Chapter VIII: One-loop Modification (Massive)
8.5 Results for Quantum Diagrams
As we attempted the calculation of the box and crossed box diagrams, two issues arose. Firstly, we were unable to calculate theπΆπ ππΌ π½πΎ integral that we needed for this amplitude. The calculation, which boiled down to solving an arbitrary system
of 12 equations for 12 variables, used over 12GB of RAM from the computer that we were using and still did not finish the calculation.
Additionally, we realized that our method of solving these integrals was for integrals in a specific form that held for all of the integrals except for those used in the box and crossed box diagrams. Specifically, the triangle integrals needed to be in the form
β« π4β (2π)4
π·(β, π1, ..., π1, ...) (β2βπ2
1) ( (βΒ±π1) βπ2
2) ( (βΒ±π2) βπ2
3) (8.16)
However, since the diagrams have a fourth propagator, and thereby a third momentum π3, the Feyncalc function ScalarProductCancel put the triangle integrals into a form more like
β« π4β (2π)4
π·(β, π1, ..., π1, ...) (β2βπ2
1) ( (βΒ± π1Β± π3) βπ2
2) ( (βΒ± π2Β±π3) βπ2
3) (8.17) Thus, in order to continue to use the Passerino-Veltman decomposition, we would need to include all the permutations of including π3in the solution for the integral.
While not physically impossible, this dramatically increases the number of coef- ficients needing to be solved for. In fact, in this method, when we tried to solve for πΆπ ππΌ, it required a system of 13 equations with 13 variables. Since we had already not been able to solve the system of 12 equations and variables, we knew that these calculations were simply infeasible given our limited resources. Once we realized this, we knew we would be unable to finish the quantum amplitude calcu- lations. However, even though we were unable to calculate the full modification to the quantum potential due to the difficulties with the box and crossed box diagrams, we were still able to make excellent progress on this calculation. We here list the uncontracted amplitudes for the box and crossed box diagrams as well as the full amplitudes and potentials for all the other quantum diagrams.
The Box and Crossed Box Diagrams
Unfortunately, due to the extra complication of the various integrals needed by these two diagrams, we were unable to find the full contracted and simplified amplitudes.
We here show the uncontracted versions π π2π =
β« π4π (2π)4π
π π
1 (π1, π1+π , π1)π
π π
1 (π1+π , π2, π1)π
πΌ π½
1 (π3, π3βπ , π2)π
πΎ πΏ
1 (π3βπ , π4, π2)
Γ
"
π (π1+π)2βπ2
1
# "
π (π3βπ)2βπ2
2
#
π πππ ππΌ π½ π2βπ2
π πππ π πΎ πΏ (π+π)2βπ2
(8.18) π π2π =
β« π4π (2π)4π
π π
1 (π1, π1+π , π1)π
π π
1 (π1+π , π2, π1)π
πΎ πΏ
1 (π3, π4+π , π2)π
πΌ π½
1 (π4+π , π4, π2)
Γ
"
π (π1+π)2βπ2
1
# "
π (π3βπ)2βπ2
2
#
π πππ ππΌ π½ π2βπ2
π πππ π πΎ πΏ (π+π)2βπ2
(8.19) The Double-Seagull Diagram
Given the change to a massive graviton, the new uncontracted amplitude for the double-seagull diagram (see 6.3) takes the form
π4π(π) = 1 2!
β« π4π (2π)4π
πΌ π½πΎ πΏ
2 (π1, π2, π1)π
π π π π
2 (π3, π4, π2)
π πππΎ πΏπ π π2βπ2
π πππΌ π½ π π (π+π)2βπ2
(8.20) We note the inclusion of the symmetry factor 1/2! due to the symmetry of the diagram. We were able to simplify the amplitude via Mathematica and remove all analytic and higher order nonanalytic terms. Under the nonrelativistic approxima- tion, the amplitude takes the form
π π4π =β32ππΊ2 45π2
271π2π1π2log
βπ2 π2
β168π2π1π2
+ 2ππΊ2 135π1π2
11595π2
1π2
2β1296π2π2
1β4926π2π1π2+1948π2π1π2
β1296π2π2
2
log
βπ2 π2
(8.21) With a Fourier transform, we derive the contribution to the potential for the double seagull diagram
π4π = 8672πΊ2π2π1π2 45
β« π3π (2π)3πππΒ·π
log βπ2 π2
β 1344 45π2
πΊ2π2π1π2 π
+ πΊ2
135π1π2ππ3
11595π2
1π2
2β1296π2π2
1β4926π2π1π2 +1948π2π1π2β1296π2π2
2
(8.22)
The Fully Quantum Vertex Correction Diagrams
We next examine the two vertex correction diagrams (see 5.cd in 6.4) which only contribute to the quantum portion of the amplitude and potential. Again, the changes to the uncontracted amplitude are minor and we still include the symmetry factor 1/2!.
π5π(π) = 1 2!
β« π4π (2π)4π
π π ππ
2 (π3, π4, π2)π
πΌ π½
1 (π1, π2, π1)π(πΎ πΏ)
π π π π 3 (π ,βπ)
Γ
π πππ ππ π
π2βπ2
π πππ π ππ (π+π)2βπ2
π πππΌ π½πΎ πΏ π2βπ2
(8.23) π5π(π) = 1
2!
β« π4π (2π)4π
π π π π
2 (π1, π2, π1)ππ π
1 (π3, π4, π2)π(
ππ)πΌ π½πΎ πΏ 3 (βπ , π)
Γ
π πππ π πΎ πΏ
π2βπ2
π πππ ππΌ π½ (π+π)2βπ2
π πππ π ππ π2βπ2
(8.24) These two diagrams simplify dramatically once run through the Mathematica pipeline. The nonrelativistic, Taylor expanded amplitudes become
π5π = 8ππΊ2 405 π2βπ2
4496π2π1π2log
βπ2 π2
+2145π2π1π2
(8.25) π5π = 8ππΊ2
405 π2βπ2
5922π2π1π2log
βπ2 π2
+85π2π1π2
(8.26) We can then Fourier transform the expression to get the quantum contribution to the potential
π5π =β35968πΊ2π2π1π2 405
β« π3π (2π)3
πππΒ·π
log βπ2
π2βπ2 + 286 27π
πΊ2π2π1π2πβππ π
(8.27) π5π =β47376πΊ2π2π1π2
405
β« π3π (2π)3πππΒ·π
log βπ2 π2βπ2 + 34
81π
πΊ2π2π1π2πβππ π
(8.28) Adding the two potentials together, we get
π5π+5π =β83344πΊ2π2π1π2 405
β« π3π (2π)3πππΒ·π
log βπ2
π2βπ2 + 892 81π
πΊ2π2π1π2πβππ π
(8.29) The Vacuum Polarization Diagrams
Now for the vacuum polarization diagrams, we are no longer able to use the vacuum polarization tensor as we did for the massless case. Instead, we separately calculate
the two vacuum polarization diagrams with a graviton and ghost loop, respectively (see 6.5). For the ghost loop diagram, we use the massless ghost propagator and the 2ghost-graviton vertex factor gotten from Holstein as seen in Appendix A [21]. The uncontracted amplitudes take the form seen below
π6π(π) = 1 2!
β« π4 (2π)4π
π π
1 (π1, π2, π1)π
πππΌ π½
3 ππ(ββ,βπ)π
π ππ π
3 ππ(π , π)π
πΎ πΏ
1 (π3, π4, π2)
Γ
π πππ πππ π2βπ2
π πππΌ π½π π (β+π)2βπ2
π ππππ ππ (ββ)2βπ2
π πππ π πΎ πΏ π2βπ2
(8.30) π6π(π) = 1
2!
β« π4 (2π)4π
π π
1 (π1, π2, π1)π
πππΌ π
π ππ(ββ,βπ)π
π π π½π
π ππ(π , π)π
πΎ πΏ
1 (π3, π4, π2)
Γ
π πππ πππ
π2βπ2
πππΌ π½ (β+π)2βπ2
ππππ (ββ)2βπ2
π πππ π πΎ πΏ π2βπ2
(8.31) After undergoing contraction and simplification, we integrate and Taylor expand.
We note that the ghost is massless, so we use the integrals from [5] instead of our newly calculated ones. The simplified version of the amplitudes take the form
π π6π = ππΊ2 405 π2βπ2
54469π2π1π2log
βπ2 π2
+4124π2π1π2
(8.32) π π6π =β56ππΊ2π2π1π2
45 π2βπ2 log
βπ2
(8.33) With a Fourier transform, these expressions become the expected potential terms
π6π =β54469πΊ2π2π1π2 405
β« π3π (2π)3
πππΒ·π
log βπ2
π2βπ2 + 1031 405π
πΊ2π2π1π2πβππ π
(8.34) π6π =β56πΊ2π2π1π2
45
β« π3π (2π)3πππΒ·π
log βπ2
π2βπ2 (8.35)
C h a p t e r 9
FUTURE WORK
While we have found a satisfying end to this project, there are many more avenues down which it can be taken in the future. While we do not expect the quantum terms to contribute majorly to calculations of black hole inspirals, it is possible that they could be larger than expected. It is thus important to finish running all of the quantum diagrams through our Mathematica pipeline. In order to finish the last two diagrams, the box and cross box, we would need to calculate all the integrals which we could not find before. This would probably require a computer with more processing power and memory than the one we were using. By finishing this calculation, we would thus be able to compare both the classical and quantum terms to those in the massless graviton case and see how their dynamics differ.
Once this calculation is finished, the next step would be to create inspiral models from these potential terms and apply them to LIGO data. By comparing their predictions, it is possible to test the theory of massive gravity against general relativity to see which one fits the physical data better.
One way to confirm our results would be to rederive these amplitudes and thereby potentials via color-kinematic duality between gluons and gravitons. This provides a method to simplify the calculation, while also independently confirm our results.
We discussed this option further in Appendix E.
Another possible path forward would be to include extra interactions that would be suggested by the massive graviton theory. Since a massive graviton is predicted in multiple theories beyond the Standard Model, it could be important to add the other particle interactions and see how that might change the resultant potential. It would thereby produce a good means of testing some of these theories in addition to the basic massive gravity theory.
BIBLIOGRAPHY
[1] Yashar Akrami, S.F. Hassan, Frank KΓΆnnig, Angnis Schmidt-May, and Adam R. Solomon. Bimetric gravity is cosmologically viable. Phys. Lett.
B, 748:37β44, 2015. doi: 10.1016/j.physletb.2015.06.062.
[2] Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, and Mao Zeng. Black Hole Binary Dynamics from the Double Copy and Effective Theory. JHEP, 10:206, 2019. doi: 10.1007/JHEP10(2019)206.
[3] L. Bernus, O. Minazzoli, A. Fienga, M. Gastineau, J. Laskar, and P. De- ram. Constraining the mass of the graviton with the planetary ephemeris INPOP. Phys. Rev. Lett., 123(16):161103, 2019. doi: 10.1103/PhysRevLett.
123.161103.
[4] N. Bjerrum-Bohr, John Donoghue, and B. Holstein. Quantum corrections to the schwarzschild and kerr metrics. Physical Review D, 68, 11 2002. doi:
10.1103/PhysRevD.68.084005.
[5] N. E. J Bjerrum-Bohr, John F. Donoghue, and Barry R. Holstein. Quan- tum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev., D67:084033, 2003. doi: 10.1103/PhysRevD.71.069903, 10.1103/PhysRevD.67.084033. [Erratum: Phys. Rev.D71,069903(2005)].
[6] D.G. Boulware and Stanley Deser. Can gravitation have a finite range? Phys.
Rev. D, 6:3368β3382, 1972. doi: 10.1103/PhysRevD.6.3368.
[7] Clifford Cheung. TASI Lectures on Scattering Amplitudes. In Proceed- ings, Theoretical Advanced Study Institute in Elementary Particle Physics : Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boul- der, CO, USA, June 6-July 1, 2016, pages 571β623, 2018. doi: 10.1142/
9789813233348_0008.
[8] S.R. Choudhury, Girish C. Joshi, S. Mahajan, and Bruce H.J. McKellar. Prob- ing large distance higher dimensional gravity from lensing data. Astropart.
Phys., 21:559β563, 2004. doi: 10.1016/j.astropartphys.2004.04.001.
[9] Diego A.R. Dalvit and Francisco D. Mazzitelli. Running coupling constants, Newtonian potential and nonlocalities in the effective action.Phys. Rev. D, 50:
1001β1009, 1994. doi: 10.1103/PhysRevD.50.1001.
[10] Ganesh Devaraj and Robin G. Stuart. Reduction of one loop tensor form- factors to scalar integrals: A General scheme. Nucl. Phys., B519:483β513, 1998. doi: 10.1016/S0550-3213(98)00035-2.
[11] John F. Donoghue. Introduction to the effective field theory description of gravity. In Advanced School on Effective Theories Almunecar, Spain, June 25-July 1, 1995, 1995.
[12] John F. Donoghue. The effective field theory treatment of quantum gravity.
AIP Conf. Proc., 1483(1):73β94, 2012. doi: 10.1063/1.4756964.
[13] R.Keith Ellis and Giulia Zanderighi. Scalar one-loop integrals for QCD.JHEP, 02:002, 2008. doi: 10.1088/1126-6708/2008/02/002.
[14] R.Keith Ellis, Zoltan Kunszt, Kirill Melnikov, and Giulia Zanderighi. One- loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts. Phys. Rept., 518:141β250, 2012. doi: 10.1016/j.physrep.2012.01.008.
[15] Marc H. Goroff and Augusto Sagnotti. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys., B266:709β736, 1986. doi: 10.1016/0550-3213(86) 90193-8.
[16] David J Griffiths. Introduction to elementary particles; 2nd rev. version.
Physics textbook. Wiley, New York, NY, 2008. URLhttps://cds.cern.
ch/record/111880.
[17] S.F. Hassan and Rachel A. Rosen. On Non-Linear Actions for Massive Gravity.
JHEP, 07:009, 2011. doi: 10.1007/JHEP07(2011)009.
[18] S.F. Hassan and Rachel A. Rosen. Bimetric Gravity from Ghost-free Massive Gravity. JHEP, 02:126, 2012. doi: 10.1007/JHEP02(2012)126.
[19] Kurt Hinterbichler. Theoretical Aspects of Massive Gravity. Rev. Mod. Phys., 84:671β710, 2012. doi: 10.1103/RevModPhys.84.671.
[20] Barry R. Holstein and Andreas Ross. Spin Effects in Long Range Electromag- netic Scattering. 2008.
[21] Barry R. Holstein and Andreas Ross. Spin Effects in Long Range Gravitational Scattering. 2008.
[22] Tristan HΓΌbsch.Advanced Concepts in Particle and Field Theory. Cambridge University Press, 2015. doi: 10.1017/CBO9781316160725.
[23] Y. Iwasaki. Quantum theory of gravitation vs. classical theory. - fourth-order potential. Prog. Theor. Phys., 46:1587β1609, 1971. doi: 10.1143/PTP.46.
1587.
[24] Henrik Johansson and Alexander Ochirov. Color-Kinematics Duality for QCD Amplitudes. JHEP, 01:170, 2016. doi: 10.1007/JHEP01(2016)170.
[25] Henrik Johansson and Alexander Ochirov. Double copy for massive quantum particles with spin. JHEP, 09:040, 2019. doi: 10.1007/JHEP09(2019)040.
[26] I.B. Khriplovich and G.G. Kirilin. Quantum power correction to the Newton law. J. Exp. Theor. Phys., 95(6):981β986, 2002. doi: 10.1134/1.1537290.
[27] Michele Levi. Binary dynamics from spin1-spin2 coupling at fourth post- Newtonian order. Phys. Rev. D, 85:064043, 2012. doi: 10.1103/PhysRevD.
85.064043.
[28] R. Mertig, M. Bohm, and Ansgar Denner. FEYN CALC: Computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun., 64:345β359, 1991. doi: 10.1016/0010-4655(91)90130-D.
[29] Ivan J. Muzinich and Stamatis Vokos. Long range forces in quantum gravity.
Phys. Rev. D, 52:3472β3483, 1995. doi: 10.1103/PhysRevD.52.3472.
[30] J. C. Romao. Advanced Quantum Field Theory. Instituto Superior Tecnico, 2019. URL http://porthos.tecnico.ulisboa.pt/Public/textos/
tca.pdf.
[31] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana. New Develop- ments in FeynCalc 9.0. Comput. Phys. Commun., 207:432β444, 2016. doi:
10.1016/j.cpc.2016.06.008.
[32] Mark Srednicki. Quantum Field Theory. Cambridge Univ. Press, Cambridge, 2007. URLhttps://cds.cern.ch/record/1019751.
[33] K. S. Stelle. Classical Gravity with Higher Derivatives. Gen. Rel. Grav., 9:
353β371, 1978. doi: 10.1007/BF00760427.
[34] Gerard βt Hooft and M.J.G. Veltman. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69β94, 1974.
[35] M.J.G. Veltman. Quantum Theory of Gravitation. Conf. Proc. C, 7507281:
265β327, 1975.
A p p e n d i x A
VERTICES AND PROPAGATORS
Below we list the Feynman rules that were used in our calculation. For a derivation, see [4, 11, 12].
A.1 Massive Scalar Propogator
= π
π2βπ2+ππ
(A.1) A.2 Massless Graviton Propogator
= π ππΌ π½πΎ πΏ π2+ππ
(A.2) where
ππΌ π½πΎ πΏ = 1
2[ππΌπΎππ½πΏ+ππΌπΏππ½πΎβ 2
π·β2ππΌ π½ππΎ πΏ] (A.3) A.3 Massive Graviton Propagator
= π π
πΌ π½πΎ πΏ π (π, π)
π2+ππ
(A.4) where
π
πΌ π½πΎ πΏ
π (π, π) = 1 2
πΉ
πΌπΎ
π (π, π)πΉ
π½πΏ
π (π, π) +πΉπΌπΏ
π (π, π)πΉ
π½πΎ
π (π, π) β 2 π·β1πΉ
πΌ π½
π (π, π)πΉ
πΎ πΏ π (π, π)
(A.5) and
πΉ
πΌ π½
π (π, π) =ππΌ π½+ ππΌππ½ π2
(A.6) A.4 Massless Ghost Propagator
= πππΌ π½ π2+ππ
(A.7)
A.5 2 Scalar, 1 Graviton Vertex Factor
=π
π π
1 (π, π0, π) where
π
π π
1 (π, π0, π)=βπ π 2
πππ0π+ π0πππ βππ π( (πΒ· π0) βπ2)
(A.8) A.6 2 Scalar, 2 Graviton Vertex Factor
=π
π π π π
2 (π, π0, π) where
π
π π π π
2 (π, π0, π) =π π 2
πΌπ ππΌπΏπΌ
π π π½ πΏ β 1
4
ππ ππΌπ ππΌ π½+ππ ππΌπ ππΌ π½ (ππΌπ0
π½+ π0
πΌππ½)
β 1 2
πΌπ π π π β 1
2ππ πππ π
[(πΒ· π0) βπ2]
(A.9) and
πΌπΌ π½πΎ πΏ = 1
2(ππΌπΎππ½πΏ+ππΌπΏππ½πΎ) (A.10)
A.7 3 Graviton Vertex Factor
=π3
π π
πΌ π½πΎ πΏ(π , π) where
π3
π π
πΌ π½πΎ πΏ(π , π) =βπ π
2 ππΌ π½πΎ πΏ
ππππ+ (π +π)π(π+π)π+ππππ β 3 2ππ ππ2
+2ππππ
πΌ ππ
πΌ π½ πΌ π π
πΎ πΏ +πΌ ππ
πΎ πΏ πΌ π π
πΌ π½ βπΌ ππ
πΌ π½
πΌ ππ
πΎ πΏ βπΌ ππ
πΎ πΏ
πΌ ππ
πΌ π½
+
ππππ
ππΌ π½πΌ ππ
πΎ πΏ +ππΎ πΏ πΌ ππ
πΌ π½
+ππππ
ππΌ π½πΌ
ππ
πΎ πΏ +ππΎ πΏ πΌ
ππ πΌ π½
βπ2
ππΌ π½πΌ
π π
πΎ πΏ +ππΎ πΏ πΌ
π π πΌ π½
βππ πππππ
ππΌ π½πΌ ππ
πΎ πΏ +ππΎ πΏ πΌ ππ
πΌ π½
+
2ππ
πΌ ππ
πΌ π½ πΌ π
πΎ πΏπ (π βπ)π +πΌ ππ
πΌ π½ πΌ
π
πΎ πΏπ (πβπ)πβπΌ ππ
πΎ πΏ πΌ π
πΌ π½π ππβπΌ ππ
πΎ πΏ πΌ
π πΌ π½π ππ
+π2
πΌ
π πΌ π½π πΌ π π
πΎ πΏ +πΌ
π πΎ πΏπ πΌ π π
πΌ π½
+ππ πππππ
πΌ
π π
πΌ π½ πΌ π
πΎ πΏ π +πΌ
π π
πΎ πΏ πΌ π
πΌ π½ π
+
(π2+(πβπ)2)
πΌ
ππ
πΌ π½ πΌ π
πΎ πΏπ +πΌ
ππ
πΎ πΏ πΌ π
πΌ π½π β 1
2ππ πππΌ π½πΎ πΏ
β πΌ
π π
πΎ πΏ ππΌ π½π2+πΌ
π π
πΌ π½ ππΎ πΏ(πβπ)2! (A.11) A.8 2 Ghost, 1 Graviton Vertex Factor
=π
π π
π πΌ π½(π , π) where
ππ
π π
πΌ π½(π , π)= π π 2
(π2+ (π+π)2+π2)πΌ
π π
πΌ π½ +2ππΌ π½ππ(π +π)ππ
π π ππ
+2ππΌπππΌ π π
π½π β2ππ½(π +π)ππΌ π π
πΌπ +ππΌππ½ππ π
(A.12)
A p p e n d i x B
INTEGRALS USED IN THE MASSLESS CASE
We recreate the integrals used in the massless case here due to some copy errors noted in the integrals given by [5].
B.1 Bubble Integrals
πΌ =
β« π4β (2π)4
1
β2(β+π)2 = π 16π2
[βπΏ] +... (B.1)
πΌπ =
β« π4β (2π)4
βπ
β2(β+π)2 = π 16π2
1 2πππΏ
+... (B.2)
πΌπ π =
β« π4β (2π)4
βπβπ
β2(β+π)2 = π 16π2
1
12πΏ π2ππ πβ 1 3πΏ ππππ
+... (B.3)
πΌπ ππΌ =
β« π4β (2π)4
βπβπβπΌ
β2(β+π)2 = π 16π2
β 1
24πΏ π23π(π πππΌ) + 1
4πΏ ππππππΌ
+... (B.4) πΌπ ππΌ π½ =
β« π4β (2π)4
βπβπβπΌβπ½
β2(β+π)2 = π 16π2
β 1
240πΏ π43π(π πππΌ π½) + 1
40πΏ π26π(π πππΌππ½) β 1
5πΏ ππππππΌππ½+... (B.5)
where πΏ = π ππ(βπ2) and π = βπ2
βπ2, and analytic and higher order nonanalytic terms are represented by the elipses.
B.2 Triangle Integrals
π½ =
β« π4β (2π)4
1
β2(β+π)2( (β+π)2βπ2
1)
= π 32π2π2
1
[βπΏβπ] +... (B.6)
π½π =
β« π4β (2π)4
βπ
β2(β+π)2( (β+π)2βπ2
1)
= π 32π2π2
1
ππ
β1β 1 2
π2 π2
1
πΏβ 1 4
π2 π2
1
π
+ππππ
πΏ+ 1 2π
+... (B.7)
π½π π =
β« π4β (2π)4
βπβπ
β2(β+π)2( (β+π)2βπ2
1)
= π 32π2π2
1
ππππ
β 1 2
π2 π2
1
πΏβ 1 8
π2 π2
1
π
+ππ
βπΏβ 3 8π
+2π(πππ) 1 2 + 1
2 π2 π2
1
πΏ+ 3 16
π2 π2
1
π
+π2ππ π 1 4πΏ+ 1
8π
+... (B.8)
π½π ππΌ =
β« π4β (2π)4
βπβπβπΌ
β2(β+π)2( (β+π)2βπ2
1)
= π 32π2π2
1
ππππππΌ
β 1 6
π2 π2
1
πΏ
+ππππππΌ
πΏ+ 5 16π
+3π(πππππΌ)1 3
π2 π2
1
πΏ+ 1 16
π2 π2
1
π
+3π(πππππΌ)
β 1 3β 1
2 π2 π2
1
πΏβ 5 32
π2 π2
1
π
+3π(π πππΌ) π2 1 12π2πΏ
+3π(π πππΌ)
β 1
6π2πΏβ 1 16π2π
+... (B.9)
where πΏ = π ππ(βπ2) and π = βπ2
βπ2
, and analytic and higher order non-analytic terms are represented by the ellipses. We utilize the symmetrization convention used by [20] where
π΄(π1π2π3... ππ= 1
π! π΄(π1π2π3... ππ+π΄(π2π1π3... ππ+...
(B.10) For example, this means that 3π(π πππΌ) =ππ πππΌ+πππΌππ+ππΌπππ.
B.3 Box and Cross Box Integrals
πΎ =
β« π4β (2π)4
1 β2(β+π)2( (β+π1)2βπ2
1) ( (ββπ3)2βπ2
2)
= π
16π2π1π2 πΏ
π2
1β π βπ 0 6π1π2
βπ2π πΏ π2
1 2β
π1π2
β π βπ 0
1β π βπ 0 8π1π2
(B.11) πΎ0=
β« π4β (2π)4
1 β2(β+π)2( (β+π1)2βπ2
1) ( (β+π4)2βπ2
2)
= π
16π2π1π2
β πΏ π2
1β π βπ 0 6π1π2
(B.12)
A p p e n d i x C
INTEGRALS USED IN THE MASSIVE CASE
C.1 Tadpole and Bubble Integrals
π΄0(π) =
β« π4β (2π)4
1
(β2βπ2) =0 (C.1)
π΅0=
β« π4β (2π)4
1 (β2βπ2
1) ( (β+π)2βπ2
2)
= π 16π2
1 π2
β π2
1βπ2
2
2 log(π12 π2
2
) +π πΏ(π, π1, π2)
(C.2) π΅π =
β« π4β (2π)4
βπ (β2βπ2
1) ( (β+π)2βπ2
2)
= π 32π2
ππ
β 1 π2
β 1 π4
(π2
1βπ2
2)
π πΏ(π, π1, π2)
+ π
64π2π4 ππ
(π2
1βπ2
2)2 log
π2
1
π2
2
(C.3) π΅π π =
β« π4β (2π)4
βπβπ (β2βπ2
1) ( (β+π)2βπ2
2)
= π 16π2
π2
1+π2
2
6 1 π2
β 1 12
ππ π+π2
1β2π2
2
3 1 π4
+ 1 3
1 π2
ππππ
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)3 1
24 1 π4
ππ π+
β 1 6
1 π6
ππππ
logπ2
1
π2
2
+ π 16π2
(π2
1βπ2
2)2
β 1 12
1 π4
ππ π+1 3
1 π6
ππππ
π πΏ(π, π1, π2) (C.4) π΅π ππΌ =
β« π4β (2π)4
βπβπβπΌ (β2βπ2
1) ( (β+π)2βπ2
2)
= π 16π2
β π2
1+3π2
2
24 1 π2
+ 1 24
3π(π πππΌ) βπ2
1β3π2
2
4 1 π4 + 1
4 1 π2
ππππππΌ
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)4
β 1 48
1 π6
3π(π πππΌ) +1 8
1 π8
ππππππΌ
log π2
1
π2
2
+ π 16π2
(π2
1βπ2
2)3 1
24 1 π6
π(π πππΌ) +
β 1 4
1 π8
ππππππΌ
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)
β π2
1+3π2
2
24 1 π4
π(π πππΌ) +
β π2
1β3π2
2
4 1 π6
ππππππΌ
π πΏ(π, π1, π2) (C.5)
π΅π ππΌ π½ =
β« π4β (2π)4
βπβπβπΌβπ½ (β2βπ2
1) ( (β+π)2βπ2
2) =
= π 16π2
"
3π4
1+2π2
1π2
2+3π4
2
120
1 π2
β π2
1+π2
2
60 + π2 240
6π(π πππΌ π½) +
π4
1+4π2
1π2
2β9π4
2
60
1 π4
+ π2
1+6π2
2
60 β 1
40
6π(π πππΌππ½) + π4
1β6π2
1π2
2+6π4
2
5
1 π6
+ π2
1β4π2
2
5 1 π2
+ 1 5
1 π2
ππππππΌ π½
#
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)5
β 1 480
1 π6
6π(π πππΌ π½) + 1
80 1 π8
6π(π πππΌππ½)+
β 1 10
1 π10
ππππππΌ π½
log π2
1
π2
2
+ π 16π2
(π2
1βπ2
2)4 1
240 1 π6
6π(π πππΌ π½) +
β 1 40
1 π8
6π(π πππΌππ½) + 1
5 1 π10
ππππππΌππ½
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)2
"
β π2
1+π2
2
60 1 π4
6π(π πππΌ π½) + π2
1+6π2
2
60 1 π6
6π(π πππΌππ½) + π2
1β4π2
2
5 1 π8
ππππππΌππ½
#
π πΏ(π, π1, π2) (C.6)
π΅π ππΌ π½πΎ =
β« π4β (2π)4
βπβπβπΌβπ½βπΎ (β2βπ2
1) ( (β+π)2βπ2
2)
= π 16π2
"
β π4
1+2π2
1π2
2+5π4
2
240
1 π2
+ 3π2
1+5π2
2
480 β π2 480
15π(π πππΌ π½ππΎ) +
β π4
1+7π2
1π2
2β20π4
2
120
1 π4
β π2
1+10π4
2
120 + 1
60
10π(π πππΌππ½ππΎ) +
β π4
1β8π2
1π2
2+10π4
2
6
1 π6
β π2
1β5π2
2
6 1 π4
β 1 6
1 π2
ππππππΌ π½
#
π πΏ(π, π1, π2)
+ π 16π2
(π2
1βπ2
2)6 1
960 1 π8
15π(π πππΌ π½ππΎ) +
β 1 120
1 π10
10π(π πππΌππ½ππΎ) +
1 12
1 π12
ππππππΌ π½ππΎ
log π2
1
π2
2
+ π 16π2
(π2
1βπ2
2)5
β 1 480
1 π8
15π(π πππΌ π½ππΎ) + 1
60 1 π8
10π(π πππΌππ½ππΎ) +
β 1 6
1 π12
ππππππΌππ½ππΎ
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)3
"
3π2
1+5π2
2
480 1 π6
15π(π πππΌ π½ππΎ) +
β π2
1+10π2
2
120 1 π8
10π(π πππΌππ½ππΎ) +
β π2
1β5π2
2
6 1 π10
ππππππΌππ½ππΎ
#
π πΏ(π, π1, π2)
β π 16π2
(π2
1βπ2
2)
"
π4
1+2π2
1π2
2+5π4
2
240
1 π4
15π(π πππΌ π½ππΎ) + π4
1+7π2
1π2
2β20π4
2
120
1 π6
10π(π πππΌππ½ππΎ) + π4
1β8π2
1π2
2+10π4
2
6
1 π8
ππππππΌππ½ππΎ
#
π πΏ(π, π1, π2) (C.7) π΅π ππΌ π½πΎ πΏ =
β« π4β (2π)4
βπβπβπΌβπ½βπΎβπΏ (β2βπ2
1) ( (β+π)2βπ2
2)
= π 16π2
"
(π2
1+π2
2) (5π4
1β2π2
1π2
2+5π4
2) 1680
1 π2
β 5π4
1+6π2
1π2
2+5π4
2
2240 +π2
π2
1+π2
2
1120 β π4 6720
15π(π πππΌ π½ππΎ πΏ) +π6
1+2π4
1π2
2+9π2
1π4
2β20π6
2) 210
1 π4
β π4
1+4π2
1π2
2+15π4
2
840
1 π2
β 5π2
1+12π2
2
1680 β π2 840
45π(π πππΌ π½ππΎππΏ) +π6
1+9π4
1π2
2β54π2
1π4
2+50π6
2) 210
1 π6
+ 2π4
1+22π2
1π2
2β75π4
2
420
1 π4
+ π2
1+15π2
2
210 β 1
84
15π(π πππΌ π½ππΎππΏ) +(π2
1β2π2
2) (π4
1β10π2
1π2
2+10π4
2) 7
1 π8
+ (π4
1β10π2
1π2
2+15π4
2) 7
1 π6
+ π2
1β6π2
2
7 1 π4
+1 7
1 π2
ππππππΌ π½ππΎππΏ
#
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)7 1
13440 1 π8
15π(π πππΌ π½ππΎ πΏ) +
β 1 1680
1 π10
45π(π πππΌ π½ππΎππΏ) +
1 168
1 π12
15π(π πππΌππ½ππΎππΏ) +
β 1 14
1 π14
ππππππΌ π½ππΎππΏ
log π2
1
π2
2
+ π 16π2
(π2
1βπ2
2)6
β 1
6720 1 π8
15π(π πππΌ π½ππΎ πΏ) + 1 840
1 π10
45π(π πππΌ π½ππΎππΏ) +
β 1 84
1 π12
15π(π πππΌππ½ππΎππΏ) +1 7
1 π14
ππππππΌππ½ππΎππΏ
π πΏ(π, π1, π2) + π
16π2 (π2
1βπ2
2)4
"
π2
1+π2
2
1120 1 π6
15π(π πππΌ π½ππΎ πΏ) +
β 5π12+12π22 1680
1 π8
45π(π πππΌ π½ππΎππΏ) +π2
1+15π2
2
210 1 π10
15π(π πππΌππ½ππΎππΏ) + π2
1β6π2
2
7
1 π12
ππππππΌππ½ππΎππΏ
#
π πΏ(π, π1, π2)
β π 16π2
(π2
1βπ2
2)2
"
5π4
1+6π2
1π2
2+5π4
2
2240
1 π4
15π(π πππΌ π½ππΎ πΏ) + π4
1+4π2
1π2
2+15π4
2
840
1 π6
45π(π πππΌ π½π πΎ ππΏ) + 2π4
1+22π2
1π2
2β75π4
2
420
1 π8
15π(π πππΌππ½ππΎππΏ) + π4
1β10π2
1π2
2+15π4
2
7
1 π10
ππππππΌππ½ππΎππΏ
#
π πΏ(π, π1, π2) (C.8) C.2 Triangle Integrals
We used theπΆ0integral as defined by [10]
πΆ0=
β« π4β (2π)4
1 (β2βπ2
1) ( (β+π1)2βπ2
2) ( (β+π2)2βπ2
3)
= π2
1π΅0(π1, π1, π2) + ( (π1Β· π2) βπ2
1)π΅0(π1+π2, π1, π3) β (π1Β·π2)π΅0(π1, π2, π3)
β(π1Β·π2)π1βπ2
1π2
(C.9) where
π1=π2
1βπ2
2βπ2
1 (C.10)
π2=π2
2βπ2
3+π2
1β (π1β π2)2 (C.11)
All other non-scalar triangle integrals used were decomposed in terms of the πΆ0, π΅0, and π΄0 integrals. Each integral has the inputs πΆ(π, π1, π, π, π1). We have Taylor expanded the expressions with respect to the graviton massπ up to order 2 and the exchanged momentumπ up to order 4. We also only record the nonanalytic terms of these expressions.
πΆπ =
β« π4β (2π)4
βπ (β2βπ2
1) ( (β+π1)2βπ2
2) ( (β+π2)2βπ2
3)
=β π 64π2π2
1π2
π2 8π
π 1 log
βπ2 π2
βππlog π2 π2
1
!
β2ππlog
βπ2 π2
!
β π
128π2π4
1
β8π2
1π
π 1log
βπ2 π2
+6π2π
π 1log
βπ2 π2
+4π2
1ππlog
βπ2 π2
β2π2ππlog
βπ2 π2
+ π
1024π2π6
1
π2
16π2
1π
π 1log
βπ2 π2
β16π2π
π 1log
βπ2 π2
β8π2
1ππlog
βπ2 π2
+6π2ππlog
βπ2 π2
β π
2048π2π8
1
π4
β8π2
1π
π 1log
βπ2 π2
+10π2π
π 1log
βπ2 π2
+4π2
1ππlog
βπ2 π2
β4π2ππlog
βπ2 π2
+π
π3, π5
(C.12) πΆπ π =
β« π4β (2π)4
βπβπ (β2βπ2
1) ( (β+π1)2βπ2
2) ( (β+π2)2βπ2
3)
=β π 128π2π2
1π2
β8π2ππ
1ππlog
βπ2 π2
β8π2π
π 1ππlog
βπ2 π2
βπ2ππππlog π2 π2
1
! +6π2
1ππππlog π2 π2
1
!
+16π2ππππlog
βπ2 π2
!
+ π
256π2π4
1
16π2π2
1log
βπ2 π2
ππ πβ8π2
1ππ
1ππlog
βπ2 π2
β8π2
1π
π 1ππlog
βπ2 π2
β40π2π
π 1ππ
1log
βπ2 π2
+24π2ππ
1ππlog
βπ2 π2
+24π2π
π 1ππlog
βπ2 π2
+10π2
1ππππlog
βπ2 π2
β18π2ππππlog
βπ2 π2
β π
2048π2π6
1
π2
16π4
1log
βπ2 π2
ππ πβ32π2π2
1log
βπ2 π2
ππ π
β48π2
1π
π 1ππ
1log
βπ2 π2
+40π2
1ππ
1ππlog
βπ2 π2
+40π2
1π
π 1ππlog
βπ2 π2
+160π2π
π 1ππ
1log
βπ2 π2
β88π2ππ
1ππlog
βπ2 π2
β88π2π
π 1ππlog
βπ2 π2
β32π2
1ππππlog
βπ2 π2
+56π2ππππlog
βπ2 π2
+π
π3, π3
(C.13)
πΆπ ππΌ =
β« π4β (2π)4
βπβπβπΌ (β2βπ2
1) ( (β+π1)2βπ2
2) ( (β+π2)2βπ2
3)
=
11π π2ππΌππππlog
π2 π2
1
128π2π4
β π
256π2π2
1π2
6π2π2
1ππΌlog π2 π2
1
! ππ π
+6π2π2
1ππlog π2 π2
1
!
ππΌπ +6π2π2
1ππlog π2 π2
1
!
ππΌ πβ6π2π
π 1ππ
1ππΌlog π2 π2
1
!
β6π2ππΌ
1ππ
1ππlog π2 π2
1
!
β19π2ππ
1ππΌππlog π2 π2
1
!
β6π2ππΌ
1π
π
1ππlog π2 π2
1
!
β19π2π
π
1ππΌππlog π2 π2
1
!
β19π2ππΌ
1ππππlog π2 π2
1
! +5π2
1ππ
1ππΌππlog π2 π2
1
!
+5π2
1π
π
1ππΌππlog π2 π2
1
! +5π2
1ππΌ
1ππππlog π2 π2
1
!
β8π2ππ
1ππΌππlog
βπ2 π2
β8π2π
π
1ππΌππlog
βπ2 π2
β8π2ππΌ
1ππππlog
βπ2 π2
+51π2ππΌππππlog π2 π2
1
!
+14π2
1ππΌππππlog π2 π2
1
!
+18π2ππΌππππlog
βπ2 π2
+ π
6144π4
1π2
48π2log
βπ2 π2
ππΌππ ππ2
1+48π2log
βπ2 π2
ππΌππππ2
1
β16 log
βπ2 π2
ππΌππππ
1π2
1+48π2log
βπ2 π2
ππΌ ππππ2
1
β16 log
βπ2 π2
ππΌπ
π 1πππ2
1β16 log
βπ2 π2
ππΌ
1πππππ2
1
+96 log
βπ2 π2
ππΌπππππ2
1+192π2log
βπ2 π2
ππΌ
1π
π 1ππ
1
β240π2log
βπ2 π2
ππΌπ
π 1ππ
1β240π2log
βπ2 π2
ππΌ
1ππππ
1
+264π2log
βπ2 π2
ππΌππππ
1β240π2log
βπ2 π2
ππΌ
1π
π 1ππ
+264π2log
βπ2 π2
ππΌπ
π
1ππ +264π2log
βπ2 π2
ππΌ
1ππππ
β276π2log
βπ2 π2
ππΌππππ β π 12288π6
1π2
β32 log
βπ2 π2
ππΌ
1ππ ππ4
1
+64 log
βπ2 π2
ππΌππ ππ4
1β32 log
βπ2 π2
ππΌππ
π 1π4
1
+64 log
βπ2 π2
ππΌππππ4
1β32 log
βπ2 π2
ππΌ πππ
1π4
1
+64 log
βπ2 π2
ππΌ ππππ4
1+48π2log
βπ2 π2
ππΌ
1ππ ππ2
1
β48π2log
βπ2 π2
ππΌππ ππ2
1+48π2log
βπ2 π2
ππΌππ
π 1π2
1
β48π2log
βπ2 π2
ππΌππππ2
1+48π2log
βπ2 π2
ππΌ πππ
1π2
1
+160 log
βπ2 π2
ππΌ
1π
π 1ππ
1π2
1β224 log
βπ2 π2
ππΌπ
π 1ππ
1π2
1
β224 log
βπ2 π2
ππΌ
1ππππ
1π2
1+240 log
βπ2 π2
ππΌππππ
1π2
1
β48π2log
βπ2 π2
ππΌ ππππ2
1β224 log
βπ2 π2
ππΌ
1π
π 1πππ2
1
+240 log
βπ2 π2
ππΌπ
π 1πππ2
1+240 log
βπ2 π2
ππΌ
1πππππ2
1
β248 log
βπ2 π2
ππΌπππππ2
1β432π2log
βπ2 π2
ππΌ
1π
π 1ππ
1
+360π2log
βπ2 π2
ππΌπ
π 1ππ
1+360π2log
βπ2 π2
ππΌ
1ππππ
1
β300π2log
βπ2 π2
ππΌππππ
1+360π2log
βπ2 π2
ππΌ
1π
π 1ππ
β300π2log
βπ2 π2
ππΌπ
π
1ππβ300π2log
βπ2 π2
ππΌ
1ππππ
+252π2log
βπ2 π2
ππΌπππππ2+π
π3, π3
(C.14)
C.3 Box and Cross Box Integrals We used the π·0integral as defined by [10]
π·0 =
β« π4π (2π)4
1 (π2βπ2
1) ( (π+π1)2βπ2
2) ( (π+π2)2βπ2
3) ( (πβπ3)2βπ2
4)
= 1 π3
βπ₯33πΆ0 π1, π2, π2
2, π2
1, π2
3
+ (π₯33βπ₯32)πΆ0 π1,βπ3, π2
2, π2
1, π2
4
+ (π₯32βπ₯31)πΆ0 π1βπ2, π2+π3, π2
2, π2
3, π2
4
+π₯31πΆ0 π2, π2+π3, π2
1, π2
3, π2
4
(C.15) π·0
0 =
β« π4π (2π)4
1
(π2βπ12) ( (π+π1)2βπ22) ( (π+π2)2βπ32) ( (π+π4)2βπ42)
= 1 π0
3
βπ₯0
33πΆ0 π1, π2, π2
2, π2
1, π2
3
+ (π₯0
33βπ₯0
32)πΆ0 π1, π4, π2
2, π2
1, π2
4
+ (π₯0
32βπ₯0
31)πΆ0 π1βπ2, π2βπ4, π2
2, π2
3, π2
4
+π₯0
31πΆ0 π2, π2βπ4, π2
1, π2
3, π2
4
(C.16) where
π1= π0
1=π2
1βπ2
2βπ2
1 (C.17)
π2= π0
2=π2
2βπ2
3+π2
1β (π1βπ2)2 (C.18)
π3=π2
3βπ2
4+ (π1βπ2)2β (π1βπ3)2 (C.19) π₯31 =β(π1Β·π2) (π2Β· π3) β (π1Β· π3)π2
2 (C.20)
π₯32 =β(π1Β·π2) (π1Β· π3) β (π2Β· π3)π2
1 (C.21)
π₯33 =π₯0
33 =π2
2π2
1β (π1Β·π2)2 (C.22)
π3=π₯31π1+π₯32π2+π₯33π3 (C.23) π0
3 =π2
3βπ2
4+ (π1βπ2)2β (π1+π4)2 (C.24) π₯0
31 =(π1Β· π2) (π2Β·π4) + (π1Β·π4)π2
2 (C.25)
π₯0
32 =(π1Β· π2) (π1Β·π4) + (π2Β·π4)π2
1 (C.26)
π0
3=π₯0
31π0
1+π₯0
32π0
2+π₯0
33π0
3 (C.27)
(C.28) All other non-scalar triangle integrals used were decomposed in terms of the π·0, πΆ0, π΅0, and
π΄0integrals
A p p e n d i x D
FOURIER TRANSFORMS
In this thesis, we make use of many 3D fourier transforms. We have accumulated these from several resources. The three that we use for the massless graviton calculations are listed below [5]:
β« π3π (2π)3ππqΒ·r
1
|q|2 = 1
4ππ (D.1)
β« π3π
(2π)3ππqΒ·r 1
|q| = 1 2π2π2
(D.2)
β« π3π
(2π)3ππqΒ·rln(q2) =β 1 2ππ3
(D.3)
β« π3π
(2π)3ππqΒ·r=πΏ3(π) (D.4)
β« π3π
(2π)3ππqΒ·rπ2=πΏ300(π) (D.5) For the massive graviton calculations, we reference [27] and use their transforms as shown below
πΌ =
β« πππ (2π)πππqΒ·r
1
(q2)πΌ = 1 (4π)π/2
Ξ(π/2βπΌ) Ξ(πΌ)
π2 4
πΌβπ/2
(D.6)
β« π3π (2π)3πππΒ·π
log βπ2 π2
= (D.7)
β« π3π (2π)3πππΒ·π
log βπ2
(π2βπ2) = (D.8)
A p p e n d i x E
COLOR-KINEMATICS DUALITY
Figure E.1: A tree level gluon inter- action
At one point in this thesis, we were consid- ering exploring the usefulness of utilizing color-kinematic duality as a way to check our answers. This duality interchanges the color and kinematic structures of the S- matrix. In practice, this means that the amplitudes of various particle interactions can be "squared" to produce an equivalent amplitude for interactions in other theories [24]. We were specifically interested in one such relation, that of "graviton = gluon2"
[7]. This means that if we took the expres-
sion for the scattering amplitude for fig. E.1 before integration and squared it, we would get the desired amplitude for the diagram in fig. E.2 Since great progress has already been made with the strong force, we originally thought we could rederive the amplitudes for our project through this independent method. We hoped that enough research would had been done in the field of massive gluons that this could be rea- sonably simple method to check our conclusions through an independent process.
However, after searching into the work done with massive gluons, we realized that while this procedure should work [25], it would require more calculation and effort than expected, since we would have had to calculate the majority of the massive gluon amplitudes that we needed. We expect that this process could be the source of an entirely new project or thesis and suggest this as a possibility to any interested readers.