• Tidak ada hasil yang ditemukan

Rounded V-grooves (U-grooves)

Capillary flow in V-grooves

4.4 Discussion .1 Limitations.1Limitations

4.4.2 Rounded V-grooves (U-grooves)

Manufacturing V-grooves with perfectly sharp corners is challenging at the microscale, one of the reasons for which variations on the V-groove geometry have been investigated. Chen, Weis- logel, and Nardin (2006) generalized the model to V-shaped grooves with rounded bottoms (assumed to be circular sections) instead of sharp corners, which we will refer to as “U-grooves.”

Above the rounded bottom, the upper portion of each groove was assumed to have straight walls like the and V-groove. It was found that the governing equations remained similar to the V-groove equation, but included some nonlinear terms which could not be expressed in closed form (although the authors did construct an approximate closed form solution contain- ing only polynomial fractions). However, the authors identified several limiting cases, such as nearly-rectangular grooves and highly rounded “crescent-like” grooves, in which the model could be approximated with a simple polynomial expression. In these cases, the model remained a nonlinear diffusion equation similar to the V-groove equation, but with a different exponent.

Tang et al. (2015) considered asymmetrical V-grooves, with a sharp corner but with one wall slightly curved. This model also contained a nonlinear term with no closed form expression, and solutions were computed numerically.

These models are derived from the same ∂A/∂T = −∂Q/∂Z equation as the V-groove, but the dependence ofA andQonH are different. Most importantly, the cross-sectional shape of the fluid changes with H, unlike the V-groove, where the cross-sectional shape simply scales to larger or smaller sizes as H varies. This means that the cross-sectional area A is no longer quadratic in H, but instead follows some complicated (though still closed-form-expressible) nonlinear function ofH. The streamwise flux, however, must be computed numerically for each different cross-sectional shape, and hence leads to an inexpressible nonlinear function.

Despite the complexity of these models, their dynamics remain qualitatively similar to those of the V-groove. In particular, both exhibit self-similar solutions with the same t1/2 spreading behavior as the V-groove. The spreading profile in the U-grooves of Chen et al. (2006) appears steeper than that of the V-groove, resembling the terminating solutions 5 and 6 in Figure 4.7.

References

MATLAB and Statistics Toolbox Release 2015a, The MathWorks, Inc., Natick, MA, USA, 2015.

URL https://www.mathworks.com/products/matlab.html.

M. J. Assael, I. J. Armyra, J. Brillo, S. V. Stankus, J. Wu, and W. A. Wakeham. Refer- ence data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mer- cury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data, 41(3), 2012. ISSN 0047-2689.

doi:10.1063/1.4729873.

P. S. Ayyaswamy, I. Catton, and D. K. Edwards. Capillary flow in triangular grooves. J. Appl.

Mech., 41:332–336, 1974. doi:10.1115/1.3423288.

J. Berthier, K. A. Brakke, E. P. Furlani, I. H. Karampelas, V. Poher, D. Gosselin, M. Cubizolles, and P. Pouteau. Whole blood spontaneous capillary flow in narrow v-groove microchannels.

Sensor Actuat. B Chem., 206:258–267, 2015. doi:10.1016/j.snb.2014.09.040.

M. Bracke, F. De Voeght, and P. Joos. The kinetics of wetting: The dynamic contact angle, volume 79 of Trends in Colloid and Interface Science III, Progress in Colloid & Polymer Science. Steinkopff-Verlag Heidelberg, 1989. doi:10.1007/BFb0116200.

Y. Chen, M. M. Weislogel, and C. L. Nardin. Capillary-driven flows along rounded interior corners. J. Fluid Mech., 566:235–271, 2006. doi:10.1017/S0022112006001996.

Y. Chen, L. S. Melvin, S. Rodriguez, D. Bell, and M. M. Weislogel. Capillary driven flow in micro scale surface structures. Microelectron. Eng., 86(4):1317–1320, 2009.

doi:10.1016/j.mee.2009.02.016.

V. P. Chentsov, V. G. Shevchenko, A. G. Mozgovoi, and M. A. Pokrasin. Density and surface tension of heavy liquid-metal coolants: Gallium and indium. Inorg. Mater. Appl. Res., 2(5):

468–473, 2011. doi:10.1134/S2075113311050108.

S. H. Collicott and Y. Chen. Studies of the wetting of gaps in weightlessness. Microgravity Sci.

Tec., 22:487–498, 2010. doi:10.1007/s12217-010-9233-6.

P. Concus and R. Finn. On the behavior of a capillary surface in a wedge. Proc. Natl. Acad.

Sci. USA, 63(2):292, 1969. doi:10.1073/pnas.63.2.292.

R. G. Cox. The dynamics of the spreading of liquids on a solid surface. part 1. viscous flow. J.

Fluid Mech., 168:169–194, 1986. doi:10.1017/S0022112086000332.

S. R. Darr, C. F. Camarotti, J. W. Hartwig, and J. N. Chung. Hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management. Phys. Fluids, 29:017101, 2017. doi:10.1063/1.4973671.

J. A. Dean. Lange’s Handbook of Chemistry. McGraw-Hill, New York, 15th edition, 1999. ISBN 0070163847.

D. Deng, Y. Tang, J. Zeng, S. Yang, and H. Shao. Characterization of capillary rise dynamics in parallel micro v-grooves. Int. J. Heat Mass Trans., 77:311–320, 2014.

doi:10.1016/j.ijheatmasstransfer.2014.05.003.

P. S. Dittrich and A. Manz. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug.

Discov., 5(3):210–218, 2006. doi:10.1038/nrd1985.

M. Dong and I. Chatzis. The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci., 172(2):278–288, 1995. doi:10.1006/jcis.1995.1253.

J. W. Hartwig. A detailed historical review of propellant management devices for low grav- ity propellant acquisition. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, July 25-27, 2016, pages AIAA–16–4772. American Institute of Aeronautics and Astronautics, Reston, VA, 2016. doi:10.2514/6.2016-4772.

J. W. Hartwig. Propellant management devices for low-gravity fluid management: Past, present, and future applications. J. Spacecr. Rockets, 54:808–824, 2017. doi:10.2514/1.A33750.

R. L. Hoffman. A study of the advancing interface. J. Colloid Interface Sci., 50(2):14, 1975.

doi:10.1016/0021-9797(75)90225-8.

D. E. Jaekle. Propellant management device conceptual design and analysis: Vanes. In AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, June 24-26, 1991, Sacramento, CA, pages AIAA–91–2172. American Institute of Aeronautics and Astronautics, Reston, VA, 1991. doi:10.2514/6.1991-2172.

D. E. Jaekle. Propellant management device conceptual design and analysis: Galleries. In 33rd AIAA/SAE/ASME/ASEE Joint Propulsion Conference & Exhibit, July 6-9, 1997, Seattle, WA, pages AIAA–97–2811. American Institute of Aeronautics and Astronautics, Reston, VA, 1997. doi:10.2514/6.1997-2811.

D. E. Jaekle. PMD Technology, 2011. URLhttps://www.pmdtechnology.com.

J. Johansson and G. Kifetew. Ct-scanning and modelling of the capillary water uptake in aspen, oak and pine. Eur. J. Wood Prod., 68:77 – 85, 2010. doi:10.1007/s00107-009-0359-4.

R. T. Jones. Blood flow. Annu. Rev. Fluid Mech., 1(1):223–244, 1969.

doi:10.1146/annurev.fl.01.010169.001255.

P. Joos, P. van Remoortere, and M. Bracke. The kinetics of wetting in a capillary. J. Colloid Interface Sci., 136:189 – 197, 1990. doi:10.1016/0021-9797(90)90089-7.

L. D. Landau and E. M. Lifshitz. Fluid Mechanics, volume 6 of Course of Theoretical Physics.

Butterworth-Heinemann, 2nd edition, 1987.

R. Lenormand and C. Zarcone. Role of roughness and edges during imbibition in square cap- illaries. In Proceedings of the 59th Annu. Tech. Conference & Exhibit, Houston, TX, Sept.

16-19, 1984, pages SPE–13264. American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., Englewood, CO, 1984. doi:10.2118/13264-MS.

D. Levine, B. Wise, R. Schulman, H. Gutierrez, D. Kirk, N. Turlesque, W. Tam, M. Bhatia, and D. Jaekle. Surface tension and contact angle analysis with design of propellant measurement apparatus. J. Propul. Power, 31(1):429–443, 2015. doi:10.2514/1.B35213.

A. K. Mallik, G. P. Peterson, and M. H. Weichold. On the use of micro heat pipes as an integral part of semiconductor devices. J. Electron. Packaging, 114(4):436–442, 1992.

doi:10.1115/1.2905477.

M. Markos, V. S. Ajaev, and G. M. Homsy. Steady flow and evaporation of a volatile liquid in a wedge. Phys. Fluids, 18(9):092102, September 2006. ISSN 1070-6631, 1089-7666.

doi:10.1063/1.2347529.

J. C. Maxwell and J. W. Strutt. Encyclopædia Britannica (11th Edition), volume 5. Univ. of Cambridge, 1911.

W. I. Newman. A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I. J. Math. Phys., 25(10):3120–3123, 1984. doi:10.1063/1.526028.

N. M. Oliveira, S. Vilabril, M. B. Oliveira, R. L. Reis, and J. a. F. Mano. Recent advances on open fluidic systems for biomedical applications: A review. Mat. Sci. Eng. C, 97:851–863, April 2019. ISSN 09284931. doi:10.1016/j.msec.2018.12.040.

A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod.

Phys., 69(3):931–980, 1997. doi:10.1103/RevModPhys.69.931.

F. Otto. The geometry of dissipative evolution equations: The porous medium equation.

Commun. Part. Diff. Eq., 26(1-2):101–174, 2001. doi:10.1081/PDE-100002243.

M. Prakash and N. Gershenfeld. Microfluidic bubble logic. Science, 315(5813):832–835, 2007.

doi:10.1126/science.1136907.

R. F. Probstein. Physicochemical Hydrodynamics: An Introduction. John Wiley & Sons, New York, 1994. ISBN 9780471010111.

D. Quéré. Wetting and Roughness. Annu. Rev. Mater. Res., 38(1):71–99, August 2008. ISSN 1531-7331, 1545-4118. doi:10.1146/annurev.matsci.38.060407.132434.

J. Ralston. A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II. J. Math. Phys., 25(10):3124–3127, 1984. doi:10.1063/1.526029.

A. J. Roberts. Low-dimensional modelling of dynamics via computer algebra. Comput.

Phys. Commun., 100(3):215–230, March 1997. ISSN 00104655. doi:10.1016/S0010- 4655(96)00162-2.

J. R. Rollins, R. K. Grove, and D. E. Jaekle. Twenty-three years of surface tension propel- lant management system design, development, manufacture, test, and operation. In A. I.

of Aeronautics and V. Astronautics, Reston, editors, AIAA 21st Joint Propulsion Conference, Monterey, CA, July 8-10, 1985, pages AIAA–85–1199, 1985. doi:10.2514/6.1985-1199.

L. A. Romero and F. G. Yost. Flow in an open channel capillary. J. Fluid Mech., 322:109–129, 1996. doi:10.1017/S0022112096002728.

R. R. Rye, J. A. Mann, and F. G. Yost. The flow of liquids in surface grooves. Langmuir, 12 (2):555–565, 1996. doi:10.1021/la9500989.

R. R. Rye, F. G. Yost, and E. J. O’Toole. Capillary flow in irregular surface grooves. Langmuir, 14(14):3937–3943, 1998. doi:10.1021/la9712247.

K. Sarkar and A. Prosperetti. Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech., 316:223–240, June 1996. ISSN 0022-1120, 1469-7645.

doi:10.1017/S0022112096000511.

R. Skalak, N. Ozkaya, and T. C. Skalak. Biofluid mechanics. Annu. Rev. Fluid Mech., 21(1):

167–200, 1989. doi:10.1146/annurev.fl.21.010189.001123.

Y. Tang, X. Chen, and Y. Huang. Capillary flow rate limitation in asymmetry open channel.

Chinese J. Aeronaut., 28(3):720–728, 2015. doi:10.1016/j.cja.2015.04.019.

T. Thorsen, S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration. Science, 298 (5593):580–584, 2002. doi:10.1126/science.1076996.

J. L. Vázquez. The Porous Medium Equation: Mathematical Theory. Ox- ford Science Publications. Clarendon Press, 2007. ISBN 9780198569039.

doi:10.1093/acprof:oso/9780198569039.001.0001.

G. Verbist, D. Weaire, and A. M. Kraynik. The foam drainage equation. J. Phy. Condens.

Matter, 8(21):3715–3731, May 1996. ISSN 0953-8984, 1361-648X. doi:10.1088/0953- 8984/8/21/002.

E. W. Washburn. The dynamics of capillary flow. Phys. Rev., XVII(3):273 – 283, 1921.

doi:10.1103/PhysRev.17.273.

M. M. Weislogel. Capillary flow in an interior corner. PhD thesis, Northwestern University, June 1996. URL https://ntrs.nasa.gov/citations/19970010346. Also published as NASA Technical Memorandum 107364.

M. M. Weislogel. Capillary flow in containers of polygonal section. AIAA Journal, 39(12):2320 – 2326, 2001. doi:10.2514/2.1237.

M. M. Weislogel and S. Lichter. Capillary flow in an interior corner. J. Fluid Mech., 373:

349–378, 1998. doi:10.1017/S0022112098002535.

M. M. Weislogel, M. A. Sala, and S. H. Collicott. Analysis of tank PMD rewetting following thrust resettling. In 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, January 14-17,2002, 2002. doi:10.2514/6.2002-757.

N. C. White and S. M. Troian. Why capillary flows in slender triangular grooves are so stable against disturbances. Phys. Rev. Fluids, 4(5):054003, 2019.

doi:10.1103/PhysRevFluids.4.054003.

R. A. Wooding and H. J. Morel-Seytoux. Multiphase fluid flow through porous media. Annu.

Rev. Fluid Mech., 8(1):233–274, 1976. doi:10.1146/annurev.fl.08.010176.001313.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl. Mi- crofluidic diagnostic technologies for global public health. Nature, 442(7101):412–418, 2006.

doi:10.1038/nature05064.

L. Yang and G. M. Homsy. Capillary instabilities of liquid films inside a wedge. Phys. Fluids, 19:044101, 2007. doi:10.1063/1.2716632.

* C h a p t e r 5 *

STABILITY OF V-GROOVE FLOW

Note: portions of this chapter are adapted from published work (White and Troian, 2019).