REFERENCES
45
Cohen, J., 1988. Statistical power analysis for the behavioral sciences. 2nd ed. Lawrence Erlbaum.
Cohen, M. et al., 2011. Sentiment Analysis in Microblogging : A Practical Implementation State of the Art. pp.191--200.
Conover, M.D. et al., 2011. Predicting the Political Alignment of Twitter Users.
Cothrel, & Esposito, , 2011. A Case Study in Social Media Measurement: Vistaprint. WOMMA.
Dancey, C. & Reidy, , 2004. Statistics without Maths for Psychology: using SPSS for Windows. London:
Prentice Hall.
Das, S. & Chen, M., 2007. Yahoo! for Amazon: Sentiment extraction from small talk on the web.
Davis, J.A., 1971. Elementary survey analysis. NY: Prentice-Hall.
Dellarocas, C.N., 2003. The digitization of word - of - mouth: Promise and challenges of online reputation mechanisms.. Management Science , 49(10), pp.1407 - 1424.
Dellarocas, C.N., 2006. Strategic manipulation of internet online forums: Implications for consumers and firms.. Management Science, 52(10), pp.1577 - 1593.
Dellarocas, C., Zhang, & Awad, N., 2007. Exploring the value of online product reviews in forecasting sales: the case of motion pictures. 21, pp.23-46.
Di Caro, L. & Grella, M., 2013. Sentiment analysis via dependency parsing. Computer Standards &
Interfaces, pp.442--453.
Dijkman, R.M., 2014. Using Twitter to Predict Sales: A Case Study.
Ding, X., Liu, B. & Yu, P., 2008. A holistic lexicon-based approach to opinion mining. ACM WSDM.
Fan, R.-E. et al., 2008. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research 9, pp.1871-1874.
Field, M., Nguyen, L.T., Wu, P. & Chan, W., 2012. Predicting Collective Sentiment Dynamics from Time- series Social Media Categories and Subject Descriptors.
Fiske, S.T., 1980. Attention and weight in person perception: The impact of negative and extreme behavior. Journal of Personality and Social Psychology, 38(6), pp.889--906.
Gayo-avello, D., 2012. I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper? A Balanced Survey on Election Prediction using Twitter Data. pp.1--13.
Giannakopoulos, G. et al., 2012. Representation Models for Text Classification : a comparative analysis over three Web document types Categories and Subject Descriptors.
Gokulakrishnan, B. et al., 2012. Opinion Mining and Sentiment Analysis on a Twitter Data Stream.
pp.182--188.
Hair Jr., J., Bush, & Ortinau, , 2008. Marketing Research. McGraw-Hill Companies.
REFERENCES
46
Hair Jr, F., Black , , Babin, B. & Anderson, , 2009. Multivariate Data Analysis. 7th ed. Pearson Prentice Hall.
Hatzivassiloglou, V. & McKeown, K., 1997. Predicting the semantic orientation of adjectives.
Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics.
Herr, M.P., Kardes, R.F. & Kim, J., 1991. Effects of Word-of-Mouth and Product-Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective. Journal of Consumer Research, pp.454-62.
Hogenboom, et al., 2014. Multi-lingual support for lexicon-based sentiment analysis guided by semantics. Elsevier.
Hopkins, , 1997. A New View of Statistics. Internet Society for Sport Science.
Hu, M. & Liu, B., 2004. Mining and summarizing customer reviews. Conference on Knowledge Discovery and Data Mining.
Iverac, M., 2009. The upside of bad online customer reviews. [Online] Available at:
http://www.forbes.com/2009/08/04/bad-customer-reviews-entrepreneurs-management- ebags.html [Accessed 2014].
Jedrzejewski, K. & Morzy, M., 2011. Opinion Mining and Social Networks: A Promising Match.
International Conference on Advances in Social Networks Analysis and Mining, pp.599–604.
Jiang, et al., 2013. Every Term Has Sentiment: Learning from Emoticon Evidences for Chinese Microblog Sentiment Analysis. Natural Language Processing and Chinese Computing; Communications in Computer and Information Science, 400, pp.224-235.
Jindal, N. & Liu, B., 2006. Mining comparative sentences and relations.
Kane, G. & Fichman, R., 2009. Community relations 2.0. Harvard business.
Keane, R., 2014. Quarterly Review FY14Q2.
Khan, A. & Baharudin, B., 2011. Sentiment Classification Using Sentence-level Semantic Orientation of Opinion Terms from Blogs.
Khan, M.A.H., Iwai, M. & Sezaki, K., 2012. Towards Urban Phenomenon Sensing by Automatic Tagging of Tweets. Ninth International Conference on Networked Sensing (INSS), pp.1-7.
Khuc, V.N., Shivade, C., Ramnath, R. & Ramanathan, J., 2012. Towards building large-scale distributed systems for twitter sentiment analysis. Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC '12, p.459.
Kim, S. & Hovy, E., 2004. Determining the sentiment of opinions. COLING '04.
Kitchenham, B., 2004. Procedures for performing systematic reviews. Keele, UK, Keele University.
Koppel, M. & Schler, J., 2006. The Importance of Neutral Examples for Learning Sentiment.
Computational Intelligence 22(2), pp.100-09.
REFERENCES
47
Kouloumpis, E., Wilson, T. & Moore, J., 2011. Twitter sentiment analysis: The Good the Bad and the OMG!.
KPMG Advisory N.V., 2013. Social media - playtime is over. KPMG.
Lee, K. et al., 2011. Twitter Trending Topic Classification. 2011 IEEE 11th International Conference on Data Mining Workshops, pp.251--258.
Li, Y.-m., 2011. Deriving Marketing Intelligence over Microblogs. 44th Hawaii International Conference on System Sciences, pp.1--10.
Li, J. et al., 2011. Semantic Web and Web Science. pp.1--10.
Liu, B., 2011. Web data mining.
Lucking-Reiley, D., Bryan, D., Prasad, N. & Reeves, D., 2007. Pennies from eBay: The Determinants of Price in Online Auctions. Journal of Industrial Economics, 55(2), pp.223-33.
Martinez-Camara, E., Martín-Valdivia, M.T., López, L.A.U. & Ráez, A.M., 2012. Sentiment Analysis in Twitter. Natural Language Engineering, 20(01), pp.1–28.
Matsuo, & Ishizuka , , 2004. Keyword Extraction From A Single Document Using Word Co-Occurrence Statistical Information. International Journal on Artificial Intelligence Tools.
Milton, N.R., 2007. Knowledge acquisition in practice. Springer.
Mishra, & Jha, C.K., 2012. Classification of Opinion Mining Techniques. International Journal of Computer Applications, 56(13), pp.0975–8887.
Morinaga, S., Yamanishi, K., Tateishi, K. & Fukushima, T., 2002. Mining product reputations on the web. ACM SIGKDD international conference on Knowledge discovery and data mining.
Newcom research and consultancy, 2014. Social media in perspectief: liken, liken, niet kopen.
Ng, V., Dasgupta, S. & Arifin, S., 2006. Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. Proceedings of the COLING.
Ohsawa, Y., Benson, N.E. & Yachida, M., 1998. KeyGraph: automatic indexing by co-occurrence graph based on building construction metaphor. Research and Technology Advances in Digital Libraries, pp.12 - 18.
Palanisamy, P., Yadav, V. & Elchuri, H., 2013. Serendio: Simple and Practical lexicon based approach to Sentiment Analysis. Second Joint Conference on Lexical and Computational Semantics.
Pang, B., Lee, L., Rd, H. & Jose, S., 2002. Thumbs up ? Sentiment Classification using Machine Learning Techniques. Proceedings of EMNLP, pp.79--86.
Platt, J.C., 1998. Sequential Minimal Optmization: A fast algorithm for training support vector machines. Microsoft research technical report.
REFERENCES
48
Porter, M.F., 1980. An Algorithm for Suffix Stripping. Program: electronic library and information systems.
Prabowo, R. & Thelwall, M., 2009. Sentiment analysis: A combined approach. Journal of Informetrics, pp.143--157.
Reckman, et al., 2014. Summarizing and Highlighting Differences in Senate Race Data Using SAS Sentiment Analysis. SAS Institute Inc., 39.
Reyes, A., Rosso, P. & Veale, T., 2012. A multidimensional approach for detecting irony in Twitter.
Language Resources and Evaluation, pp.105--112.
Riloff, E. & Wiebe, J., 2003. Learning extraction patterns for subjective expressions. Proceedings of the 2003 conference on Empirical methods in natural language processing, pp.105--112.
Selmer, Ø. & Brevik, M., 2013. Classification and Visualisation of Twitter Sentiment Data Mikael Brevik.
Shah, K., Munshi, N. & Reddy, P., 2013. Sentiment Analysis and Opinion Mining of Microblogs. CS 583 - Data Mining and Text Mining.
Sharma, A. & Dey, S., 2012. Performance Investigation of Feature Selection Methods and Sentiment Lexicons for Sentiment Analysis. pp.15-20.
Shin, , Hanssens, , Kim, & Choe, , 2013. Positive versus Negative e-Sentiment and the Market Performance of High-Tech Products. Marketing Science Institute, pp.13-123.
Shoukry, A. & Rafea, A., 2012. Sentence-level Arabic sentiment analysis. 2012 International Conference on Collaboration Technologies and Systems (CTS), pp.546--550.
Smith, L.M., Zhu, L., Lerman, K. & Kozareva, Z., 2013. The Role of Social Media in the Discussion of Controversial Topics. 2013 International Conference on Social Computing, pp.236--243.
Social Media Monitor, 2013. SMM6.
Sofean, M., Denecke, K., Stewart, A. & Smith, M., 2012. Medical Case-Driven Classification of Microblogs : Characteristics and Annotation Categories and Subject Descriptors. pp.513--521.
Strategy&, 2011. ‘Social Media Survey Report, A Dutch Company Perspective.
Taboada, M., Brooke, J. & Tofiloski, M., 2011. Lexicon-based methods for sentiment analysis.
Tang, H., Tan, S. & Cheng, X., 2009. A survey on sentiment detection of reviews. Expert Systems with Applications, pp.10760--10773.
Tan, S. & Zhang, J., 2008. An empirical study of sentiment analysis for chinese documents. Expert Systems with Applications, pp.2622--2629.
Tong, R., 2001. An operational system for detecting and tracking opinions in on-line discussion.
Proceedings of the ACM SIGIR Workshop on Operational Text Classification.
TRES, 2011. Enquête social media.
REFERENCES
49
Tsytsarau, M. & Palpanas, T., 2011. Survey on mining subjective data on the web. Data Mining and Knowledge Discovery, pp.478--514.
Tumasjan, A., Sprenger, T.O., Sandner, P.G. & Welpe, I.M., 2010. Predicting Elections with Twitter : What 140 Characters Reveal about Political Sentiment. pp.178--185.
Tuohig, B., 2012. Using Sentiment Analysis To Make Net Promoter Programs More Actionable. San Francisco, CA: Sentiment Analysis Symposium JD Power and Associates.
Vaynerchuk, G., 2009. Crush it!: why now is the time to cash in on your passion.
Velthoven, S.T.M.v., 2014. Sentiment analysis in Twitter.
Visser, H.M. & Goor, A.R.v., 2011. Werken met Logistiek. Noordhoff Uitgevers B.V.
VistaWiki, 2014. BHAG. [Online] Available at: http://vistawiki.vistaprint.net/wiki/BHAG.
Waikato, U.o., 2014. Waikato Environment for Knowledge Analysis. [Online] Available at:
http://www.cs.waikato.ac.nz/ml/weka/.
Wang, F. & Carley, K., 2007. Social computing: From social informatics to social intelligence. Intelligent Systems, IEEE.
Wang, W., Chen, L., Thirunarayan, K. & Sheth, A.P., 2012. Harnessing Twitter Big Data" for Automatic Emotion Identification". 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, pp.587--592.
Wu, C., Chuang, Z. & Lin, Y., 2006. Emotion recognition from text using semantic labels and separable mixture models. ACM transactions on Asian language.
Yi, J. & Nasukawa, T., 2003. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. Data Mining.
Yu, S. & Kak, S., 2012. A Survey of Prediction Using Social Media. pp.1--20.
Zhang, K. et al., 2011. SES: Sentiment Elicitation System for Social Media Data. 2011 IEEE 11th International Conference on Data Mining Workshops, pp.129--136.
Zhang, L. et al., 2011. Combining Lexicon-based and Learning-based Methods for Twitter Sentiment Analysis.