V. SIMPULAN DAN SARAN
5.2. Saran
Beberapa hal yang disarankan pada penelitian selanjutnya antara lain:
1. Mengkaji pengaruh jumlah penambahan katalis terhadap karakteristik BCO yang dihasilkan.
2. Mempelajari penggunaan katalis yang disintesis untuk uji pirolisis bahan baku lain seperti minyak non pangan seperti minyak biji karet, minyak jarak pagar dan minyak jarak kaliki.
3. Katalis Zeolit dikarakterisasi dengan metode karakterisasi lainnya, seperti Brunauer Emmett Teller (BET) dan Particle Size Analysis (PSA) untuk melihat ukuran partikel dan luas permukaan.
4. Memisahkan biogasoline dari campuran reaksi dari produk Bio-Crude Oil.
DAFTAR PUSTAKA
Abou, M., Cédric, R., Hervé, G., Edmond, P., Aad, A., and Harifidy, J. 2021.
Pyrolysis Catalytic Upgrading of Bio Oil and Pyrolysis Catalytic Steam Reforming of Biogas: a Review. In Environmental Chemistry Letters.
Springer International Publishing. 16: 36-40.
Acikgoz, C., and Kockar, O. M. 2007. Flash Pyrolysis of Linseed (Linum
Usitatissimum L.) for Production of Liquid Fuels. Journal of Analytical and Applied Pyrolysis. 78(2): 406–412.
Aitani, A., Akhtar, M. N., Al-khattaf, S., Jin, Y., Koseoglo, O., and Klein, M. T.
2019. Catalytic Upgrading of Light Naphtha to Gasoline Blending
Components : A Mini Review [Review-article]. Energy and Fuels. 33: 3828–
3843.
Alcazar-Ruiz, A., Garcia-Carpintero, R., Dorado, F., and Sanchez-Silva, L. 2021.
Valorization of Olive Oil Industry Subproducts: Ash and Olive Pomace Fast Pyrolysis. Food and Bioproducts Processing. 125: 37–45.
Aristiani, V. 2015. Preparasi Katalis CaO/SiO2 dari CaCO3 dan Silika Sekam Padi dengan Metode Sol Gel untuk Pengolahan Minyak Kelapa Sawit Menjadi Biodiesel. (Skripsi). Universitas Lampung. Bandar Lampung. 62.
ASTM. 2005. Test Method for Determination of Catalyst Acidity by Ammonia Chemisoription. Manual Book of ASTM. pp.1-3.
Bakar, R. A., Yahya, R., and Gan, S. N. 2016. Production of High Purity Amorphous Silika from Rice Husk. Procedia Chemistry. 19: 189-195.
Balasundram, V., Ibrahim, N., Kasmani, R. M., Kamaruddin Abd Hamid, M., Isha, R., Hasbullah, H., and Ali, R. R. 2017. Catalytic Pyrolysis of Sugarcane Bagasse Over Cerium (Rare Earth) Loaded HZSM-5 Zeolite. Energy
Procedia. 142: 801–808.
Basu, P. 2010. Biomassa Gasification and Pyrolysis Practical Design and Theory (2th ed). Elsevier. New York. p.13.
57
Brethauer, S., and Wyman, C. E. 2010. Review: Continuous Hydrolysis and Fermentation for Cellulosic Ethanol Production. Bioresource Technology.
101: 4862–4874.
Cai, W., Kang, N., Ki, M., Sun, C., and Liu, R. 2019. Long Term Storage Stability of Bio-Oil from Rice Husk Fast Pyrolysis. Energy. 186: 1–8.
Cardoso, A. M., Horn, M. B., Ferret, L. S., and Azevedo, C. M. N. 2015.
Integrated Synthesis of Zeolites 4A and Na – P1 Using Coal Fly Ash for Application in The Formulation of Detergents and Swine Wastewater Treatment. Journal of Hazardous Materials. 287: 69–77.
Chang, S. H. 2018. Bio-oil Derived from Palm Empty Fruit Bunches : Fast Pyrolysis, Liquefaction and Future Prospects. Biomass and Bioenergy. 119:
263–276.
Che, Q., Yang, M., Wang, X., Chen, X., Chen, W., Yang, Q., Yang, H., and Chen, H. 2019. Aromatics Production with Metal Oxides and ZSM-5 as Catalysts in Catalytic Pyrolysis of Wood Sawdust. Fuel Processing Technology.
188(02): 146–152.
Chen, D., Wang, Y., Liu, Y., Cen, K., Cao, X., Ma, Z., and Li, Y. 2019.
Comparative Study on the Pyrolysis Behaviors of Rice Straw Under Different Washing Pretreatments of Water, Acid Solution, and Aqueous Phase Bio-Oil by Using TG-FTIR and Py-GC/MS. Fuel. 252(04): 1–9.
Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P. R., and Boakye, E. 2017. Hydrocarbon Bio-Oil Production from Pyrolysis Bio-Oil Using Non Sulfide Ni-Zn/Al2O3 Catalyst. Fuel Processing Technology. 162: 78– 86.
Dermirbas, A. 2019. Pyrolysis Mechanisms of Biomass Materials. Energy Sources. 31: 1186–1193.
Dhyani, V., and Bhaskar, T. 2019. Pyrolysis of Biomass. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. Academic Press. United States. 217–244.
Díaz, E., Ordóñez S.,Vega, A., and Coca J. 2005. Evaluation of Different Zeolites In Their Parent and Protonated Forms for The Catalytic Combustion of Hexane And Benzene. Microporous and Mesoporous Materials. 83: 292–
300.
Elma, M. 2018. Proses Sol-Gel: Analisis Fundamental dan Aplikasi (1th ed).
Lambung Mangkurat University Press. Banjarmasin. 3-10 hlm.
Febriyanti, T. D., Simanjuntak, W., and Pandiangan, K. D. 2021. Pyrolitic Conversion of Palm Oil into Liquid Fuel Using Protonated Zeolite-X
58
Prepared from Rice Husk Silica and Aluminum Foil as Catalyst. Journal of Physics: Conference Series. 1751(1).
Ginting, S. B., Sari, D. P., Iryani, D. A., Hanif, M., and Wardono, H. 2019.
Sintesis Zeolit Lynde Type-A (LTA) dari Zeolit Alam Lampung (ZAL) Menggunakan Metode Step Change Temperature of Hydrothermal dengan Variasi SiO2/Al2O3 Diaplikasikan untuk Dehidrasi Etanol. Journal of Chemical Process Engineering. 4(1): 31–44.
Hakim, L., Dirgantara, M., and Nawir, M. 2019. Karakterisasi Struktur Material Pasir Bongkahan Galian Golongan C dengan Menggunakan X-Ray
Diffraction (XRD) di Kota Palangkaraya. Jurnal Jejaring Matematika Dan Sains. 1(1): 44–51.
Hernandez-Mena, L. E., Pécora, A. A. B., and Beraldo, A. L. 2014. Slow Pyrolysis of Bamboo Biomass: Analysis of Biochar Properties. Chemical Engineering Transactions. 37: 115–120.
Heveling, J. 2012. Heterogeneous Catalytic Chemistry by Example of Industrial Applications. Journal of Chemical Education. 89: 1530−1536.
Hu, X. and Gholizadeh, M. 2019. Biomass pyrolysis: A Review of The Process Development and Challenges from Initial Researches Up to The
Commercialisation Stage. Journal of Energy Chemistry. 39: 109–143.
Huang, M., Auroux, A., and Kaliaguine, S. 1995. Crystallinity Dependence of Acid Site Distribution in HA, HX and HY Zeolites. Microporous Materials.
5(1–2): 17–27.
Humz. 2017. Synthesis of Phase-Pure Zeolite Sodalite from Clear Solution Extracted from Coal Fly Ash. Journal of Thermodynamics and Catalysis.
8(2): 1-6.
Istadi, I., Buchori, L., Anggoro, D. D., Riyanto, T., Indriana, A., Khotimah, C., and Setiawan, F. A. P. 2019. Effects of Ion Exchange Process on Catalyst Activity and Plasma-Assisted Reactor Toward Cracking of Palm Oil into Biofuels. Bulletin of Chemical Reaction Engineering and Catalysis. 14(2).
459–467.
IZA (International Zeolite Association). 2017. http://www.iza- structure.org/databases/. Diakses pada 28 Februari 2022.
Jaya, S. J., Syaiful, B., and Edy, S. 2012. Upgrading Crude Bio-Oil (CBO) dari Biomassa menjadi Upgraded Bio-Oil (UBO) dengan Katalis Ni/Lempung Subangkit. 4: 1–5.
Julbe, A., and Drobek, M. 2016. Zeolite A Type. Springer Berlin Heidelberg.
59
Kamali, M., Vaezifar, S., and Kolahduzan, H. 2009. Synthesis of Nanozeolite a from Natural Clinoptilolite and Aluminum Sulfate. Optimization of The Method. Powder Technology. 189(1): 52–56.
Keerthana, S., Agilan, S., Muthukumarasamy, N., Balasundaraprabhu, R., and Velauthapillai, D. 2016. Synthesis and Characterization of Zeolite NaA and NaY Coating on Mild Steel. Journal of Sol-Gel Science and Technology. 79:
510–519.
Kitson, F. G., Larsen, B. S., and McEwen, C. N. 1996. Gas Chromatography and Mass Spectrometry (1th ed). Academic Press. United States. pp.3-23.
Król, M. 2020. Natural VS. Synthetic Zeolites. Crystals. 10(7): 1-8.
Kuroki, S., Hashishin, T., Morikawa, T., Yamashita, K., and Matsuda, M. 2019.
Selective Synthesis Of Zeolites A And X from Two Industrial Wastes:
Crushed Stone Powder and Aluminum Ash. Journal of Environmental Management. 231: 749–756.
Leofanti, G., Tozzola, G., Padovan, M., Petrini, G., Bordiga, S., and Zecchina, A.
1997. Catalyst Characterization : Application. Catalysis Today. 34: 329–352.
Li, C., Zhang, L., Gholizaadeh, M., Westernhof, R., Cui, Z., Liu, B., Tang, Y., Jin, X., Xu, Z., and Hu, X. 2020. Impact of Acidic/Basic Sites of The Catalyst on Properties of The Coke Formed in Pyrolysis of Guaiacol: A Model
Compound of The Phenolics in Bio-Oil. Energy and Fuels. 34: 11026–
11040.
Madhu, P., Livingston, T. S., and Kanagasabapathy, H. 2018. Flash Pyrolysis of Lemon Grass (Cymbopogon Flexuosus) for Bio-Oil Production in an
Electrically Heated Fluidized Bed Reactor. Waste and Biomass Valorization.
9(6): 1037–1046.
Matti, A. H., and Surchi, K. M. 2014. Comparison The Properties of Zeolite NaY Synthesized by Different Procedures. International Journal of Innovative Research in Science, Engineering and Technology. 3(6): 13333–13342.
Mohamed, R. M., Mkhalid, I. A., and Barakat, M. A. 2013. Rice Husk Ash as a Renewable Source for The Production of Zeolite NaY and Its
Characterization. Arabian Journal of Chemistry. 8(1): 48–53.
Murukutti, M. K., and Jena, H. 2022. Synthesis of Nano-Crystalline Zeolite-A and Zeolite-X from Indian Coal Fly Ash, its Characterization and Performance Evaluation for the Removal of Cs+ and Sr2+ from Simulated Nuclear Waste.
Journal of Hazardous Materials. 127085(423): 1-2.
Napitupulu, R., Pandiangan, K. D., and Simanjuntak, W. 2012. Studi Pendahuluan Perengkahan Katalitik (Catalytic- Cracking) Minyak Kelapa menjadi Bahan
60
Bakar Cair (Liquid Fuel) Generasi Kedua dengan Nano Katalis Ti Silika Berbasis Sekam Padi. Prosiding SNSMAIP III. 499–503.
Ng, D. K. S., Ng, K. S., and Ng, R. T. L. 2017. Integrated Biorefineries (1th ed). In Encyclopedia of Sustainable Technologies. Elsevier. Heriot Watt University.
4.
Nugrahaningtyas, K.D., Trisunaryanti, W., Triyono, Nuryono, Maruto,D., Yusnani, M.W.A., dan Mulyani. 2009. Preparasi dan Karakterisasi Katalis Logam tak tersulfidasi: Ni/USY dan NiMo/USY. Journal Chemistry. 9 (2):
177-183.
Nugroho, A. P. P., Fitriyanto, D., and Roesyadi, A. 2014. Pembuatan Biofuel dari Minyak Kelapa Sawit melalui Proses Hydrocracking dengan Katalis
NiMg/γAl2O3. Jurnal Teknik Pomits. 3(2): 117–121.
Onay, Ö., and Koçkar, Ö. M. 2003a. Production of Bio-Oil from Biomass : Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor. Energy Sources. 25: 879–892.
Onay, Ö., and Koçkar, Ö. M. 2003b. Slow, Fast and Flash Pyrolysis of Rapeseed.
Renewable Energy. 28: 2417–2433.
Panalytical, B. V. 2009. Definition of X-Rays Fluorescence and Application (1th ed). Kangaroo Book. Brisbane. p.62.
Pandiangan, K. D., Jamarun, N., Arief, S., Simanjuntak, W., and Rilyanti, M.
2016. The Effect of Calcination Temperatures on The Activity of CaO and CaO/SiO2 Heterogeneous Catalyst for Transesterification of Rubber Seed Oil in The Presence of Coconut Oil as a Co-reactant. Oriental Journal of
Chemistry. 32(6): 3021-3026.
Pandiangan, K. D., Arief, S., Jamarun, N., and Simanjuntak, W. 2017. Synthesis of Zeolite-X from Rice Husk Silica and Aluminum Metal as a Catalyst for Transesterification of Palm Oil. Journal of Materials and Environmental Science. 8(5): 1797–1802.
Pandiangan, K. D., Damayanti, P., Faulia, R., and Simanjuntak, W. 2019.
Characteristics and Catalytic Activity of Zeolite-A Synthesized from Rice Husk Silica and Aluminium Metal by Sol-Gel Method. Journal of Physics:
Conference Series. 1338(1): 1742–6596.
Parinduri, L., and Parinduri, T. 2020. Konversi Biomassa Sebagai Sumber Energi Terbarukan. JET (Journal of Electrical Technology). 5(2): 88–92.
Platon, A., and Thomson, W. J. 2003. Quantitative Lewis/ Brønsted Ratios Using DRIFTS. Applied Catalysis Industrial Engineering Chemistry Research. 42:
5988–5992.
61
Prabasari, I. G., Sarip, R., Rahmayani, S., and Nazarudin. 2019. Catalytic
Cracking of Used Cooking Oil Using Cobalt-impregnated Carbon Catalysts.
Makara Journal of Science. 23(3): 162–168.
Qiao, Y., Wang, B., Zong, P., Tian, Y., Xu, F., Li, D., and Li, F. 2019. Thermal Behavior , Kinetics and Fast Pyrolysis Characteristics of Palm Oil:
Analytical TG-FTIR and Py-GC/MS Study. Energy Conversion and Management. 199: 110.
Raja, S. A., Kennedy, Z. R., Pillai, B. C., and Lee, C. L. R. 2010. Flash Pyrolysis of Jatropha Oil Cake in Electrically Heated Fluidized Bed Reactor. Energy.
35(7): 2819–2823.
Setiabudi, A., Hardian, R., and Muzakir, A. 2012. Karakterisasi Material. UPI Press. Bandung. 58-72 hlm.
Setter, C., Borges, F. A., Cardoso, C. R., Mendes, R. F., and Oliveira, T. J. P.
2020. Industrial Crops and Products Energy Quality of Pellets Produced From Coffee Residue: Characterization of The Products Obtained Via Slow Pyrolysis. Industrial Crops and Products. 154: 1–11.
Shariff, A., Syairah, N., Aziz, M., Ismail, N. I., and Abdullah, N. 2016. Corn Cob as Potential Feedstock for Slow Pyrolysis of Biomass. Journal of Physical Science. 27(2): 123–137.
Sharma, S., Meena, R., Sharma, A., and Goyal, P. 2014. Biomass Conversion Technologies for Renewable Energy and Fuels: A Review Note. Journal of Mechanical and Civil Engineering. 11(2): 28-35.
Shimadzu. 2020. Shimadzu’s Fundamental Guide to Gas Chromatography Mass Spectrometry (GC-MS). Shimadzu Corporation.
Simanjuntak, W., Pandiangan, K. D., Sembiring, Z., and Sihombing, I. P. 2021.
Biogasoline Production by Zeolite-A Catalyzed Co-Pyrolysis of Torrefied Cassava Root and Palm Oil. Journal of Physics: Conference Series. 1751(1).
Simanjuntak, W., Pandiangan, K. D., Sembiring, Z., and Simanjuntak, A. 2019.
Liquid Fuel Production by Zeolite-A Catalyzed Pyrolysis of Mixed Cassava Solid Waste and Rubber Seed Oil. Oriental Journal of Chemistry. 35(1):71–
76.
Simanjuntak, W., Sembiring, S., Pandiangan, K. D., Pratiwi, E., and Syani, F.
2017. Hydrocarbon Rich Liquid Fuel Produced by Co-Pyrolysis of Sugarcane Bagasse and Rubber Seed Oil Using Aluminosilicates Derived from Rice Husk Silica and Aluminum Metal as Catalyst. Oriental Journal of Chemistry. 33(6): 3218–3224.
Simanjuntak, W., Pandiangan, K.D., Sembiring, Z., Syani, F., and Situmeang,
62
R.T.M. 2016. The Use of Liquid Smoke as a Substitute for Nitric Acid for Extraction of Amorphous Silika from Rice Husk Through Sol-Gel Route.
Oriental Journal of Chemistry. 32(4): 2079-2085.
Sivamani, S., Chandrasekaran, A. P., Balajii, M., Shanmugaprakash, M., Bandegharaei, A. H., and Baskar, R. 2018. Evaluation of the Potential of Cassava-Based Residues for Biofuels Production. Reviews in Environmental Science and Bio/Technology. 17: 553–570.
Smallman, R. E., and Bishop, R. J. 2000. Modern physical metallurgy and materials engineering (6th ed). Hill International Book Company. p.22.
Smets, K., Adriaensens, P., Reggers, G., Schreurs, S., Carleer, R., Yperman, J., and J. 2011. Flash Pyrolysis of Rapeseed Cake: Influence of Temperature on The Yield and The Characteristics of The Pyrolysis Liquid. Journal of Analytical and Applied Pyrolysis. 90(2): 118–125.
Srilai, S., Tanwongwan, W., Onpecth, K., Wongkitikun, T., Panpiemrasda, K., Panomsuwan, G., and Eiad-Ua, A. 2020. Synthesis of Zeolite a from
Bentonite Via Hydrothermal Method: The Case Of Different Base Solution.
AIP Conference Proceedings. 2279: 1–7.
Stephenson, M. J., Attfield, M. P., Holmes, S. M., and Dryfe, R. A. W. 2015.
Electrochemically Controlled Ion Exchange: Proton Ion Exchange with Sodium Zeolite X and A. Journal of Solid State Electrochemistry. 19(7):
1985–1992.
Supriyanto, R., Simanjuntak, W., Pandiangan, K. D., Situmeang, R. T. M., and Ahmadhani, M. Y. 2018. Chemical Composition of Liquid Fuel Produced by Co-Pyrolysis of Sugarcane Bagasse and Sludge Palm Oil Using Zeolite-Y as Catalyst. Oriental Journal of Chemistry. 34(3): 1533–1540.
Susanti, L. 2015. Pengembangan Zeolit Sintetik Berbasis Silika Sekam Padi Secara Elektrokimia sebagai Katalis untuk Pengolahan Minyak Nabati menjadi Biodiesel. (Tesis). Universitas Lampung. Lampung. 110 hlm.
Swoboda, A. R., and Kunze, G. W. 2006. Infrared Study of Pyridine Adsorbed on Montmorillonite Surface. Texas Agricultural Experiment Station. 277–288.
Tanabe, K. 1981. Solid Acid and Base Catalyst in Catalysis Science and Technology. Springer-Link. Berlin. pp.231–273.
Tanzania Bureau Of Standards. 2020. Aluminium Foil For Packaging- Specification. TBS. Tanzania. pp.1-9.
Taufiqurrahmi, N., Mohamed, A. R., and Bhatia, S. 2010. Deactivation and Coke Combustion Studies of Nanocrystalline Zeolite Beta in Catalytic Cracking of Used Palm Oil. Chemical Engineering Journal. 163(3): 413–421.