• Tidak ada hasil yang ditemukan

Chapter VIII: One-loop Modification (Massive)

8.5 Results for Quantum Diagrams

As we attempted the calculation of the box and crossed box diagrams, two issues arose. Firstly, we were unable to calculate theπΆπœ‡ πœˆπ›Ό 𝛽𝛾 integral that we needed for this amplitude. The calculation, which boiled down to solving an arbitrary system

of 12 equations for 12 variables, used over 12GB of RAM from the computer that we were using and still did not finish the calculation.

Additionally, we realized that our method of solving these integrals was for integrals in a specific form that held for all of the integrals except for those used in the box and crossed box diagrams. Specifically, the triangle integrals needed to be in the form

∫ 𝑑4β„“ (2πœ‹)4

𝐷(β„“, 𝑝1, ..., π‘š1, ...) (β„“2βˆ’π‘š2

1) ( (ℓ±𝑝1) βˆ’π‘š2

2) ( (ℓ±𝑝2) βˆ’π‘š2

3) (8.16)

However, since the diagrams have a fourth propagator, and thereby a third momentum 𝑝3, the Feyncalc function ScalarProductCancel put the triangle integrals into a form more like

∫ 𝑑4β„“ (2πœ‹)4

𝐷(β„“, 𝑝1, ..., π‘š1, ...) (β„“2βˆ’π‘š2

1) ( (β„“Β± 𝑝1Β± 𝑝3) βˆ’π‘š2

2) ( (β„“Β± 𝑝2±𝑝3) βˆ’π‘š2

3) (8.17) Thus, in order to continue to use the Passerino-Veltman decomposition, we would need to include all the permutations of including 𝑝3in the solution for the integral.

While not physically impossible, this dramatically increases the number of coef- ficients needing to be solved for. In fact, in this method, when we tried to solve for πΆπœ‡ πœˆπ›Ό, it required a system of 13 equations with 13 variables. Since we had already not been able to solve the system of 12 equations and variables, we knew that these calculations were simply infeasible given our limited resources. Once we realized this, we knew we would be unable to finish the quantum amplitude calcu- lations. However, even though we were unable to calculate the full modification to the quantum potential due to the difficulties with the box and crossed box diagrams, we were still able to make excellent progress on this calculation. We here list the uncontracted amplitudes for the box and crossed box diagrams as well as the full amplitudes and potentials for all the other quantum diagrams.

The Box and Crossed Box Diagrams

Unfortunately, due to the extra complication of the various integrals needed by these two diagrams, we were unable to find the full contracted and simplified amplitudes.

We here show the uncontracted versions 𝑖 𝑀2π‘Ž =

∫ 𝑑4𝑙 (2πœ‹)4𝜏

πœ‡ 𝜈

1 (π‘˜1, π‘˜1+𝑙 , π‘š1)𝜏

𝜌 𝜎

1 (π‘˜1+𝑙 , π‘˜2, π‘š1)𝜏

𝛼 𝛽

1 (π‘˜3, π‘˜3βˆ’π‘™ , π‘š2)𝜏

𝛾 𝛿

1 (π‘˜3βˆ’π‘™ , π‘˜4, π‘š2)

Γ—

"

𝑖 (π‘˜1+𝑙)2βˆ’π‘š2

1

# "

𝑖 (π‘˜3βˆ’π‘™)2βˆ’π‘š2

2

#

𝑖 π‘ƒπ‘šπœ‡ πœˆπ›Ό 𝛽 𝑙2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœŒ 𝜎 𝛾 𝛿 (𝑙+π‘ž)2βˆ’π‘š2

(8.18) 𝑖 𝑀2𝑏 =

∫ 𝑑4𝑙 (2πœ‹)4𝜏

πœ‡ 𝜈

1 (π‘˜1, π‘˜1+𝑙 , π‘š1)𝜏

𝜌 𝜎

1 (π‘˜1+𝑙 , π‘˜2, π‘š1)𝜏

𝛾 𝛿

1 (π‘˜3, π‘˜4+𝑙 , π‘š2)𝜏

𝛼 𝛽

1 (π‘˜4+𝑙 , π‘˜4, π‘š2)

Γ—

"

𝑖 (π‘˜1+𝑙)2βˆ’π‘š2

1

# "

𝑖 (π‘˜3βˆ’π‘™)2βˆ’π‘š2

2

#

𝑖 π‘ƒπ‘šπœ‡ πœˆπ›Ό 𝛽 𝑙2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœŒ 𝜎 𝛾 𝛿 (𝑙+π‘ž)2βˆ’π‘š2

(8.19) The Double-Seagull Diagram

Given the change to a massive graviton, the new uncontracted amplitude for the double-seagull diagram (see 6.3) takes the form

𝑀4π‘Ž(π‘ž) = 1 2!

∫ 𝑑4𝑙 (2πœ‹)4𝜏

𝛼 𝛽𝛾 𝛿

2 (π‘˜1, π‘˜2, π‘š1)𝜏

πœ‡ 𝜈 𝜎 𝜌

2 (π‘˜3, π‘˜4, π‘š2)

𝑖 π‘ƒπ‘šπ›Ύ π›ΏπœŽ 𝜌 𝑙2βˆ’π‘š2

𝑖 π‘ƒπ‘šπ›Ό 𝛽 πœ‡ 𝜈 (𝑙+π‘ž)2βˆ’π‘š2

(8.20) We note the inclusion of the symmetry factor 1/2! due to the symmetry of the diagram. We were able to simplify the amplitude via Mathematica and remove all analytic and higher order nonanalytic terms. Under the nonrelativistic approxima- tion, the amplitude takes the form

𝑖 𝑀4π‘Ž =βˆ’32𝑖𝐺2 45π‘ž2

271π‘š2π‘š1π‘š2log

βˆ’π‘š2 π‘ž2

βˆ’168π‘š2π‘š1π‘š2

+ 2𝑖𝐺2 135π‘š1π‘š2

11595π‘š2

1π‘š2

2βˆ’1296π‘š2π‘š2

1βˆ’4926π‘š2π‘š1π‘š2+1948π‘š2π‘š1π‘š2

βˆ’1296π‘š2π‘š2

2

log

βˆ’π‘š2 π‘ž2

(8.21) With a Fourier transform, we derive the contribution to the potential for the double seagull diagram

𝑉4π‘Ž = 8672𝐺2π‘š2π‘š1π‘š2 45

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2 π‘ž2

βˆ’ 1344 45π‘ž2

𝐺2π‘š2π‘š1π‘š2 π‘Ÿ

+ 𝐺2

135π‘š1π‘š2πœ‹π‘Ÿ3

11595π‘š2

1π‘š2

2βˆ’1296π‘š2π‘š2

1βˆ’4926π‘š2π‘š1π‘š2 +1948π‘š2π‘š1π‘š2βˆ’1296π‘š2π‘š2

2

(8.22)

The Fully Quantum Vertex Correction Diagrams

We next examine the two vertex correction diagrams (see 5.cd in 6.4) which only contribute to the quantum portion of the amplitude and potential. Again, the changes to the uncontracted amplitude are minor and we still include the symmetry factor 1/2!.

𝑀5𝑐(π‘ž) = 1 2!

∫ 𝑑4𝑙 (2πœ‹)4𝜏

πœ† πœ… πœ™πœ–

2 (π‘˜3, π‘˜4, π‘š2)𝜏

𝛼 𝛽

1 (π‘˜1, π‘˜2, π‘š1)𝜏(𝛾 𝛿)

πœ‡ 𝜈 𝜌 𝜎 3 (𝑙 ,βˆ’π‘ž)

Γ—

𝑖 π‘ƒπ‘šπœ‡ πœˆπœ† πœ…

𝑙2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœŽ 𝜌 πœ™πœ– (𝑙+π‘ž)2βˆ’π‘š2

𝑖 π‘ƒπ‘šπ›Ό 𝛽𝛾 𝛿 π‘ž2βˆ’π‘š2

(8.23) 𝑀5𝑑(π‘ž) = 1

2!

∫ 𝑑4𝑙 (2πœ‹)4𝜏

𝜌 𝜎 πœ‡ 𝜈

2 (π‘˜1, π‘˜2, π‘š1)πœπœ† πœ…

1 (π‘˜3, π‘˜4, π‘š2)𝜏(

πœ™πœ–)𝛼 𝛽𝛾 𝛿 3 (βˆ’π‘™ , π‘ž)

Γ—

𝑖 π‘ƒπ‘šπœ‡ 𝜈 𝛾 𝛿

𝑙2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœŽ πœŒπ›Ό 𝛽 (𝑙+π‘ž)2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœ† πœ… πœ™πœ– π‘ž2βˆ’π‘š2

(8.24) These two diagrams simplify dramatically once run through the Mathematica pipeline. The nonrelativistic, Taylor expanded amplitudes become

𝑀5𝑐 = 8𝑖𝐺2 405 π‘ž2βˆ’π‘š2

4496π‘š2π‘š1π‘š2log

βˆ’π‘š2 π‘ž2

+2145π‘š2π‘š1π‘š2

(8.25) 𝑀5𝑑 = 8𝑖𝐺2

405 π‘ž2βˆ’π‘š2

5922π‘š2π‘š1π‘š2log

βˆ’π‘š2 π‘ž2

+85π‘š2π‘š1π‘š2

(8.26) We can then Fourier transform the expression to get the quantum contribution to the potential

𝑉5𝑐 =βˆ’35968𝐺2π‘š2π‘š1π‘š2 405

∫ 𝑑3π‘ž (2πœ‹)3

𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2

π‘ž2βˆ’π‘š2 + 286 27πœ‹

𝐺2π‘š2π‘š1π‘š2π‘’βˆ’π‘šπ‘Ÿ π‘Ÿ

(8.27) 𝑉5𝑑 =βˆ’47376𝐺2π‘š2π‘š1π‘š2

405

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2 π‘ž2βˆ’π‘š2 + 34

81πœ‹

𝐺2π‘š2π‘š1π‘š2π‘’βˆ’π‘šπ‘Ÿ π‘Ÿ

(8.28) Adding the two potentials together, we get

𝑉5𝑐+5𝑑 =βˆ’83344𝐺2π‘š2π‘š1π‘š2 405

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2

π‘ž2βˆ’π‘š2 + 892 81πœ‹

𝐺2π‘š2π‘š1π‘š2π‘’βˆ’π‘šπ‘Ÿ π‘Ÿ

(8.29) The Vacuum Polarization Diagrams

Now for the vacuum polarization diagrams, we are no longer able to use the vacuum polarization tensor as we did for the massless case. Instead, we separately calculate

the two vacuum polarization diagrams with a graviton and ghost loop, respectively (see 6.5). For the ghost loop diagram, we use the massless ghost propagator and the 2ghost-graviton vertex factor gotten from Holstein as seen in Appendix A [21]. The uncontracted amplitudes take the form seen below

𝑀6π‘Ž(π‘ž) = 1 2!

∫ 𝑑4 (2πœ‹)4𝜏

𝜌 𝜎

1 (π‘˜1, π‘˜2, π‘š1)𝜏

πœ†πœ‚π›Ό 𝛽

3 πœ™πœ–(βˆ’β„“,βˆ’π‘ž)𝜏

πœ‡ πœˆπœ“ πœ‰

3 πœ„πœƒ(𝑙 , π‘ž)𝜏

𝛾 𝛿

1 (π‘˜3, π‘˜4, π‘š2)

Γ—

𝑖 π‘ƒπ‘šπœŒ πœŽπœ†πœ‚ π‘ž2βˆ’π‘š2

𝑖 π‘ƒπ‘šπ›Ό π›½πœ“ πœ‰ (β„“+π‘ž)2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœ™πœ– πœ„πœƒ (βˆ’β„“)2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœ‡ 𝜈 𝛾 𝛿 π‘ž2βˆ’π‘š2

(8.30) 𝑀6𝑏(π‘ž) = 1

2!

∫ 𝑑4 (2πœ‹)4𝜏

𝜌 𝜎

1 (π‘˜1, π‘˜2, π‘š1)𝜏

πœ†πœ‚π›Ό πœ™

𝑔 πœ™πœ–(βˆ’β„“,βˆ’π‘ž)𝜏

πœ‡ 𝜈 π›½πœ–

𝑔 πœ„πœƒ(𝑙 , π‘ž)𝜏

𝛾 𝛿

1 (π‘˜3, π‘˜4, π‘š2)

Γ—

𝑖 π‘ƒπ‘šπœŒ πœŽπœ†πœ‚

π‘ž2βˆ’π‘š2

π‘–πœ‚π›Ό 𝛽 (β„“+π‘ž)2βˆ’π‘š2

π‘–πœ‚πœ™πœ– (βˆ’β„“)2βˆ’π‘š2

𝑖 π‘ƒπ‘šπœ‡ 𝜈 𝛾 𝛿 π‘ž2βˆ’π‘š2

(8.31) After undergoing contraction and simplification, we integrate and Taylor expand.

We note that the ghost is massless, so we use the integrals from [5] instead of our newly calculated ones. The simplified version of the amplitudes take the form

𝑖 𝑀6π‘Ž = 𝑖𝐺2 405 π‘ž2βˆ’π‘š2

54469π‘š2π‘š1π‘š2log

βˆ’π‘š2 π‘ž2

+4124π‘š2π‘š1π‘š2

(8.32) 𝑖 𝑀6𝑏 =βˆ’56𝑖𝐺2π‘š2π‘š1π‘š2

45 π‘ž2βˆ’π‘š2 log

βˆ’π‘ž2

(8.33) With a Fourier transform, these expressions become the expected potential terms

𝑉6π‘Ž =βˆ’54469𝐺2π‘š2π‘š1π‘š2 405

∫ 𝑑3π‘ž (2πœ‹)3

𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2

π‘ž2βˆ’π‘š2 + 1031 405πœ‹

𝐺2π‘š2π‘š1π‘š2π‘’βˆ’π‘šπ‘Ÿ π‘Ÿ

(8.34) 𝑉6𝑏 =βˆ’56𝐺2π‘š2π‘š1π‘š2

45

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2

π‘ž2βˆ’π‘š2 (8.35)

C h a p t e r 9

FUTURE WORK

While we have found a satisfying end to this project, there are many more avenues down which it can be taken in the future. While we do not expect the quantum terms to contribute majorly to calculations of black hole inspirals, it is possible that they could be larger than expected. It is thus important to finish running all of the quantum diagrams through our Mathematica pipeline. In order to finish the last two diagrams, the box and cross box, we would need to calculate all the integrals which we could not find before. This would probably require a computer with more processing power and memory than the one we were using. By finishing this calculation, we would thus be able to compare both the classical and quantum terms to those in the massless graviton case and see how their dynamics differ.

Once this calculation is finished, the next step would be to create inspiral models from these potential terms and apply them to LIGO data. By comparing their predictions, it is possible to test the theory of massive gravity against general relativity to see which one fits the physical data better.

One way to confirm our results would be to rederive these amplitudes and thereby potentials via color-kinematic duality between gluons and gravitons. This provides a method to simplify the calculation, while also independently confirm our results.

We discussed this option further in Appendix E.

Another possible path forward would be to include extra interactions that would be suggested by the massive graviton theory. Since a massive graviton is predicted in multiple theories beyond the Standard Model, it could be important to add the other particle interactions and see how that might change the resultant potential. It would thereby produce a good means of testing some of these theories in addition to the basic massive gravity theory.

BIBLIOGRAPHY

[1] Yashar Akrami, S.F. Hassan, Frank KΓΆnnig, Angnis Schmidt-May, and Adam R. Solomon. Bimetric gravity is cosmologically viable. Phys. Lett.

B, 748:37–44, 2015. doi: 10.1016/j.physletb.2015.06.062.

[2] Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, and Mao Zeng. Black Hole Binary Dynamics from the Double Copy and Effective Theory. JHEP, 10:206, 2019. doi: 10.1007/JHEP10(2019)206.

[3] L. Bernus, O. Minazzoli, A. Fienga, M. Gastineau, J. Laskar, and P. De- ram. Constraining the mass of the graviton with the planetary ephemeris INPOP. Phys. Rev. Lett., 123(16):161103, 2019. doi: 10.1103/PhysRevLett.

123.161103.

[4] N. Bjerrum-Bohr, John Donoghue, and B. Holstein. Quantum corrections to the schwarzschild and kerr metrics. Physical Review D, 68, 11 2002. doi:

10.1103/PhysRevD.68.084005.

[5] N. E. J Bjerrum-Bohr, John F. Donoghue, and Barry R. Holstein. Quan- tum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev., D67:084033, 2003. doi: 10.1103/PhysRevD.71.069903, 10.1103/PhysRevD.67.084033. [Erratum: Phys. Rev.D71,069903(2005)].

[6] D.G. Boulware and Stanley Deser. Can gravitation have a finite range? Phys.

Rev. D, 6:3368–3382, 1972. doi: 10.1103/PhysRevD.6.3368.

[7] Clifford Cheung. TASI Lectures on Scattering Amplitudes. In Proceed- ings, Theoretical Advanced Study Institute in Elementary Particle Physics : Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boul- der, CO, USA, June 6-July 1, 2016, pages 571–623, 2018. doi: 10.1142/

9789813233348_0008.

[8] S.R. Choudhury, Girish C. Joshi, S. Mahajan, and Bruce H.J. McKellar. Prob- ing large distance higher dimensional gravity from lensing data. Astropart.

Phys., 21:559–563, 2004. doi: 10.1016/j.astropartphys.2004.04.001.

[9] Diego A.R. Dalvit and Francisco D. Mazzitelli. Running coupling constants, Newtonian potential and nonlocalities in the effective action.Phys. Rev. D, 50:

1001–1009, 1994. doi: 10.1103/PhysRevD.50.1001.

[10] Ganesh Devaraj and Robin G. Stuart. Reduction of one loop tensor form- factors to scalar integrals: A General scheme. Nucl. Phys., B519:483–513, 1998. doi: 10.1016/S0550-3213(98)00035-2.

[11] John F. Donoghue. Introduction to the effective field theory description of gravity. In Advanced School on Effective Theories Almunecar, Spain, June 25-July 1, 1995, 1995.

[12] John F. Donoghue. The effective field theory treatment of quantum gravity.

AIP Conf. Proc., 1483(1):73–94, 2012. doi: 10.1063/1.4756964.

[13] R.Keith Ellis and Giulia Zanderighi. Scalar one-loop integrals for QCD.JHEP, 02:002, 2008. doi: 10.1088/1126-6708/2008/02/002.

[14] R.Keith Ellis, Zoltan Kunszt, Kirill Melnikov, and Giulia Zanderighi. One- loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts. Phys. Rept., 518:141–250, 2012. doi: 10.1016/j.physrep.2012.01.008.

[15] Marc H. Goroff and Augusto Sagnotti. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys., B266:709–736, 1986. doi: 10.1016/0550-3213(86) 90193-8.

[16] David J Griffiths. Introduction to elementary particles; 2nd rev. version.

Physics textbook. Wiley, New York, NY, 2008. URLhttps://cds.cern.

ch/record/111880.

[17] S.F. Hassan and Rachel A. Rosen. On Non-Linear Actions for Massive Gravity.

JHEP, 07:009, 2011. doi: 10.1007/JHEP07(2011)009.

[18] S.F. Hassan and Rachel A. Rosen. Bimetric Gravity from Ghost-free Massive Gravity. JHEP, 02:126, 2012. doi: 10.1007/JHEP02(2012)126.

[19] Kurt Hinterbichler. Theoretical Aspects of Massive Gravity. Rev. Mod. Phys., 84:671–710, 2012. doi: 10.1103/RevModPhys.84.671.

[20] Barry R. Holstein and Andreas Ross. Spin Effects in Long Range Electromag- netic Scattering. 2008.

[21] Barry R. Holstein and Andreas Ross. Spin Effects in Long Range Gravitational Scattering. 2008.

[22] Tristan HΓΌbsch.Advanced Concepts in Particle and Field Theory. Cambridge University Press, 2015. doi: 10.1017/CBO9781316160725.

[23] Y. Iwasaki. Quantum theory of gravitation vs. classical theory. - fourth-order potential. Prog. Theor. Phys., 46:1587–1609, 1971. doi: 10.1143/PTP.46.

1587.

[24] Henrik Johansson and Alexander Ochirov. Color-Kinematics Duality for QCD Amplitudes. JHEP, 01:170, 2016. doi: 10.1007/JHEP01(2016)170.

[25] Henrik Johansson and Alexander Ochirov. Double copy for massive quantum particles with spin. JHEP, 09:040, 2019. doi: 10.1007/JHEP09(2019)040.

[26] I.B. Khriplovich and G.G. Kirilin. Quantum power correction to the Newton law. J. Exp. Theor. Phys., 95(6):981–986, 2002. doi: 10.1134/1.1537290.

[27] Michele Levi. Binary dynamics from spin1-spin2 coupling at fourth post- Newtonian order. Phys. Rev. D, 85:064043, 2012. doi: 10.1103/PhysRevD.

85.064043.

[28] R. Mertig, M. Bohm, and Ansgar Denner. FEYN CALC: Computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun., 64:345–359, 1991. doi: 10.1016/0010-4655(91)90130-D.

[29] Ivan J. Muzinich and Stamatis Vokos. Long range forces in quantum gravity.

Phys. Rev. D, 52:3472–3483, 1995. doi: 10.1103/PhysRevD.52.3472.

[30] J. C. Romao. Advanced Quantum Field Theory. Instituto Superior Tecnico, 2019. URL http://porthos.tecnico.ulisboa.pt/Public/textos/

tca.pdf.

[31] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana. New Develop- ments in FeynCalc 9.0. Comput. Phys. Commun., 207:432–444, 2016. doi:

10.1016/j.cpc.2016.06.008.

[32] Mark Srednicki. Quantum Field Theory. Cambridge Univ. Press, Cambridge, 2007. URLhttps://cds.cern.ch/record/1019751.

[33] K. S. Stelle. Classical Gravity with Higher Derivatives. Gen. Rel. Grav., 9:

353–371, 1978. doi: 10.1007/BF00760427.

[34] Gerard ’t Hooft and M.J.G. Veltman. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69–94, 1974.

[35] M.J.G. Veltman. Quantum Theory of Gravitation. Conf. Proc. C, 7507281:

265–327, 1975.

A p p e n d i x A

VERTICES AND PROPAGATORS

Below we list the Feynman rules that were used in our calculation. For a derivation, see [4, 11, 12].

A.1 Massive Scalar Propogator

= 𝑖

π‘ž2βˆ’π‘š2+π‘–πœ–

(A.1) A.2 Massless Graviton Propogator

= 𝑖 𝑃𝛼 𝛽𝛾 𝛿 π‘ž2+π‘–πœ–

(A.2) where

𝑃𝛼 𝛽𝛾 𝛿 = 1

2[πœ‚π›Όπ›Ύπœ‚π›½π›Ώ+πœ‚π›Όπ›Ώπœ‚π›½π›Ύβˆ’ 2

π·βˆ’2πœ‚π›Ό π›½πœ‚π›Ύ 𝛿] (A.3) A.3 Massive Graviton Propagator

= 𝑖 𝑃

𝛼 𝛽𝛾 𝛿 π‘š (π‘ž, π‘š)

π‘ž2+π‘–πœ–

(A.4) where

𝑃

𝛼 𝛽𝛾 𝛿

π‘š (π‘ž, π‘š) = 1 2

𝐹

𝛼𝛾

π‘š (π‘ž, π‘š)𝐹

𝛽𝛿

π‘š (π‘ž, π‘š) +𝐹𝛼𝛿

π‘š (π‘ž, π‘š)𝐹

𝛽𝛾

π‘š (π‘ž, π‘š) βˆ’ 2 π·βˆ’1𝐹

𝛼 𝛽

π‘š (π‘ž, π‘š)𝐹

𝛾 𝛿 π‘š (π‘ž, π‘š)

(A.5) and

𝐹

𝛼 𝛽

π‘š (π‘ž, π‘š) =πœ‚π›Ό 𝛽+ π‘žπ›Όπ‘žπ›½ π‘š2

(A.6) A.4 Massless Ghost Propagator

= π‘–πœ‚π›Ό 𝛽 𝑝2+π‘–πœ–

(A.7)

A.5 2 Scalar, 1 Graviton Vertex Factor

=𝜏

πœ‡ 𝜈

1 (𝑝, 𝑝0, π‘š) where

𝜏

πœ‡ 𝜈

1 (𝑝, 𝑝0, π‘š)=βˆ’π‘– πœ… 2

π‘πœ‡π‘0𝜈+ 𝑝0πœ‡π‘πœˆ βˆ’πœ‚πœ‡ 𝜈( (𝑝· 𝑝0) βˆ’π‘š2)

(A.8) A.6 2 Scalar, 2 Graviton Vertex Factor

=𝜏

πœ‡ 𝜈 𝜌 𝜎

2 (𝑝, 𝑝0, π‘š) where

𝜏

πœ‡ 𝜈 𝜌 𝜎

2 (𝑝, 𝑝0, π‘š) =𝑖 πœ…2

πΌπœ‡ πœˆπ›Όπ›ΏπΌ

𝜌 𝜎 𝛽 𝛿 βˆ’ 1

4

πœ‚πœ‡ 𝜈𝐼𝜌 πœŽπ›Ό 𝛽+πœ‚πœŒ πœŽπΌπœ‡ πœˆπ›Ό 𝛽 (𝑝𝛼𝑝0

𝛽+ 𝑝0

𝛼𝑝𝛽)

βˆ’ 1 2

πΌπœ‡ 𝜈 𝜌 𝜎 βˆ’ 1

2πœ‚πœ‡ πœˆπœ‚πœŒ 𝜎

[(𝑝· 𝑝0) βˆ’π‘š2]

(A.9) and

𝐼𝛼 𝛽𝛾 𝛿 = 1

2(πœ‚π›Όπ›Ύπœ‚π›½π›Ώ+πœ‚π›Όπ›Ώπœ‚π›½π›Ύ) (A.10)

A.7 3 Graviton Vertex Factor

=𝜏3

πœ‡ 𝜈

𝛼 𝛽𝛾 𝛿(π‘˜ , π‘ž) where

𝜏3

πœ‡ 𝜈

𝛼 𝛽𝛾 𝛿(π‘˜ , π‘ž) =βˆ’π‘– πœ…

2 𝑃𝛼 𝛽𝛾 𝛿

π‘˜πœ‡π‘˜πœˆ+ (π‘˜ +π‘ž)πœ‡(π‘˜+π‘ž)𝜈+π‘žπœ‡π‘žπœˆ βˆ’ 3 2πœ‚πœ‡ πœˆπ‘ž2

+2π‘žπœ†π‘žπœŽ

𝐼 πœŽπœ†

𝛼 𝛽 𝐼 πœ‡ 𝜈

𝛾 𝛿 +𝐼 πœŽπœ†

𝛾 𝛿 𝐼 πœ‡ 𝜈

𝛼 𝛽 βˆ’πΌ πœ‡πœŽ

𝛼 𝛽

𝐼 πœˆπœ†

𝛾 𝛿 βˆ’πΌ πœ‡πœŽ

𝛾 𝛿

𝐼 πœˆπœ†

𝛼 𝛽

+

π‘žπœ†π‘žπœ‡

πœ‚π›Ό 𝛽𝐼 πœˆπœ†

𝛾 𝛿 +πœ‚π›Ύ 𝛿 𝐼 πœˆπœ†

𝛼 𝛽

+π‘žπœ†π‘žπœˆ

πœ‚π›Ό 𝛽𝐼

πœ‡πœ†

𝛾 𝛿 +πœ‚π›Ύ 𝛿 𝐼

πœ‡πœ† 𝛼 𝛽

βˆ’π‘ž2

πœ‚π›Ό 𝛽𝐼

πœ‡ 𝜈

𝛾 𝛿 +πœ‚π›Ύ 𝛿 𝐼

πœ‡ 𝜈 𝛼 𝛽

βˆ’πœ‚πœ‡ πœˆπ‘žπœ†π‘žπœŽ

πœ‚π›Ό 𝛽𝐼 πœŽπœ†

𝛾 𝛿 +πœ‚π›Ύ 𝛿 𝐼 πœŽπœ†

𝛼 𝛽

+

2π‘žπœ†

𝐼 πœ†πœŽ

𝛼 𝛽 𝐼 𝜈

𝛾 π›ΏπœŽ (π‘˜ βˆ’π‘ž)πœ‡ +𝐼 πœ†πœŽ

𝛼 𝛽 𝐼

πœ‡

𝛾 π›ΏπœŽ (π‘˜βˆ’π‘ž)πœˆβˆ’πΌ πœ†πœŽ

𝛾 𝛿 𝐼 𝜈

𝛼 π›½πœŽ π‘˜πœ‡βˆ’πΌ πœ†πœŽ

𝛾 𝛿 𝐼

πœ‡ 𝛼 π›½πœŽ π‘˜πœˆ

+π‘ž2

𝐼

πœ‡ 𝛼 π›½πœŽ 𝐼 𝜈 𝜎

𝛾 𝛿 +𝐼

πœ‡ 𝛾 π›ΏπœŽ 𝐼 𝜈 𝜎

𝛼 𝛽

+πœ‚πœ‡ πœˆπ‘žπœŽπ‘žπœ†

𝐼

πœ† 𝜌

𝛼 𝛽 𝐼 𝜎

𝛾 𝛿 𝜌 +𝐼

πœ† 𝜌

𝛾 𝛿 𝐼 𝜎

𝛼 𝛽 𝜌

+

(π‘˜2+(π‘˜βˆ’π‘ž)2)

𝐼

πœ‡πœŽ

𝛼 𝛽 𝐼 𝜈

𝛾 π›ΏπœŽ +𝐼

πœ‡πœŽ

𝛾 𝛿 𝐼 𝜈

𝛼 π›½πœŽ βˆ’ 1

2πœ‚πœ‡ πœˆπ‘ƒπ›Ό 𝛽𝛾 𝛿

βˆ’ 𝐼

πœ‡ 𝜈

𝛾 𝛿 πœ‚π›Ό π›½π‘˜2+𝐼

πœ‡ 𝜈

𝛼 𝛽 πœ‚π›Ύ 𝛿(π‘˜βˆ’π‘ž)2! (A.11) A.8 2 Ghost, 1 Graviton Vertex Factor

=𝜏

πœ‡ 𝜈

𝑔 𝛼 𝛽(π‘˜ , π‘ž) where

πœπ‘”

πœ‡ 𝜈

𝛼 𝛽(π‘˜ , π‘ž)= 𝑖 πœ… 2

(π‘˜2+ (π‘˜+π‘ž)2+π‘ž2)𝐼

πœ‡ 𝜈

𝛼 𝛽 +2πœ‚π›Ό π›½π‘˜πœ†(π‘˜ +π‘ž)πœŽπ‘ƒ

πœ‡ 𝜈 πœ†πœŽ

+2π‘žπ›Όπ‘˜πœ†πΌ πœ‡ 𝜈

π›½πœ† βˆ’2π‘žπ›½(π‘˜ +π‘ž)πœ†πΌ πœ‡ 𝜈

π›Όπœ† +π‘žπ›Όπ‘žπ›½πœ‚πœ‡ 𝜈

(A.12)

A p p e n d i x B

INTEGRALS USED IN THE MASSLESS CASE

We recreate the integrals used in the massless case here due to some copy errors noted in the integrals given by [5].

B.1 Bubble Integrals

𝐼 =

∫ 𝑑4β„“ (2πœ‹)4

1

β„“2(β„“+π‘ž)2 = 𝑖 16πœ‹2

[βˆ’πΏ] +... (B.1)

πΌπœ‡ =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡

β„“2(β„“+π‘ž)2 = 𝑖 16πœ‹2

1 2π‘žπœ‡πΏ

+... (B.2)

πΌπœ‡ 𝜈 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆ

β„“2(β„“+π‘ž)2 = 𝑖 16πœ‹2

1

12𝐿 π‘ž2πœ‚πœ‡ πœˆβˆ’ 1 3𝐿 π‘žπœ‡π‘žπœˆ

+... (B.3)

πΌπœ‡ πœˆπ›Ό =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Ό

β„“2(β„“+π‘ž)2 = 𝑖 16πœ‹2

βˆ’ 1

24𝐿 π‘ž23πœ‚(πœ‡ πœˆπ‘žπ›Ό) + 1

4𝐿 π‘žπœ‡π‘žπœˆπ‘žπ›Ό

+... (B.4) πΌπœ‡ πœˆπ›Ό 𝛽 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Όβ„“π›½

β„“2(β„“+π‘ž)2 = 𝑖 16πœ‹2

βˆ’ 1

240𝐿 π‘ž43πœ‚(πœ‡ πœˆπœ‚π›Ό 𝛽) + 1

40𝐿 π‘ž26πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½) βˆ’ 1

5𝐿 π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½+... (B.5)

where 𝐿 = 𝑙 π‘œπ‘”(βˆ’π‘ž2) and 𝑆 = βˆšπœ‹2

βˆ’π‘ž2, and analytic and higher order nonanalytic terms are represented by the elipses.

B.2 Triangle Integrals

𝐽 =

∫ 𝑑4β„“ (2πœ‹)4

1

β„“2(β„“+π‘ž)2( (β„“+π‘˜)2βˆ’π‘š2

1)

= 𝑖 32πœ‹2π‘š2

1

[βˆ’πΏβˆ’π‘†] +... (B.6)

π½πœ‡ =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡

β„“2(β„“+π‘ž)2( (β„“+π‘˜)2βˆ’π‘š2

1)

= 𝑖 32πœ‹2π‘š2

1

π‘˜πœ‡

βˆ’1βˆ’ 1 2

π‘ž2 π‘š2

1

πΏβˆ’ 1 4

π‘ž2 π‘š2

1

𝑆

+π‘žπœ‡π‘žπœˆ

𝐿+ 1 2𝑆

+... (B.7)

π½πœ‡ 𝜈 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆ

β„“2(β„“+π‘ž)2( (β„“+π‘˜)2βˆ’π‘š2

1)

= 𝑖 32πœ‹2π‘š2

1

π‘˜πœ‡π‘˜πœˆ

βˆ’ 1 2

π‘ž2 π‘š2

1

πΏβˆ’ 1 8

π‘ž2 π‘š2

1

𝑆

+π‘žπœ‡

βˆ’πΏβˆ’ 3 8𝑆

+2π‘ž(πœ‡π‘˜πœˆ) 1 2 + 1

2 π‘ž2 π‘š2

1

𝐿+ 3 16

π‘ž2 π‘š2

1

𝑆

+π‘ž2πœ‚πœ‡ 𝜈 1 4𝐿+ 1

8𝑆

+... (B.8)

π½πœ‡ πœˆπ›Ό =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Ό

β„“2(β„“+π‘ž)2( (β„“+π‘˜)2βˆ’π‘š2

1)

= 𝑖 32πœ‹2π‘š2

1

π‘˜πœ‡π‘˜πœˆπ‘˜π›Ό

βˆ’ 1 6

π‘ž2 π‘š2

1

𝐿

+π‘žπœ‡π‘žπœˆπ‘žπ›Ό

𝐿+ 5 16𝑆

+3π‘ž(πœ‡π‘˜πœˆπ‘˜π›Ό)1 3

π‘ž2 π‘š2

1

𝐿+ 1 16

π‘ž2 π‘š2

1

𝑆

+3π‘ž(πœ‡π‘žπœˆπ‘˜π›Ό)

βˆ’ 1 3βˆ’ 1

2 π‘ž2 π‘š2

1

πΏβˆ’ 5 32

π‘ž2 π‘š2

1

𝑆

+3πœ‚(πœ‡ πœˆπ‘˜π›Ό) π‘ž2 1 12π‘ž2𝐿

+3πœ‚(πœ‡ πœˆπ‘žπ›Ό)

βˆ’ 1

6π‘ž2πΏβˆ’ 1 16π‘ž2𝑆

+... (B.9)

where 𝐿 = 𝑙 π‘œπ‘”(βˆ’π‘ž2) and 𝑆 = βˆšπœ‹2

βˆ’π‘ž2

, and analytic and higher order non-analytic terms are represented by the ellipses. We utilize the symmetrization convention used by [20] where

𝐴(πœ‡1πœ‡2πœ‡3... πœ‡π‘›= 1

𝑛! 𝐴(πœ‡1πœ‡2πœ‡3... πœ‡π‘›+𝐴(πœ‡2πœ‡1πœ‡3... πœ‡π‘›+...

(B.10) For example, this means that 3πœ‚(πœ‡ πœˆπ‘žπ›Ό) =πœ‚πœ‡ πœˆπ‘žπ›Ό+πœ‚πœ‡π›Όπ‘žπœˆ+πœ‚π›Όπœˆπ‘žπœ‡.

B.3 Box and Cross Box Integrals

𝐾 =

∫ 𝑑4β„“ (2πœ‹)4

1 β„“2(β„“+π‘ž)2( (β„“+π‘˜1)2βˆ’π‘š2

1) ( (β„“βˆ’π‘˜3)2βˆ’π‘š2

2)

= 𝑖

16πœ‹2π‘š1π‘š2 𝐿

π‘ž2

1βˆ’ π‘ βˆ’π‘ 0 6π‘š1π‘š2

βˆ’π‘–2πœ‹ 𝐿 π‘ž2

1 2√

π‘š1π‘š2

√ π‘ βˆ’π‘ 0

1βˆ’ π‘ βˆ’π‘ 0 8π‘š1π‘š2

(B.11) 𝐾0=

∫ 𝑑4β„“ (2πœ‹)4

1 β„“2(β„“+π‘ž)2( (β„“+π‘˜1)2βˆ’π‘š2

1) ( (β„“+π‘˜4)2βˆ’π‘š2

2)

= 𝑖

16πœ‹2π‘š1π‘š2

βˆ’ 𝐿 π‘ž2

1βˆ’ π‘ βˆ’π‘ 0 6π‘š1π‘š2

(B.12)

A p p e n d i x C

INTEGRALS USED IN THE MASSIVE CASE

C.1 Tadpole and Bubble Integrals

𝐴0(π‘š) =

∫ 𝑑4β„“ (2πœ‹)4

1

(β„“2βˆ’π‘š2) =0 (C.1)

𝐡0=

∫ 𝑑4β„“ (2πœ‹)4

1 (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 16πœ‹2

1 π‘ž2

βˆ’ π‘š2

1βˆ’π‘š2

2

2 log(π‘š12 π‘š2

2

) +𝑆 𝐿(π‘ž, π‘š1, π‘š2)

(C.2) π΅πœ‡ =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡ (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 32πœ‹2

π‘žπœ‡

βˆ’ 1 π‘ž2

βˆ’ 1 π‘ž4

(π‘š2

1βˆ’π‘š2

2)

𝑆 𝐿(π‘ž, π‘š1, π‘š2)

+ 𝑖

64πœ‹2π‘ž4 π‘žπœ‡

(π‘š2

1βˆ’π‘š2

2)2 log

π‘š2

1

π‘š2

2

(C.3) π΅πœ‡ 𝜈 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆ (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 16πœ‹2

π‘š2

1+π‘š2

2

6 1 π‘ž2

βˆ’ 1 12

πœ‚πœ‡ 𝜈+π‘š2

1βˆ’2π‘š2

2

3 1 π‘ž4

+ 1 3

1 π‘ž2

π‘žπœ‡π‘žπœˆ

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)3 1

24 1 π‘ž4

πœ‚πœ‡ 𝜈+

βˆ’ 1 6

1 π‘ž6

π‘žπœ‡π‘žπœˆ

logπ‘š2

1

π‘š2

2

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)2

βˆ’ 1 12

1 π‘ž4

πœ‚πœ‡ 𝜈+1 3

1 π‘ž6

π‘žπœ‡π‘žπœˆ

𝑆 𝐿(π‘ž, π‘š1, π‘š2) (C.4) π΅πœ‡ πœˆπ›Ό =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Ό (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 16πœ‹2

βˆ’ π‘š2

1+3π‘š2

2

24 1 π‘ž2

+ 1 24

3πœ‚(πœ‡ πœˆπ‘žπ›Ό) βˆ’π‘š2

1βˆ’3π‘š2

2

4 1 π‘ž4 + 1

4 1 π‘ž2

π‘žπœ‡π‘žπœˆπ‘žπ›Ό

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)4

βˆ’ 1 48

1 π‘ž6

3πœ‚(πœ‡ πœˆπ‘žπ›Ό) +1 8

1 π‘ž8

π‘žπœ‡π‘žπœˆπ‘žπ›Ό

log π‘š2

1

π‘š2

2

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)3 1

24 1 π‘ž6

πœ‚(πœ‡ πœˆπ‘žπ›Ό) +

βˆ’ 1 4

1 π‘ž8

π‘žπœ‡π‘žπœˆπ‘žπ›Ό

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)

βˆ’ π‘š2

1+3π‘š2

2

24 1 π‘ž4

πœ‚(πœ‡ πœˆπ‘žπ›Ό) +

βˆ’ π‘š2

1βˆ’3π‘š2

2

4 1 π‘ž6

π‘žπœ‡π‘žπœˆπ‘žπ›Ό

𝑆 𝐿(π‘ž, π‘š1, π‘š2) (C.5)

π΅πœ‡ πœˆπ›Ό 𝛽 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Όβ„“π›½ (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2) =

= 𝑖 16πœ‹2

"

3π‘š4

1+2π‘š2

1π‘š2

2+3π‘š4

2

120

1 π‘ž2

βˆ’ π‘š2

1+π‘š2

2

60 + π‘ž2 240

6πœ‚(πœ‡ πœˆπœ‚π›Ό 𝛽) +

π‘š4

1+4π‘š2

1π‘š2

2βˆ’9π‘š4

2

60

1 π‘ž4

+ π‘š2

1+6π‘š2

2

60 βˆ’ 1

40

6πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½) + π‘š4

1βˆ’6π‘š2

1π‘š2

2+6π‘š4

2

5

1 π‘ž6

+ π‘š2

1βˆ’4π‘š2

2

5 1 π‘ž2

+ 1 5

1 π‘ž2

π‘žπœ‡π‘žπœˆπ‘žπ›Ό 𝛽

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)5

βˆ’ 1 480

1 π‘ž6

6πœ‚(πœ‡ πœˆπœ‚π›Ό 𝛽) + 1

80 1 π‘ž8

6πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½)+

βˆ’ 1 10

1 π‘ž10

π‘žπœ‡π‘žπœˆπ‘žπ›Ό 𝛽

log π‘š2

1

π‘š2

2

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)4 1

240 1 π‘ž6

6πœ‚(πœ‡ πœˆπœ‚π›Ό 𝛽) +

βˆ’ 1 40

1 π‘ž8

6πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½) + 1

5 1 π‘ž10

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)2

"

βˆ’ π‘š2

1+π‘š2

2

60 1 π‘ž4

6πœ‚(πœ‡ πœˆπœ‚π›Ό 𝛽) + π‘š2

1+6π‘š2

2

60 1 π‘ž6

6πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½) + π‘š2

1βˆ’4π‘š2

2

5 1 π‘ž8

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2) (C.6)

π΅πœ‡ πœˆπ›Ό 𝛽𝛾 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Όβ„“π›½β„“π›Ύ (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 16πœ‹2

"

βˆ’ π‘š4

1+2π‘š2

1π‘š2

2+5π‘š4

2

240

1 π‘ž2

+ 3π‘š2

1+5π‘š2

2

480 βˆ’ π‘ž2 480

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύ) +

βˆ’ π‘š4

1+7π‘š2

1π‘š2

2βˆ’20π‘š4

2

120

1 π‘ž4

βˆ’ π‘š2

1+10π‘š4

2

120 + 1

60

10πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ) +

βˆ’ π‘š4

1βˆ’8π‘š2

1π‘š2

2+10π‘š4

2

6

1 π‘ž6

βˆ’ π‘š2

1βˆ’5π‘š2

2

6 1 π‘ž4

βˆ’ 1 6

1 π‘ž2

π‘žπœ‡π‘žπœˆπ‘žπ›Ό 𝛽

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2)

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)6 1

960 1 π‘ž8

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύ) +

βˆ’ 1 120

1 π‘ž10

10πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ) +

1 12

1 π‘ž12

π‘žπœ‡π‘žπœˆπ‘žπ›Ό π›½π‘žπ›Ύ

log π‘š2

1

π‘š2

2

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)5

βˆ’ 1 480

1 π‘ž8

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύ) + 1

60 1 π‘ž8

10πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ) +

βˆ’ 1 6

1 π‘ž12

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)3

"

3π‘š2

1+5π‘š2

2

480 1 π‘ž6

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύ) +

βˆ’ π‘š2

1+10π‘š2

2

120 1 π‘ž8

10πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ) +

βˆ’ π‘š2

1βˆ’5π‘š2

2

6 1 π‘ž10

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2)

βˆ’ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)

"

π‘š4

1+2π‘š2

1π‘š2

2+5π‘š4

2

240

1 π‘ž4

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύ) + π‘š4

1+7π‘š2

1π‘š2

2βˆ’20π‘š4

2

120

1 π‘ž6

10πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ) + π‘š4

1βˆ’8π‘š2

1π‘š2

2+10π‘š4

2

6

1 π‘ž8

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύ

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2) (C.7) π΅πœ‡ πœˆπ›Ό 𝛽𝛾 𝛿 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Όβ„“π›½β„“π›Ύβ„“π›Ώ (β„“2βˆ’π‘š2

1) ( (β„“+π‘ž)2βˆ’π‘š2

2)

= 𝑖 16πœ‹2

"

(π‘š2

1+π‘š2

2) (5π‘š4

1βˆ’2π‘š2

1π‘š2

2+5π‘š4

2) 1680

1 π‘ž2

βˆ’ 5π‘š4

1+6π‘š2

1π‘š2

2+5π‘š4

2

2240 +π‘ž2

π‘š2

1+π‘š2

2

1120 βˆ’ π‘ž4 6720

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½πœ‚π›Ύ 𝛿) +π‘š6

1+2π‘š4

1π‘š2

2+9π‘š2

1π‘š4

2βˆ’20π‘š6

2) 210

1 π‘ž4

βˆ’ π‘š4

1+4π‘š2

1π‘š2

2+15π‘š4

2

840

1 π‘ž2

βˆ’ 5π‘š2

1+12π‘š2

2

1680 βˆ’ π‘ž2 840

45πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύπ‘žπ›Ώ) +π‘š6

1+9π‘š4

1π‘š2

2βˆ’54π‘š2

1π‘š4

2+50π‘š6

2) 210

1 π‘ž6

+ 2π‘š4

1+22π‘š2

1π‘š2

2βˆ’75π‘š4

2

420

1 π‘ž4

+ π‘š2

1+15π‘š2

2

210 βˆ’ 1

84

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύπ‘žπ›Ώ) +(π‘š2

1βˆ’2π‘š2

2) (π‘š4

1βˆ’10π‘š2

1π‘š2

2+10π‘š4

2) 7

1 π‘ž8

+ (π‘š4

1βˆ’10π‘š2

1π‘š2

2+15π‘š4

2) 7

1 π‘ž6

+ π‘š2

1βˆ’6π‘š2

2

7 1 π‘ž4

+1 7

1 π‘ž2

π‘žπœ‡π‘žπœˆπ‘žπ›Ό π›½π‘žπ›Ύπ‘žπ›Ώ

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)7 1

13440 1 π‘ž8

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½πœ‚π›Ύ 𝛿) +

βˆ’ 1 1680

1 π‘ž10

45πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύπ‘žπ›Ώ) +

1 168

1 π‘ž12

15πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ) +

βˆ’ 1 14

1 π‘ž14

π‘žπœ‡π‘žπœˆπ‘žπ›Ό π›½π‘žπ›Ύπ‘žπ›Ώ

log π‘š2

1

π‘š2

2

+ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)6

βˆ’ 1

6720 1 π‘ž8

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½πœ‚π›Ύ 𝛿) + 1 840

1 π‘ž10

45πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύπ‘žπ›Ώ) +

βˆ’ 1 84

1 π‘ž12

15πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ) +1 7

1 π‘ž14

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ

𝑆 𝐿(π‘ž, π‘š1, π‘š2) + 𝑖

16πœ‹2 (π‘š2

1βˆ’π‘š2

2)4

"

π‘š2

1+π‘š2

2

1120 1 π‘ž6

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½πœ‚π›Ύ 𝛿) +

βˆ’ 5π‘š12+12π‘š22 1680

1 π‘ž8

45πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘žπ›Ύπ‘žπ›Ώ) +π‘š2

1+15π‘š2

2

210 1 π‘ž10

15πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ) + π‘š2

1βˆ’6π‘š2

2

7

1 π‘ž12

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2)

βˆ’ 𝑖 16πœ‹2

(π‘š2

1βˆ’π‘š2

2)2

"

5π‘š4

1+6π‘š2

1π‘š2

2+5π‘š4

2

2240

1 π‘ž4

15πœ‚(πœ‡ πœˆπœ‚π›Ό π›½πœ‚π›Ύ 𝛿) + π‘š4

1+4π‘š2

1π‘š2

2+15π‘š4

2

840

1 π‘ž6

45πœ‚(πœ‡ πœˆπœ‚π›Ό π›½π‘ž 𝛾 π‘žπ›Ώ) + 2π‘š4

1+22π‘š2

1π‘š2

2βˆ’75π‘š4

2

420

1 π‘ž8

15πœ‚(πœ‡ πœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ) + π‘š4

1βˆ’10π‘š2

1π‘š2

2+15π‘š4

2

7

1 π‘ž10

π‘žπœ‡π‘žπœˆπ‘žπ›Όπ‘žπ›½π‘žπ›Ύπ‘žπ›Ώ

#

𝑆 𝐿(π‘ž, π‘š1, π‘š2) (C.8) C.2 Triangle Integrals

We used the𝐢0integral as defined by [10]

𝐢0=

∫ 𝑑4β„“ (2πœ‹)4

1 (β„“2βˆ’π‘š2

1) ( (β„“+π‘˜1)2βˆ’π‘š2

2) ( (β„“+π‘˜2)2βˆ’π‘š2

3)

= π‘˜2

1𝐡0(π‘˜1, π‘š1, π‘š2) + ( (π‘˜1Β· π‘˜2) βˆ’π‘˜2

1)𝐡0(π‘˜1+π‘˜2, π‘š1, π‘š3) βˆ’ (π‘˜1Β·π‘˜2)𝐡0(π‘˜1, π‘š2, π‘š3)

βˆ’(π‘˜1Β·π‘˜2)𝑓1βˆ’π‘˜2

1𝑓2

(C.9) where

𝑓1=π‘š2

1βˆ’π‘š2

2βˆ’π‘˜2

1 (C.10)

𝑓2=π‘š2

2βˆ’π‘š2

3+π‘˜2

1βˆ’ (π‘˜1βˆ’ π‘˜2)2 (C.11)

All other non-scalar triangle integrals used were decomposed in terms of the 𝐢0, 𝐡0, and 𝐴0 integrals. Each integral has the inputs 𝐢(π‘ž, π‘˜1, π‘š, π‘š, π‘š1). We have Taylor expanded the expressions with respect to the graviton massπ‘š up to order 2 and the exchanged momentumπ‘ž up to order 4. We also only record the nonanalytic terms of these expressions.

πΆπœ‡ =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡ (β„“2βˆ’π‘š2

1) ( (β„“+π‘˜1)2βˆ’π‘š2

2) ( (β„“+π‘˜2)2βˆ’π‘š2

3)

=βˆ’ 𝑖 64πœ‹2π‘š2

1π‘ž2

π‘š2 8π‘˜

πœ‡ 1 log

βˆ’π‘š2 π‘ž2

βˆ’π‘žπœ‡log π‘š2 π‘š2

1

!

βˆ’2π‘žπœ‡log

βˆ’π‘š2 π‘ž2

!

βˆ’ 𝑖

128πœ‹2π‘š4

1

βˆ’8π‘š2

1π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

+6π‘š2π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

+4π‘š2

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’2π‘š2π‘žπœ‡log

βˆ’π‘š2 π‘ž2

+ 𝑖

1024πœ‹2π‘š6

1

π‘ž2

16π‘š2

1π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

βˆ’16π‘š2π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

βˆ’8π‘š2

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

+6π‘š2π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’ 𝑖

2048πœ‹2π‘š8

1

π‘ž4

βˆ’8π‘š2

1π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

+10π‘š2π‘˜

πœ‡ 1log

βˆ’π‘š2 π‘ž2

+4π‘š2

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’4π‘š2π‘žπœ‡log

βˆ’π‘š2 π‘ž2

+𝑂

π‘š3, π‘ž5

(C.12) πΆπœ‡ 𝜈 =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆ (β„“2βˆ’π‘š2

1) ( (β„“+π‘˜1)2βˆ’π‘š2

2) ( (β„“+π‘˜2)2βˆ’π‘š2

3)

=βˆ’ 𝑖 128πœ‹2π‘š2

1π‘ž2

βˆ’8π‘š2π‘˜πœˆ

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’8π‘š2π‘˜

πœ‡ 1π‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’π‘š2π‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

! +6π‘š2

1π‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

!

+16π‘š2π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

!

+ 𝑖

256πœ‹2π‘š4

1

16π‘š2π‘š2

1log

βˆ’π‘š2 π‘ž2

π‘”πœ‡ πœˆβˆ’8π‘š2

1π‘˜πœˆ

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’8π‘š2

1π‘˜

πœ‡ 1π‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’40π‘š2π‘˜

πœ‡ 1π‘˜πœˆ

1log

βˆ’π‘š2 π‘ž2

+24π‘š2π‘˜πœˆ

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

+24π‘š2π‘˜

πœ‡ 1π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+10π‘š2

1π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’18π‘š2π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’ 𝑖

2048πœ‹2π‘š6

1

π‘ž2

16π‘š4

1log

βˆ’π‘š2 π‘ž2

π‘”πœ‡ πœˆβˆ’32π‘š2π‘š2

1log

βˆ’π‘š2 π‘ž2

π‘”πœ‡ 𝜈

βˆ’48π‘š2

1π‘˜

πœ‡ 1π‘˜πœˆ

1log

βˆ’π‘š2 π‘ž2

+40π‘š2

1π‘˜πœˆ

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

+40π‘š2

1π‘˜

πœ‡ 1π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+160π‘š2π‘˜

πœ‡ 1π‘˜πœˆ

1log

βˆ’π‘š2 π‘ž2

βˆ’88π‘š2π‘˜πœˆ

1π‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’88π‘š2π‘˜

πœ‡ 1π‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’32π‘š2

1π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+56π‘š2π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+𝑂

π‘š3, π‘ž3

(C.13)

πΆπœ‡ πœˆπ›Ό =

∫ 𝑑4β„“ (2πœ‹)4

β„“πœ‡β„“πœˆβ„“π›Ό (β„“2βˆ’π‘š2

1) ( (β„“+π‘˜1)2βˆ’π‘š2

2) ( (β„“+π‘˜2)2βˆ’π‘š2

3)

=

11𝑖 π‘š2π‘žπ›Όπ‘žπœ‡π‘žπœˆlog

π‘š2 π‘š2

1

128πœ‹2π‘ž4

βˆ’ 𝑖

256πœ‹2π‘š2

1π‘ž2

6π‘š2π‘š2

1π‘žπ›Όlog π‘š2 π‘š2

1

! π‘”πœ‡ 𝜈

+6π‘š2π‘š2

1π‘žπœ‡log π‘š2 π‘š2

1

!

π‘”π›Όπœˆ +6π‘š2π‘š2

1π‘žπœˆlog π‘š2 π‘š2

1

!

𝑔𝛼 πœ‡βˆ’6π‘š2π‘˜

πœ‡ 1π‘˜πœˆ

1π‘žπ›Όlog π‘š2 π‘š2

1

!

βˆ’6π‘š2π‘˜π›Ό

1π‘˜πœˆ

1π‘žπœ‡log π‘š2 π‘š2

1

!

βˆ’19π‘š2π‘˜πœˆ

1π‘žπ›Όπ‘žπœ‡log π‘š2 π‘š2

1

!

βˆ’6π‘š2π‘˜π›Ό

1π‘˜

πœ‡

1π‘žπœˆlog π‘š2 π‘š2

1

!

βˆ’19π‘š2π‘˜

πœ‡

1π‘žπ›Όπ‘žπœˆlog π‘š2 π‘š2

1

!

βˆ’19π‘š2π‘˜π›Ό

1π‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

! +5π‘š2

1π‘˜πœˆ

1π‘žπ›Όπ‘žπœ‡log π‘š2 π‘š2

1

!

+5π‘š2

1π‘˜

πœ‡

1π‘žπ›Όπ‘žπœˆlog π‘š2 π‘š2

1

! +5π‘š2

1π‘˜π›Ό

1π‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

!

βˆ’8π‘š2π‘˜πœˆ

1π‘žπ›Όπ‘žπœ‡log

βˆ’π‘š2 π‘ž2

βˆ’8π‘š2π‘˜

πœ‡

1π‘žπ›Όπ‘žπœˆlog

βˆ’π‘š2 π‘ž2

βˆ’8π‘š2π‘˜π›Ό

1π‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+51π‘š2π‘žπ›Όπ‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

!

+14π‘š2

1π‘žπ›Όπ‘žπœ‡π‘žπœˆlog π‘š2 π‘š2

1

!

+18π‘š2π‘žπ›Όπ‘žπœ‡π‘žπœˆlog

βˆ’π‘š2 π‘ž2

+ 𝑖

6144π‘š4

1πœ‹2

48π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘”πœ‡ πœˆπ‘š2

1+48π‘š2log

βˆ’π‘š2 π‘ž2

π‘”π›Όπœˆπ‘žπœ‡π‘š2

1

βˆ’16 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘˜πœˆ

1π‘š2

1+48π‘š2log

βˆ’π‘š2 π‘ž2

𝑔𝛼 πœ‡π‘žπœˆπ‘š2

1

βˆ’16 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡ 1π‘žπœˆπ‘š2

1βˆ’16 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘žπœˆπ‘š2

1

+96 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘žπœˆπ‘š2

1+192π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘˜πœˆ

1

βˆ’240π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡ 1π‘˜πœˆ

1βˆ’240π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘˜πœˆ

1

+264π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘˜πœˆ

1βˆ’240π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘žπœˆ

+264π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡

1π‘žπœˆ +264π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘žπœˆ

βˆ’276π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘žπœˆ βˆ’ 𝑖 12288π‘š6

1πœ‹2

βˆ’32 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘”πœ‡ πœˆπ‘š4

1

+64 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘”πœ‡ πœˆπ‘š4

1βˆ’32 log

βˆ’π‘š2 π‘ž2

π‘”π›Όπœˆπ‘˜

πœ‡ 1π‘š4

1

+64 log

βˆ’π‘š2 π‘ž2

π‘”π›Όπœˆπ‘žπœ‡π‘š4

1βˆ’32 log

βˆ’π‘š2 π‘ž2

𝑔𝛼 πœ‡π‘˜πœˆ

1π‘š4

1

+64 log

βˆ’π‘š2 π‘ž2

𝑔𝛼 πœ‡π‘žπœˆπ‘š4

1+48π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘”πœ‡ πœˆπ‘š2

1

βˆ’48π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘”πœ‡ πœˆπ‘š2

1+48π‘š2log

βˆ’π‘š2 π‘ž2

π‘”π›Όπœˆπ‘˜

πœ‡ 1π‘š2

1

βˆ’48π‘š2log

βˆ’π‘š2 π‘ž2

π‘”π›Όπœˆπ‘žπœ‡π‘š2

1+48π‘š2log

βˆ’π‘š2 π‘ž2

𝑔𝛼 πœ‡π‘˜πœˆ

1π‘š2

1

+160 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘˜πœˆ

1π‘š2

1βˆ’224 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡ 1π‘˜πœˆ

1π‘š2

1

βˆ’224 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘˜πœˆ

1π‘š2

1+240 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘˜πœˆ

1π‘š2

1

βˆ’48π‘š2log

βˆ’π‘š2 π‘ž2

𝑔𝛼 πœ‡π‘žπœˆπ‘š2

1βˆ’224 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘žπœˆπ‘š2

1

+240 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡ 1π‘žπœˆπ‘š2

1+240 log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘žπœˆπ‘š2

1

βˆ’248 log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘žπœˆπ‘š2

1βˆ’432π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘˜πœˆ

1

+360π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡ 1π‘˜πœˆ

1+360π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘˜πœˆ

1

βˆ’300π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘˜πœˆ

1+360π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘˜

πœ‡ 1π‘žπœˆ

βˆ’300π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘˜

πœ‡

1π‘žπœˆβˆ’300π‘š2log

βˆ’π‘š2 π‘ž2

π‘˜π›Ό

1π‘žπœ‡π‘žπœˆ

+252π‘š2log

βˆ’π‘š2 π‘ž2

π‘žπ›Όπ‘žπœ‡π‘žπœˆπ‘ž2+𝑂

π‘š3, π‘ž3

(C.14)

C.3 Box and Cross Box Integrals We used the 𝐷0integral as defined by [10]

𝐷0 =

∫ 𝑑4𝑙 (2πœ‹)4

1 (𝑙2βˆ’π‘š2

1) ( (𝑙+π‘˜1)2βˆ’π‘š2

2) ( (𝑙+π‘˜2)2βˆ’π‘š2

3) ( (π‘™βˆ’π‘˜3)2βˆ’π‘š2

4)

= 1 π‘Œ3

βˆ’π‘₯33𝐢0 π‘˜1, π‘˜2, π‘š2

2, π‘š2

1, π‘š2

3

+ (π‘₯33βˆ’π‘₯32)𝐢0 π‘˜1,βˆ’π‘˜3, π‘š2

2, π‘š2

1, π‘š2

4

+ (π‘₯32βˆ’π‘₯31)𝐢0 π‘˜1βˆ’π‘˜2, π‘˜2+π‘˜3, π‘š2

2, π‘š2

3, π‘š2

4

+π‘₯31𝐢0 π‘˜2, π‘˜2+π‘˜3, π‘š2

1, π‘š2

3, π‘š2

4

(C.15) 𝐷0

0 =

∫ 𝑑4𝑙 (2πœ‹)4

1

(𝑙2βˆ’π‘š12) ( (𝑙+π‘˜1)2βˆ’π‘š22) ( (𝑙+π‘˜2)2βˆ’π‘š32) ( (𝑙+π‘˜4)2βˆ’π‘š42)

= 1 π‘Œ0

3

βˆ’π‘₯0

33𝐢0 π‘˜1, π‘˜2, π‘š2

2, π‘š2

1, π‘š2

3

+ (π‘₯0

33βˆ’π‘₯0

32)𝐢0 π‘˜1, π‘˜4, π‘š2

2, π‘š2

1, π‘š2

4

+ (π‘₯0

32βˆ’π‘₯0

31)𝐢0 π‘˜1βˆ’π‘˜2, π‘˜2βˆ’π‘˜4, π‘š2

2, π‘š2

3, π‘š2

4

+π‘₯0

31𝐢0 π‘˜2, π‘˜2βˆ’π‘˜4, π‘š2

1, π‘š2

3, π‘š2

4

(C.16) where

𝑓1= 𝑓0

1=π‘š2

1βˆ’π‘š2

2βˆ’π‘˜2

1 (C.17)

𝑓2= 𝑓0

2=π‘š2

2βˆ’π‘š2

3+π‘˜2

1βˆ’ (π‘˜1βˆ’π‘˜2)2 (C.18)

𝑓3=π‘š2

3βˆ’π‘š2

4+ (π‘˜1βˆ’π‘˜2)2βˆ’ (π‘˜1βˆ’π‘˜3)2 (C.19) π‘₯31 =βˆ’(π‘˜1Β·π‘˜2) (π‘˜2Β· π‘˜3) βˆ’ (π‘˜1Β· π‘˜3)π‘˜2

2 (C.20)

π‘₯32 =βˆ’(π‘˜1Β·π‘˜2) (π‘˜1Β· π‘˜3) βˆ’ (π‘˜2Β· π‘˜3)π‘˜2

1 (C.21)

π‘₯33 =π‘₯0

33 =π‘˜2

2π‘˜2

1βˆ’ (π‘˜1Β·π‘˜2)2 (C.22)

π‘Œ3=π‘₯31𝑓1+π‘₯32𝑓2+π‘₯33𝑓3 (C.23) 𝑓0

3 =π‘š2

3βˆ’π‘š2

4+ (π‘˜1βˆ’π‘˜2)2βˆ’ (π‘˜1+π‘˜4)2 (C.24) π‘₯0

31 =(π‘˜1Β· π‘˜2) (π‘˜2Β·π‘˜4) + (π‘˜1Β·π‘˜4)π‘˜2

2 (C.25)

π‘₯0

32 =(π‘˜1Β· π‘˜2) (π‘˜1Β·π‘˜4) + (π‘˜2Β·π‘˜4)π‘˜2

1 (C.26)

π‘Œ0

3=π‘₯0

31𝑓0

1+π‘₯0

32𝑓0

2+π‘₯0

33𝑓0

3 (C.27)

(C.28) All other non-scalar triangle integrals used were decomposed in terms of the 𝐷0, 𝐢0, 𝐡0, and

𝐴0integrals

A p p e n d i x D

FOURIER TRANSFORMS

In this thesis, we make use of many 3D fourier transforms. We have accumulated these from several resources. The three that we use for the massless graviton calculations are listed below [5]:

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖qΒ·r

1

|q|2 = 1

4πœ‹π‘Ÿ (D.1)

∫ 𝑑3π‘ž

(2πœ‹)3𝑒𝑖qΒ·r 1

|q| = 1 2πœ‹2π‘Ÿ2

(D.2)

∫ 𝑑3π‘ž

(2πœ‹)3𝑒𝑖qΒ·rln(q2) =βˆ’ 1 2πœ‹π‘Ÿ3

(D.3)

∫ 𝑑3π‘ž

(2πœ‹)3𝑒𝑖qΒ·r=𝛿3(π‘Ÿ) (D.4)

∫ 𝑑3π‘ž

(2πœ‹)3𝑒𝑖qΒ·rπ‘ž2=𝛿300(π‘Ÿ) (D.5) For the massive graviton calculations, we reference [27] and use their transforms as shown below

𝐼 =

∫ π‘‘π‘‘π‘ž (2πœ‹)𝑑𝑒𝑖qΒ·r

1

(q2)𝛼 = 1 (4πœ‹)𝑑/2

Ξ“(𝑑/2βˆ’π›Ό) Ξ“(𝛼)

π‘Ÿ2 4

π›Όβˆ’π‘‘/2

(D.6)

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2 π‘ž2

= (D.7)

∫ 𝑑3π‘ž (2πœ‹)3𝑒𝑖𝒒·𝒓

log βˆ’π‘ž2

(π‘ž2βˆ’π‘š2) = (D.8)

A p p e n d i x E

COLOR-KINEMATICS DUALITY

Figure E.1: A tree level gluon inter- action

At one point in this thesis, we were consid- ering exploring the usefulness of utilizing color-kinematic duality as a way to check our answers. This duality interchanges the color and kinematic structures of the S- matrix. In practice, this means that the amplitudes of various particle interactions can be "squared" to produce an equivalent amplitude for interactions in other theories [24]. We were specifically interested in one such relation, that of "graviton = gluon2"

[7]. This means that if we took the expres-

sion for the scattering amplitude for fig. E.1 before integration and squared it, we would get the desired amplitude for the diagram in fig. E.2 Since great progress has already been made with the strong force, we originally thought we could rederive the amplitudes for our project through this independent method. We hoped that enough research would had been done in the field of massive gluons that this could be rea- sonably simple method to check our conclusions through an independent process.

However, after searching into the work done with massive gluons, we realized that while this procedure should work [25], it would require more calculation and effort than expected, since we would have had to calculate the majority of the massive gluon amplitudes that we needed. We expect that this process could be the source of an entirely new project or thesis and suggest this as a possibility to any interested readers.

Dokumen terkait