BAB V. PENUTUP
5.2 Saran
33
34
DAFTAR PUSTAKA
Badan Standarisasi Nasional. (1999). Garam Beryodium. SNI 01-3556-2000/Rev.
9. Jakarta: Badan Standarisasi Nasional Indonesia.
Buckle, K. A. (1987). Ilmu Pangan . Jakarta: Universitas Indonesia Press.
Hawab, H. M. (2004). Pengantar Biokimia Edisi Revisi. Bogor: Bayumedia Publishing.
Herawati, H. (2011). Potensi Pengembangan Produk Pati Tahan Cerna Sebagai Pangan Fungsional . Jurnal Litbang Pertanian, 30(1).
Marliana , E. (2011). Karakterisasi Dan Pengaruh Naci Terhadap Pembuatan Tepung Talas Banten . Bogor: Institut Pertanian Bogor.
Nurabaya, S. R., & Estiasih , T. (2013). Pemanfaatan Talas Berdaging Umbi Kuning (Colocasia Esulenta (L) Schott) Dalam Pembuatan Cookies. Jurnal Pangan Dan Agroindustri, 1(1) 45-55.
Nurani, S., & Yuwono, S. S. (2014). Pemanfaatan Tepung Kimpul (Xanthosoma Sagittifolium) Sebagai Bahan Baku Cookies) Kajian Proposi Tepung Dan Penambahan Margarin). Jurnal Pangan Dan Agroindustri, 2(2): 50-58.
Nurapriani, R. R. (2010). Optimasi Formulasi Brownies Panggang Tepung Komposit Berbasis Talas, Kacang Hijau Dan Pisang. Bogor: Institut Pertanian Bogor.
Onwueme, I. C. (1978). The Tropical Tuber Crops. New York.
Purwono, & Purmawati, H. (2007). Budidaya 8 Jenis Tanaman Pangan Unggul.
Penebar Swadaya.
Rawuh, S. (2008). Pengetahuan Bahan Untuk Industri Pertanian Dan Teknis Pengolahan Talas. Jakarta: Mediyatama Sarana Perkasa.
Rusbana, T. B., Syabana, M. A., & Mulyati, S. (2012). Identifikasi Sifat Fungsional Dan Pati Talas Beneng Dan Deverifikasi Produknya Sebagai Bahan Pangan Sumber Karbodidrat Alternatif. Serang: Universitas Sultan Ageng Tirtayasa.
Sari, D. I. (2013). Elemen Viasual Kemasan Sebagai Strategis Komunikasi Produk.
Jurnal Komunikasi Profetik, 43-52.
Subagio, A. (2007). Industrialisasi Modified Cassava Flour (Mocaf) Sebagai Bahan Baku Industri Pangan Untuk Menunjang Diversifikasi Pangan Pokok Nasional. Jurnal Teknologi Pangan.
Subiyantoro , S. (2001). Mengenal Lebih Jauh Tentang Garam. Jawa Timur: BPP Banyuwangi.
Susetyarsi, T. (2012). Kemasan Produk Ditinjau Dari Bahan Kemasan, Bentuk Kemasan Dan Pelabelan Pada Kemasan Pengaruhnya Terhadap Keputusan Pembelian Pada Produk Minuman Mizone Di Kota Semarang. Jurnal STIE Semarang, 4, 132997.
Susilawati, P. N., Yursak, Z., Kurniawati, S., & Saryoko, A. (2021). Budidaya Dan Pengolahan Talas Varietas Beneng. Serang, Banten: Balai Pengkajian Teknologi Pertanian (BPTP) Banten.
Winarmo, F. G. (1997). Kimia Pangan Dan Gizi. Jakarta: Gramedia Pustaka Utama.
Yuliani, S. (2013). Karakteristik Psikokimia Umbi Dan Tepung Talas Beneng (Xantosoma Undipes K.Koch) Hasil Budidaya Dan Liar. Banten: Faperta.
Universitas Sultan Ageng Tirtayasa.
35 LAMPIRAN
Lampiran 1. Perhitungan rendemen
Descriptives Rendemen
N Mean Std. Deviation Std. Error
95% Confidence Interval for
Mean Minimum Maximum
Lower Bound Upper Bound
Sinar Matahari 3 19.9667 .06658 .03844 19.8013 20.1321 19.89 20.01 Suhu 50 Derajat 3 19.1100 .10149 .05859 18.8579 19.3621 19.00 19.20 Suhu 60 Derajat 3 16.7167 .10408 .06009 16.4581 16.9752 16.60 16.80 Suhu 70 Derajat 3 13.4267 .06429 .03712 13.2670 13.5864 13.38 13.50
Total 12 17.3050 2.65004 .76500 15.6212 18.9888 13.38 20.01
ANOVA Rendemen
Sum of Squares df Mean Square F Sig.
Between Groups
77.190 3 25.730 3465.333 .000
Within Groups .059 8 .007
Total 77.250 11
36 Rendemen
Duncana
Perlakuan N
Subset for alpha = 0.05
1 2 3 4
Suhu 70 Derajat 3 13.4267
Suhu 60 Derajat 3 16.7167
Suhu 50 Derajat 3 19.1100
Sinar Matahari 3 19.9667
Sig. 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.
37 Lampiran 2. Perhitungan kadar air
Descriptives Kadar Air
N Mean Std. Deviation Std. Error
5% Confidence Interval for Mean Minimum Maximum Lower Bound Upper Bound
Sinar Matahari 3 1253.33 100.664 58.119 1249.22 1257.45 1160 1360
Suhu 50 Derajat 3 906.67 30.551 17.638 905.42 907.92 880 940
Suhu 60 Derajat 3 613.33 50.332 29.059 611.28 615.39 560 660
Suhu 70 Derajat 3 480.00 87.178 50.332 476.44 483.56 420 580
Total 12 813.33 316.611 91.398 807.47 819.20 420 1360
ANOVA KA
Sum of Squares df Mean Square F Sig.
Between Groups 1060266.667 3 353422.222 66.683 <,001
Within Groups 42400.000 8 5300.000
Total 1102666.667 11
ANOVA Effect Sizesa
Point Estimate
5% Confidence Interval Lower Upper
KA Eta-squared .962 .936 .940
Epsilon-squared .947 .912 .918
Omega-squared Fixed-effect .943 .905 .911
Omega-squared Random-effect .846 .760 .773
a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.
38
KA
Duncana
Perlakuan N
Subset for alpha = 0.95
1 2 3 4
Suhu 70 Derajat 3 480.00
Suhu 60 Derajat 3 613.33
Suhu 50 Derajat 3 906.67
Sinar Matahari 3 1253.33
Sig. 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3,000.
39 Lampiran 3. Perhitungan derajat putih
Descriptives Whiteness
N Mean Std. Deviation Std. Error
5% Confidence Interval for
Mean Minimum Maximum
Lower Bound Upper Bound
Sinar Matahari 3 3826.67 55.076 31.798 3824.42 3828.92 3770 3880
Suhu 50 Derajat 3 5833.33 15.275 8.819 5832.71 5833.96 5820 5850
Suhu 60 Derajat 3 5440.00 10.000 5.774 5439.59 5440.41 5430 5450
Suhu 70 Derajat 3 5333.33 15.275 8.819 5332.71 5333.96 5320 5350
Total 12 5108.33 797.380 230.184 5093.57 5123.10 3770 5850
ANOVA Whiteness
Sum of Squares df Mean Square F Sig.
Between Groups 6986766.667 3 2328922.222 2587.691 <,001
Within Groups 7200.000 8 900.000
Total 6993966.667 11
40 ANOVA Effect Sizesa
Point Estimate
5% Confidence Interval Lower Upper
Whiteness Eta-squared .999 .998 .998
Epsilon-squared .999 .998 .998
Omega-squared Fixed- effect
.998 .997 .998
Omega-squared Random- effect
.995 .992 .993
a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.
Whiteness Duncana
Perlakuan N
Subset for alpha = 0.95
1 2 3 4
Sinar Matahari 3 3826.67
Suhu 70 Derajat 3 5333.33
Suhu 60 Derajat 3 5440.00
Suhu 50 Derajat 3 5833.33
Sig. 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3,000.
41 Lampiran 4. Perhitungan kadar amilosa
Descriptives Amilosa
N Mean Std. Deviation Std. Error
5% Confidence Interval for Mean Minimum Maximum Lower Bound Upper Bound
Sinar Matahari 3 1463.33 47.173 27.236 1461.41 1465.26 1414 1508
Suhu 50 Derajat 3 1150.67 13.051 7.535 1150.13 1151.20 1137 1163
Suhu 60 Derajat 3 1048.67 30.072 17.362 1047.44 1049.90 1027 1083
Suhu 70 Derajat 3 952.00 20.298 11.719 951.17 952.83 930 970
Total 12 1153.67 202.308 58.401 1149.92 1157.41 930 1508
ANOVA Amilosa
Sum of Squares df Mean Square F Sig.
Between Groups 442790.667 3 147596.889 159.048 <,001
Within Groups 7424.000 8 928.000
Total 450214.667 11
ANOVA Effect Sizesa Point Estimate
5% Confidence Interval
Lower Upper
Amilos a
Eta-squared .984 .972 .974
Epsilon-squared .977 .962 .964
Omega-squared Fixed-effect .975 .959 .961
Omega-squared Random- effect
.929 .885 .892
a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.
42 Amilosa
Duncana
Perlakuan N
Subset for alpha = 0.95
1 2 3 4
Suhu 70 Derajat 3 952.00
Suhu 60 Derajat 3 1048.67
Suhu 50 Derajat 3 1150.67
Sinar Matahari 3 1463.33
Sig. 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3,000.
43 Lampiran 5. Perhitungan amilopektin
Descriptives Amilopektin
N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean
Minimum Maximum Lower Bound Upper Bound
Sinar Matahari 3 85.4000 .47032 .27154 84.2317 86.5683 84.92 85.86 Suhu 50 Derajat 3 88.4933 .13051 .07535 88.1691 88.8175 88.37 88.63 Suhu 60 Derajat 3 89.5133 .30072 .17362 88.7663 90.2604 89.17 89.73 Suhu 70 Derajat 3 90.4667 .20817 .12019 89.9496 90.9838 90.30 90.70
Total 12 88.4683 2.00558 .57896 87.1940 89.7426 84.92 90.70
ANOVA Amilopektin
Sum of Squares df Mean Square F Sig.
Between Groups 43.502 3 14.501 155.921 .000
Within Groups .744 8 .093
Total 44.246 11
44 Amilopektin
Duncana
Perlakuan N
Subset for alpha = 0.05
1 2 3 4
Sinar Matahari 3 85.4000
Suhu 50 Derajat 3 88.4933
Suhu 60 Derajat 3 89.5133
Suhu 70 Derajat 3 90.4667
Sig. 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.
45 Lampiran 6. Tabel hasil analisis ANOVA
Perlakuan Rendemen
Rendemen (%)
T0 T1 T2 T3
19,9 ± 0,06a 19,1 ± 0,10b 16,7 ± 0,10c 13,4 ± 0,06d
Perlakuan Kadar Air
Kadar Air (%)
T0 T1 T2 T3
12,5 ± 10,0a 9,06 ± 3,05b 6,13 ± 5,03c 4,80 ± 8,71d
Perlakuan Derajat Putih
Derajat Putih (%)
T0 T1 T2 T3
38,26 ± 55,07a 58,33 ± 15,27b 54,44 ± 10,00c 53,33 ± 15,27d
Perlakuan Amilosa
Amilosa (%) T0 T1 T2 T3
12,63 ± 47,14a 11,50 ± 13,05b 10,48 ± 30,07c 9,52 ± 20,29d
Perlakuan Amilopekin
Amilopektin (%)
T0 T1 T2 T3
85,4 ± 0,47a 88,4 ± 0,13b 89,5 ± 0,30c 90,4 ± 0,20d
46
Lampiran 7. Proses pembuatan tepung talas beneng metode sinar matahari Proses pengeringan talas beneng dengan sinar matahari
47
Lampiran 8. Proses pengeringan talas beneng metode pengering lorong Proses pengeringan talas beneng suhu 50°C
48 Proses pengeringan talas beneng suhu 60°C
49 Proses pengeringan talas beneng suhu 70°C
50 Lampiran 9. Proses pengujian