaib, S.; Martí, J. M. N.;
Sauro, S.; Matinlinna, J. P.; Rehman, I. U., Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. International journal of molecular sciences 2016, 17 (7), 1134.
77. De Barra, E.; Hill, R., Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content. Biomaterials 2000, 21 (6), 563-569.
78. Hu, Y.; Jiang, X.; Ding, Y.; Ge, H.; Yuan, Y.; Yang, C., Synthesis and
characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials 2002, 23 (15), 3193-3201.
30
79. Nicholson, J. W., Adhesion of glass-ionomer cements to teeth: A review.
International Journal of Adhesion and Adhesives 2016, 69, 33-38.
80. Gjorgievska, E.; Nicholson, J. W.; Gabrić, D.; Guclu, Z. A.; Miletić, I.; Coleman, N. J., Assessment of the Impact of the Addition of Nanoparticles on the Properties of Glass–Ionomer Cements. Materials 2020, 13 (2), 276.
81. Gu, Y.; Yap, A.; Cheang, P.; Khor, K., Effects of incorporation of HA/ZrO 2 into glass ionomer cement (GIC). Biomaterials 2005, 26 (7), 713-720.
82. Moshaverinia, A.; Ansari, S.; Moshaverinia, M.; Roohpour, N.; Darr, J. A.;
Rehman, I., Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia 2008, 4 (2), 432-440.
83. Chen, S.; Cai, Y.; Engqvist, H.; Xia, W., Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates. Biomatter 2016, 6 (1), e1123842.
84. Siqueira, P.-C.; Ana-Paula-Rodrigues Magalhães, W.-C.; Pires, F.-C. P.; Silveira- Lacerda, E.-P.; Carrião, M.-S.; Bakuzis, A.-F.; Souza-Costa, C.-A.; Lopes, L.-G.;
Estrela, C., Cytotoxicity of glass ionomer cements containing silver nanoparticles.
Journal of clinical and experimental dentistry 2015, 7 (5), e622.
85. Porter, G.; Tompkins, G.; Schwass, D.; Li, K.; Waddell, J.; Meledandri, C., Anti- biofilm activity of silver nanoparticle-containing glass ionomer cements. Dental Materials 2020.
86. Nicholson, J. W.; Czarnecka, B., Role of Aluminium in Glass-ionomer Dental Cements and its Biological Effects. Journal of biomaterials applications 2009.
87. Blades, M.; Moore, D.; Revell, P.; Hill, R., In vivo skeletal response and
biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit. Journal of materials science: materials in medicine 1998, 9 (12), 701-706.
88. Polizzi, S.; Pira, E.; Ferrara, M.; Bugiani, M.; Papaleo, A.; Albera, R.; Palmi, S., Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 2002, 23 (6), 761-774.
89. Visser, W.; Van de Vyver, F., Aluminium-induced osteomalacia in severe chronic renal failure (SCRF). Clinical nephrology 1985, 24, S30.
90. Darling, M.; Hill, R., Novel polyalkenoate (glass-ionomer) dental cements based on zinc silicate glasses. Biomaterials 1994, 15 (4), 299-306.
91. Towler, M.; Crowley, C.; Murphy, D.; O'Callaghan, A., A preliminary study of an aluminum-free glass polyalkenoate cement. Journal of materials science letters 2002, 21 (14), 1123-1126.
92. Towler, M.; Kenny, S.; Boyd, D.; Pembroke, T.; Buggy, M.; Hill, R., Zinc ion release from novel hard tissue biomaterials. Bio-medical materials and
engineering 2004, 14 (4), 565-572.
93. Boyd, D.; Li, H.; Tanner, D.; Towler, M.; Wall, J., The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. Journal of Materials Science: Materials in Medicine 2006, 17 (6), 489-494.
94. Boyd, D.; Towler, M., The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. Journal of Materials Science: Materials in Medicine 2005, 16 (9), 843-850.
31
95. Ma, Z. J.; Yamaguchi, M., Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. Journal of bone and mineral metabolism 2001, 19 (1), 38-44.
96. Yamaguchi, M.; Ma, Z. J., Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. Journal of Mineral Metaboilsm 2001, 19, 38-44.
97. Brauer, D. S.; Karpukhina, N.; Kedia, G.; Bhat, A.; Law, R. V.; Radecka, I.; Hill, R. G., Bactericidal strontium-releasing injectable bone cements based on
bioactive glasses. Journal of The Royal Society Interface 2012, rsif20120647.
98. Wren, A.; Hansen, J.; Hayakawa, S.; Towler, M., Aluminium-free glass
polyalkenoate cements: ion release and in vitro antibacterial efficacy. Journal of Materials Science: Materials in Medicine 2013, 24 (5), 1167-1178.
99. Wren, A.; Coughlan, A.; Hall, M.; German, M.; Towler, M., Comparison of a SiO2–CaO–ZnO–SrO glass polyalkenoate cement to commercial dental materials:
ion release, biocompatibility and antibacterial properties. Journal of Materials Science: Materials in Medicine 2013, 24 (9), 2255-2264.
100. Boyd, D.; Towler, M. R.; Watts, S.; Hill, R. G.; Wren, A. W.; Clarkin, O. M., The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. Journal of Materials Science: Materials in Medicine 2008, 19 (2), 953- 957.
101. Wren, A. W.; Boyd, D.; Towler, M. R., The processing, mechanical properties and bioactivity of strontium based glass polyalkenoate cements. J Mater Sci:
Mater Med 2008, 19, 1737-1743.
102. Marie, P. J., Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporosis International 2005, 16, S7-S10.
103. Guida, A.; Towler, M.; Wall, J.; Hill, R.; Eramo, S., Preliminary work on the antibacterial effect of strontium in glass ionomer cements. Journal of materials science letters 2003, 22 (20), 1401-1403.
104. Garcia, L. d. F. R.; Pires-de-Souza, F. d. C.; Teófilo, J. M.; Cestari, A.; Calefi, P.
S.; Ciuffi, K. J.; Nassar, E. J., Synthesis and biocompatibility of an experimental glass ionomer cement prepared by a non-hydrolytic sol-gel method. Brazilian dental journal 2010, 21 (6), 499-507.
105. Wu, C.; Zhou, Y.; Xu, M.; Han, P.; Chen, L.; Chang, J.; Xiao, Y., Copper- containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013, 34 (2), 422-433.
106. Mary, G.; Bajpai, S.; Chand, N., Copper (II) ions and copper nanoparticles‐loaded chemically modified cotton cellulose fibers with fair antibacterial properties.
Journal of Applied Polymer Science 2009, 113 (2), 757-766.
107. Grass, G.; Rensing, C.; Solioz, M., Metallic copper as an antimicrobial surface.
Applied and environmental microbiology 2011, 77 (5), 1541-1547.
108. Romero-Sánchez, L. B.; Marí-Beffa, M.; Carrillo, P.; Medina, M. Á.; Díaz- Cuenca, A., Copper-containing mesoporous bioactive glass promotes
angiogenesis in an in vivo zebrafish model. Acta biomaterialia 2018, 68, 272-285.
32
109. Malhotra, A.; Habibovic, P., Calcium phosphates and angiogenesis: implications and advances for bone regeneration. Trends in Biotechnology 2016, 34 (12), 983- 992.
110. Vimalraj, S.; Rajalakshmi, S.; Preeth, D. R.; Kumar, S. V.; Deepak, T.; Gopinath, V.; Murugan, K.; Chatterjee, S., Mixed-ligand copper (II) complex of quercetin regulate osteogenesis and angiogenesis. Materials Science and Engineering: C 2018, 83, 187-194.
111. Bari, A.; Bloise, N.; Fiorilli, S.; Novajra, G.; Vallet-Regí, M.; Bruni, G.; Torres- Pardo, A.; González-Calbet, J. M.; Visai, L.; Vitale-Brovarone, C., Copper- containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta biomaterialia 2017, 55, 493-504.
112. Wang, X.; Cheng, F.; Liu, J.; Smått, J.-H.; Gepperth, D.; Lastusaari, M.; Xu, C.;
Hupa, L., Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta biomaterialia 2016, 46, 286-298.
113. Lin, R.; Deng, C.; Li, X.; Liu, Y.; Zhang, M.; Qin, C.; Yao, Q.; Wang, L.; Wu, C., Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory
phenotype and regeneration of cartilage/bone interface. Theranostics 2019, 9 (21), 6300.
114. Popescu, R.; Magyari, K.; Vulpoi, A.; Trandafir, D.; Licarete, E.; Todea, M.;
Ştefan, R.; Voica, C.; Vodnar, D.; Simon, S., Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomaterials science 2016, 4 (8), 1252- 1265.
115. Bernhardt, A.; Schamel, M.; Gbureck, U.; Gelinsky, M., Osteoclastic
differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+
and Cr3+ incorporated into calcium phosphate bone cements. PloS one 2017, 12 (8), e0182109.
116. Jacobs, A.; Pr, G. R.; Forestier, C.; Nedelec, J.-M.; Descamps, S., Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomaterialia 2020.
117. Mokhtari, S.; Wren, A.W. Copper Containing Glass-Based Bone Adhesives for Orthopaedic Applications: Glass Characterization and Advanced Mechanical Evaluation. bioRxiv 2020.11.19.390138. doi: 10.1101/2020.11.19.390138
33
3 Copper containing Glass Polyalkenoate Cements based on SiO
2-ZnO-CaO-SrO-P
2O
5Glasses:
Glass Characterization, Physical and Antibacterial Properties
Journal of Materials Science 52 (15), 8886–8903 DOI 10.1007/s10853-017-0945-5
S. Mokhtari1, K.D. Skelly1, E.A. Krull2, A. Coughlan2, N.P. Mellott3, Y. Gong1, R. Borges4,
*A.W. Wren1.
1 Kazuo Inamori School of Engineering, Alfred University, Alfred NY, USA.
2 Department of Bioengineering,University of Toledo, Toledo, OH, USA.
3 Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
4Department of Materials Science and Engineering, Universidade Federal do ABC, Sao Paulo, Brazil.
Keywords: Glass Polyalkenoate Cement, Copper, Bioglass, Antibacterial, MAS-NMR.
*Address for Correspondence:
Dr. Anthony William Wren
Kazuo Inamori School of Engineering, Alfred University,
Alfred,
New York 14802, USA.
Tel: 607-871-2183 Email: [email protected]
34