• Tidak ada hasil yang ditemukan

Setting and notation

Dalam dokumen Inference, Computation, and Games (Halaman 67-72)

Chapter IV: Proving exponential decay of Cholesky factors

4.2 Setting and notation

4.2.1 The class of elliptic operators

For our rigorous, a priori, complexity-vs.-accuracy estimates, we assume that G is the Green’s function of an elliptic operator L of order 2𝑠 (𝑠, 𝑑 ∈ N), defined on a bounded Lipschitz domainΞ© βŠ‚ R𝑑, and acting on𝐻𝑠

0(Ξ©), the Sobolev space of (zero boundary value) functions having derivatives of order 𝑠 in 𝐿2(Ξ©). More

Figure 4.1: A regularity criterion. We measure the regularity of the distributions of measurement points as the ration of𝛿min, the smallest distancebetween neighboring points or points and the boundary, and𝛿max, the radius of the largest ballthat does not contain any points.

precisely, writing π»βˆ’π‘ (Ξ©) for the dual space of 𝐻𝑠

0(Ω) with respect to the 𝐿2(Ω) scalar product, our rigorous estimates will be stated for an arbitrary linear bijection

L: 𝐻𝑠

0(Ξ©) β†’π»βˆ’π‘ (Ξ©) (4.4)

that issymmetric (i.e.∫

Ω𝑒L𝑣dπ‘₯ = ∫

Ω𝑣L𝑒dπ‘₯), positive (i.e.∫

Ω𝑒L𝑒dπ‘₯ β‰₯ 0), and localin the sense that

∫

Ξ©

𝑒L𝑣dπ‘₯ =0 for all𝑒, 𝑣 βˆˆπ»π‘ 

0(Ξ©)such that suppπ‘’βˆ©supp𝑣=βˆ…. (4.5) Let kL k B supπ‘’βˆˆπ»π‘ 

0 kL𝑒kπ»βˆ’π‘ /k𝑒k𝐻𝑠

0 and kLβˆ’1k B supπ‘“βˆˆπ»βˆ’π‘  kLβˆ’1𝑓k𝐻𝑠

0/k𝑓kπ»βˆ’π‘ 

denote the operator norms ofLandLβˆ’1. The complexity and accuracy estimates for our algorithm will depend on (and only on)𝑑 , 𝑠,Ξ©,kL k, kLβˆ’1k, and the parameter

𝛿 B 𝛿min 𝛿max B

minπ‘–β‰ π‘—βˆˆπΌdist π‘₯𝑖,{π‘₯𝑗} βˆͺπœ•Ξ©

maxπ‘₯∈Ωdist(π‘₯ ,{π‘₯𝑖}π‘–βˆˆπΌ βˆͺπœ•Ξ©), (4.6) the geometric meaning of which is illustrated in Figure4.1.

46 4.2.2 Discretization in the abstract

Before talking about computation, we need to discretize the infinite-dimensional spaces 𝐻𝑠

0(Ξ©) and π»βˆ’π‘ (Ξ©) by approximating them with finite vector spaces. We first introduce this procedure in the abstract.

ForBa separable Banach space with dual space Bβˆ— (such as 𝐻𝑠

0(Ξ©) andπ»βˆ’π‘ (Ξ©)), we write [ Β·, Β· ] for the duality product between Bβˆ— and B. Let L: B β†’ Bβˆ— be a linear bijection and let G B Lβˆ’1. Assume L to be symmetric and positive (i.e.

[L𝑒, 𝑣] = [L𝑣 , 𝑒]and[L𝑒, 𝑒] β‰₯ 0 for𝑒, 𝑣 ∈ B). Letk Β· kbe the quadratic (energy) norm defined byk𝑒k2B [L𝑒, 𝑒]for𝑒 ∈ Band letk Β· kβˆ—be its dual norm defined by

kπœ™kβˆ— B sup

0β‰ π‘’βˆˆB

[πœ™, 𝑒]

k𝑒k =[πœ™,Gπœ™]forπœ™ ∈ Bβˆ—. (4.7) Let {πœ™π‘–}π‘–βˆˆπΌ be linearly independent elements ofBβˆ— (known asmeasurement func- tions) and letΘ∈R𝐼×𝐼 be the symmetric positive-definite matrix defined by

Ξ˜π‘– 𝑗 B [πœ™π‘–,Gπœ™π‘—] for𝑖, 𝑗 ∈ 𝐼. (4.8) We assume that we are given π‘ž ∈ N and a partition 𝐼 = Ð

1β‰€π‘˜β‰€π‘žπ½(π‘˜) of 𝐼. We represent𝐼 ×𝐼 matrices asπ‘žΓ—π‘ž block matrices according to this partition. Given an 𝐼 Γ— 𝐼 matrix 𝑀, we write π‘€π‘˜ ,𝑙 for the (π‘˜ , 𝑙)th block of 𝑀, and π‘€π‘˜

1:π‘˜2,𝑙1:𝑙2 for the sub-matrix of 𝑀 defined by blocks ranging from π‘˜1 to π‘˜2 and𝑙1 to𝑙2. Unless specified otherwise, we write 𝐿 for the lower-triangular Cholesky factor of Θand define

Θ(π‘˜) B Θ1:π‘˜ ,1:π‘˜, 𝐴(π‘˜) B Θ(π‘˜),βˆ’1, 𝐡(π‘˜) B 𝐴(π‘˜)

π‘˜ , π‘˜ for 1 ≀ π‘˜ ≀ π‘ž. (4.9)

We interpret the{𝐽(π‘˜)}1β‰€π‘˜β‰€π‘žas labelling a hierarchy of scales with𝐽(1)representing the coarsest and𝐽(π‘ž) the finest. We write 𝐼(π‘˜) forÐ

1β‰€π‘˜0β‰€π‘˜π½(π‘˜

0).

Throughout this section, we assume that the ordering of the set 𝐼 of indices is compatible with the partition 𝐼 = Ð

π‘˜=1π‘žπ½(π‘˜), i.e. π‘˜ < 𝑙, 𝑖 ∈ 𝐽(π‘˜) and 𝑗 ∈ 𝐽(𝑙) together imply𝑖 β‰Ί 𝑗. We will write 𝐿 or chol(Θ) for the Cholesky factor ofΘin that ordering.

4.2.3 Discretization of𝐻𝑠

0(Ξ©)andπ»βˆ’π‘ (Ξ©)

While similar results are true for a wide range of measurements{πœ™π‘–} ∈ B =π»βˆ’π‘ (Ξ©) we will restrict our attention to two archetypical examples given by pointwise evaluation and nested averages.

We will assume (without loss of generality after rescaling) that diam(Ξ©) ≀ 1. As described in Figure3.8, successive points of the maximin ordering can be gathered into levels so that after appropriate rescaling of the measurements, the Cholesky factorization in the maximin ordering falls in the setting of Example1.

Example 1. Let 𝑠 > 𝑑/2. For β„Ž, 𝛿 ∈ (0,1) let {π‘₯𝑖}π‘–βˆˆπΌ(1) βŠ‚ {π‘₯𝑖}π‘–βˆˆπΌ(2) βŠ‚ Β· Β· Β· βŠ‚ {π‘₯𝑖}π‘–βˆˆπΌ(π‘ž) be a nested hierarchy of points inΞ©that are homogeneously distributed at each scale in the sense of the following three inequalities:

(1) supπ‘₯∈Ωminπ‘–βˆˆπΌ(π‘˜) |π‘₯βˆ’π‘₯𝑖| ≀ β„Žπ‘˜, (2) minπ‘–βˆˆπΌ(π‘˜)infπ‘₯βˆˆπœ•Ξ©|π‘₯βˆ’π‘₯𝑖| β‰₯ 𝛿 β„Žπ‘˜, and (3) min𝑖, π‘—βˆˆπΌ(π‘˜):𝑖≠𝑗 |π‘₯π‘–βˆ’π‘₯𝑗| β‰₯ 𝛿 β„Žπ‘˜.

Let𝐽(1) B 𝐼(1) and𝐽(π‘˜) B 𝐼(π‘˜) \ 𝐼(π‘˜βˆ’1) for π‘˜ ∈ {2, . . . , π‘ž}. Let𝜹 denote the unit Dirac delta function and choose

πœ™π‘– B β„Ž

π‘˜ 𝑑

2 𝜹(π‘₯βˆ’π‘₯𝑖) for𝑖 ∈ 𝐽(π‘˜) andπ‘˜ ∈ {1, . . . , π‘ž}. (4.10) The discretization chosen in Example 1 is not applicable for 𝑠 < 𝑑/2 since in this case, functions in 𝐻𝑠

0(Ξ©) are not defined point-wise and thus 𝜹 βˆ‰ Bβˆ—. A possible alternative is to replace πœ™π‘– B β„Ž

π‘˜ 𝑑

2 𝜹(π‘₯ βˆ’π‘₯𝑖) with πœ™π‘– B β„Žβˆ’

π‘˜ 𝑑

2 1π΅β„Ž(0)(π‘₯ βˆ’ π‘₯𝑖). However, while the exponential decay result in Theorem 4 seems to be true empirically for this choice of measurements, we are unable to prove it for𝑠 < 𝑑/2.

Furthermore, the numerical homogenization result of Theorem 7 is false for this choice of measurements and 𝑠 < 𝑑/2. However, our results can still be recovered by choosing measurements obtained as a hierarchy of local averages.

Given subsets ˜𝐼 ,𝐽˜ βŠ‚ 𝐼, we extend a matrix 𝑀 ∈ RπΌΛœΓ—π½Λœ to an element of R𝐼×𝐽 by padding it with zeros.

Example 2. (See Figure4.2.) Forβ„Ž, π›Ώβˆˆ (0,1), let(𝜏(π‘˜)

𝑖 )π‘–βˆˆπΌ(π‘˜) be uniformly Lipschitz convex sets forming a regular nested partition of Ξ© in the following sense. For π‘˜ ∈ {1, . . . , π‘ž}, Ξ© = Ð

π‘–βˆˆπΌ(π‘˜)𝜏(

π‘˜)

𝑖 is a disjoint union except for the boundaries.

𝐼(π‘˜) is a nested set of indices, i.e. 𝐼(π‘˜) βŠ‚ 𝐼(π‘˜+1) for π‘˜ ∈ {1, . . . , π‘ž βˆ’ 1}. For π‘˜ ∈ {2, . . . , π‘ž} and𝑖 ∈ 𝐼(π‘˜βˆ’1), there exists a subset 𝑐𝑖 βŠ‚ 𝐼(π‘˜) such that𝑖 ∈ 𝑐𝑖 and 𝜏(

π‘˜βˆ’1)

𝑖 =Ð

π‘—βˆˆπ‘π‘–

𝜏(

π‘˜)

𝑗 . Assume that each𝜏(

π‘˜)

𝑖 contains a ball 𝐡

𝛿 β„Žπ‘˜(π‘₯(

π‘˜)

𝑖 )of centerπ‘₯(

π‘˜) 𝑖

and radius𝛿 β„Žπ‘˜, and is contained in the ball 𝐡

β„Žπ‘˜(π‘₯(π‘˜)

𝑖 ). Forπ‘˜ ∈ {2, . . . , π‘ž}and𝑖 ∈

48

Figure 4.2: Hierarchical averaging. We illustrate the construction described in Example2in the caseπ‘ž =2. On the left we see the nested partition of the domain, and on the right we see (the signs of) a possible choice forπœ™1,πœ™5, andπœ™6.

𝐼(π‘˜βˆ’1), let the submatrices𝔴(π‘˜),𝑖 ∈R(𝑐𝑖\{𝑖})×𝑐𝑖 satisfyÍ

π‘—βˆˆπ‘π‘–π”΄(π‘˜),𝑖

π‘š, 𝑗 𝔴(π‘˜),𝑖

𝑛, 𝑗 |𝜏(π‘˜)

𝑗 | = π›Ώπ‘š 𝑛 andÍ

π‘—βˆˆπ‘π‘–π”΄(π‘˜),𝑖

𝑙 , 𝑗 |𝜏(

π‘˜)

𝑗 | = 0for each𝑙 ∈ 𝑐𝑖 \ {𝑖}, where |𝜏(

π‘˜)

𝑖 |denotes the volume of 𝜏(

π‘˜)

𝑖 . Let 𝐽(1) B 𝐼(1) and𝐽(π‘˜) B 𝐼(π‘˜) \𝐼(π‘˜βˆ’1) for π‘˜ ∈ {2, . . . , π‘ž}. Letπ‘Š(1) be the 𝐽(1)Γ— 𝐼(1) matrix defined byπ‘Š(1)

𝑖 𝑗 B 𝛿𝑖 𝑗. Letπ‘Š(π‘˜) be the𝐽(π‘˜) ×𝐼(π‘˜) matrix defined byπ‘Š(π‘˜) BÍ

π‘–βˆˆπΌ(π‘˜βˆ’1) 𝔴(π‘˜),𝑖 for π‘˜ >2, where we set πœ™π‘– B β„Žβˆ’π‘˜ 𝑑/2

Γ•

π‘—βˆˆπΌ(π‘˜)

π‘Š(π‘˜)

𝑖, 𝑗 1𝜏(π‘˜)

𝑗

for each𝑖 ∈ 𝐽(π‘˜) (4.11) and define [πœ™π‘–, 𝑒] B ∫

Ξ©πœ™π‘–π‘’dπ‘₯. In order to keep track of the distance between the differentπœ™π‘–of Example2, we choose an arbitrary set of points{π‘₯𝑖}π‘–βˆˆπΌ βŠ‚ Ξ©with the property thatπ‘₯𝑖 ∈supp(πœ™π‘–) for each𝑖 ∈ 𝐼.

In the above, we have discretized the Green’s functions of the elliptic operators resulting in the Green’s matrixΘas the fundamental discrete object. The inverse𝐴of Θcan be interpreted as the stiffness matrix obtained from the Galerkin discretization ofL using the basis given by

πœ“π‘– B Γ•

𝑗

𝐴𝑖 𝑗G πœ™π‘—

∈ B. (4.12)

These types of basis functions are referred to as gamblets in the prior works of [188–190] that form the basis for the proofs in this chapter. While exponentially

decaying, these basis functions are nonlocal and unknown apriori, hence they cannot be used to discretize a partial differential operator with unknown Green’s function.

ForΘthe inverse of a Galerkin discretization of L in a local basis, analog results can be obtained by repeating the proofs of Theorems4and7in the discrete setting.

In the setting of Examples 1 and 2, denoting as 𝐿 the lower triangular Cholesky factor ofΘorΞ˜βˆ’1, we will show that

|𝐿𝑖 𝑗| ≀ poly(𝑁)exp(βˆ’π›Ύ 𝑑(𝑖, 𝑗)), (4.13) for a constant𝛾 > 0 and a suitable distance measure𝑑( Β·, Β· ): 𝐼× 𝐼 β†’R.

Dalam dokumen Inference, Computation, and Games (Halaman 67-72)