• Tidak ada hasil yang ditemukan

Design Implications

Chapter 5 Chapter 5

5.5 Co-presence

5.5.3 Shareable Interfaces

A number of technologies have been designed to capitalize on existing forms of coordination and awareness mechanisms. These include whiteboards, large touch screens, and multitouch tables that enable groups of people to collaborate while interacting at the same time with content on the surfaces. Several studies have investigated whether different arrangements of shared technologies can help co-located people work better together (for example, see Müller-Tomfelde, 2010). An assumption is that shareable interfaces provide more opportuni- ties for flexible kinds of collaboration compared with single-user interfaces, through enabling co-located users to interact simultaneously with digital content. The use of fingers or pens as input on a public display is observable by others, increasing opportunities for building situational and peripheral awareness. The sharable surfaces are also considered to be more natural than other technologies, enticing people to touch them without feeling intimidated or embarrassed by the consequences of their actions. For example, small groups found it more comfortable working together around a tabletop compared with sitting in front of a PC or standing in a line in front of a vertical display (Rogers and Lindley, 2004).

BOX 5.3

Playing Together in the Same Place

Augmented reality (AR) sandboxes have been developed for museum visitors to interact with a landscape, consisting of mountains, valleys, and rivers. The sand is real, while the landscape is virtual. Visitors can sculpt the sand into different-shaped contours that change their appear- ance to look like a river or land, depending on the height of the sand piles. Figure 5.8 shows a AR sandbox that was installed at the V&A museum in London. On observing two young children playing at the sandbox, this author overheard one say to the other while flattening a pile of sand, “Let’s turn this land into sea.” The other replied “OK, but let’s make an island on that.” They continued to talk about how and why they should change their landscape. It was a pleasure to watch this dovetailing of explaining and doing.

The physical properties of the sand, together with the real-time changing superimposed landscape, provided a space for children (and adults) to collaborate in creative ways.

had previously been signaled implicitly. Conversely, the unaware person may wonder why the event hasn’t happened and, likewise, look over at the other team members, cough to get their attention, or explicitly ask them a question. The kind of repair mechanism employed at a given moment will depend on a number of factors, including the relationship among the participants, for instance, whether one is more senior than the others. This determines who can ask what, the perceived fault or responsibility for the breakdown, and the severity of the outcome of not acting there and then on the new information.

5 . 5 C O - p R E S E N C E 153

Often in meetings, some people dominate while others say very little. While this is OK in certain settings, in others it is considered more desirable for everyone to have a say. Is it possible to design shareable technologies so that people can participate around them more equally? Much research has been conducted to investigate whether this is possible. Of primary importance is whether the interface invites people to select, add, manipulate, or remove digi- tal content from the displays and devices. A user study showed that a tabletop that allowed group members to add digital content by using physical tokens resulted in more equitable participation than if only digital input was allowed via touching icons and menus at the tabletop (Rogers et al., 2009). This suggests that it was easier for people who are normally shy in groups to contribute to the task. Moreover, people who spoke the least were found to make the largest contribution to the design task at the tabletop, in terms of selecting, adding, moving, and removing options. This reveals how changing the way people can interact with a surface can affect group participation. It shows that it is possible for more reticent members to contribute without feeling under pressure to speak more.

Figure 5.8 Visitors creating together using an Augmented Reality Sandbox at the V&A Museum in London

Source: Helen Sharp

Experimentation with real-time feedback presented via ambient displays has also been shown to provide a new form of awareness for co-located groups. LEDs glowing in tabletops and abstract visualizations on handheld and wall displays have been designed to represent how different group members are performing, such as turn-taking. The assumption is that this kind of real-time feedback can promote self and group regulation and in so doing modify group members’ contributions to make them more equitable. For example, the Reflect Table was designed based on this assumption (Bachour et al., 2008). The table monitors and analyzes ongoing conversations using embedded microphones in front of each person and represents this in the form of increasing numbers of colored LEDs (see Figure 5.9). A study investigated whether students became more aware of how much they were speaking during a group meet- ing when their relative levels of talk were displayed in this manner and, if so, whether they regulated their levels of participation more effectively. In other words, would the girl in the bottom right reduce her contributions (as she clearly has been talking the most) while the boy in the bottom left increase his (as he has been talking the least)? The findings were mixed:

Some participants changed their level to match the levels of others, while others became frus- trated and chose simply to ignore the LEDs. Specifically, those who spoke the most changed their behavior the most (that is, reduced their level) while those who spoke the least changed theirs the least (in other words, did not increase their level). Another finding was that participants who believed that it was beneficial to contribute equally to the conversation took more notice of the LEDs and regulated their conversation level accordingly. For example, one participant said that she “refrained from talking to avoid having a lot more lights than the others” (Bachour et al., 2010). Conversely, participants who thought it was not important took less notice. How do you think you would react?

An implication from the various user studies on co-located collaboration around tab- letops is that designing shareable interfaces to encourage more equitable participation isn’t straightforward. Providing explicit real-time feedback on how much someone is speaking in a group may be a good way of showing everyone who is talking too much, but it may be intimidating for those who are talking too little. Allowing discreet and accessible ways for adding and manipulating content to an ongoing collaborative task at a shareable surface may Figure 5.9 The Reflect Table

Source: Used courtesy of Pierre Dillenbourg

5 . 5 C O - p R E S E N C E 155

be more effective at encouraging greater participation from people who normally find it dif- ficult or who are simply unable to contribute verbally to group settings (for example, those on the autistic spectrum, those who stutter, or those who are shy or are non-native speakers).

How best to represent the activity of online social networks in terms of who is taking part has also been the subject of much research. A design principle that has been influential is social translucence (Erickson and Kellogg, 2000). This refers to the importance of designing communication systems to enable participants and their activities to be visible to one another.

This idea was very much behind the early communication tool, Babble, developed at IBM by David Smith (Erickson et al., 1999), which provided a dynamic visualization of the par- ticipants in an ongoing chat room. A large 2D circle was depicted using colored marbles on each user’s monitor. Marbles inside the circle conveyed those individuals active in the current conversation. Marbles outside the circle showed users involved in other conversations. The more active a participant was in the conversation, the more the corresponding marble moved toward the center of the circle. Conversely, the less engaged a person was in the ongoing con- versation, the more the marble moved toward the periphery of the circle.

Since this early work on visualizing social interactions, there have been a number of virtual spaces developed that provide awareness about what people are doing, where they are, and their availability, with the intention of helping them feel more connected. Work- ing in remote teams can be isolating, especially if they rarely get to see their colleagues face to face. When teams are not co-located, they also miss out on in-person collaboration and valuable informal conversations that build team alignment. This is where the concept of the “online office” comes in. For example, Sococo (https://www.sococo.com/) is an online office platform that is bridging the gap between remote and co-located work. It uses the spatial metaphor of a floor plan of an office to show where people are situated, who is in a meeting, and who is chatting with whom. The Sococo map (see Figure 5.10) provides a

Search for colleagues across the workspace to see status or instantly chat

See a team in a meeting, sharing screens and viewing documents in a room

Name a room to reflect the topic of a meeting in progress

Knock on a door to join a meeting or just pop in Send a link for a guest to join you in your Sococo office

Blinking avatars are colleagues collaborating

Share documents or links on a desk for immediate access to anyone in the room

Instantly “Get”

colleagues to spontaneously collaborate

Scale instantly with unlimited floors to your Sococo space

Figure 5.10 Sococo floor plan of a virtual office, showing who is where and who is meeting with whom Source: Used courtesy of Leeann Brumby

bird’s-eye view of a team’s online office, giving everyone at-a-glance insight into teammates’

availability and what’s happening organizationally. Sococo also provides the sense of pres- ence and virtual “movement” that you get in a physical office—anyone can pop into a room, turn on their microphone and camera, and meet with another member of their team face to face. Teams can work through projects, get feedback from management, and collaborate ad hoc in their online office regardless of physical location. This allows organizations to take advantage of the benefits of the distributed future of work while still providing a central, online office for their teams.

BOX 5.4

Can Technologies Be Designed to Help People Break the Ice and Socialize?

Have you ever found yourself at a party, wedding, conference, or other social gathering, stand- ing awkwardly by yourself, not knowing who to talk to or what to talk about? Social embar- rassment and self-consciousness affect most of us at such moments, and such feelings are most acute when one is a newcomer and by oneself, such as a first-time attendee at a conference.

How can conversation initiation be made easier and less awkward for people who do not know each other?

A number of mechanisms have been employed by organizers of social events, such as asking old-timers to act as mentors and the holding of various kinds of ice-breaking activities. Badge-wearing, the plying of drink and food, and introductions by others are also common ploys. While many of these methods can help, engaging in ice-breaking activities requires people to act in a way that is different from the way they normally socialize and which they may find equally uncomfortable or painful to do. They often require people to agree to join in a collaborative game, which they may find embarrassing. This can be exac- erbated by the fact that once people have agreed to take part, it is difficult for them to drop out because of the perceived consequences that it will have for the others and themselves (such as being seen by the others as a spoilsport or party-pooper). Having had one such embarrassing experience, most people will shy away from any further kinds of ice-breaking activities.

An alternative approach is to design a physical space where people can enter and exit a conversation with a stranger in subtler ways, that is, one where people do not feel threatened or embarrassed and that does not require a high level of commitment. The classic Opinionizer system was designed along these lines, with the goal of encouraging people in an informal gathering to share their opinions visually and anonymously (Brignull and Rogers, 2003). The collective creation of opinions via a public display was intended to provide a talking point for the people standing beside it. Users submitted their opinions by typing them in at a public keyboard. To add color and personality to their opinions, a selection of small cartoon avatars and speech bubbles were available. The screen was also divided into four labeled quadrants representing different backgrounds, such as techie, softie, designer, or student, to provide a factor on which people could comment (see Figure 5.11).

5 . 5 C O - p R E S E N C E 157

A range of other ambient-based displays have been developed and placed in physical work settings with the purpose of encouraging people to socialize and talk more with each other.

For example, the Break-Time Barometer was designed to persuade people to come out of their offices for a break to meet others they might not talk with otherwise (Kirkham et al., 2013).

An ambient display, based on a clock metaphor, shows how many people are currently in the common room; if there are people present, it also sends an alert that it would be a good time to join them for a break. While the system nudged some people to go for a break in the staff room, it also had the opposite effect on others who used it to determine when breaks weren’t happening so that they could take a break without their colleagues being around for company.

When the Opinionizer was placed in various social gatherings, a honey-pot effect was observed. By this it is meant the creation of a sociable buzz in the immediate vicinity of the Opinionizer as a result of an increase in the number of people moving into the area. Further- more, by standing in this space and showing an interest, for example visibly facing the screen or reading the text, people gave off a tacit signal to others that they were open to discussion and interested in meeting new people.

There are now a number of commercial ice-breaking phone apps available that use arti- ficial intelligence (AI) matchmaking algorithms to determine which preferences and interests shared among people make them suitable conversational partners. Wearable technology is also being developed as a new form of digital ice-breaker. Limbic Media (https://limbicmedia .ca/social-wearables/), for example, has developed a novel pendant device colored with LED lights for this purpose. When two people touch their pendants together, the effect is for them to vibrate. This coming together action can break the ice in a fun and playful way.

(a) (b)

Figure 5.11 (a) The Opinionizer interface and (b) a photo of it being used at a book launch party Source: Helen Sharp

This video features Limbic Media’s novel type of social wearable being used at the 2017 BCT Tech Summit: https://vimeo.com/216045804.

5.6 Social Engagement

Social engagement refers to participation in the activities of a social group (Anderson and Binstock, 2012). Often it involves some form of social exchange where people give or receive something from others. Another defining aspect is that it is voluntary and unpaid. Increas- ingly, different forms of social engagement are mediated by the Internet. For example, there are many websites now that support pro-social behavior by offering activities intended to help others. One of the first websites of this ilk was GoodGym (www.goodgym.org/), which connects runners with isolated older people. While out running, the runners stop for a chat with an older person who has signed up to the service, and the runner helps them with their chores. The motivation is to help others in need while getting fit. There is no obliga- tion, and anyone is welcome to join. Another website that was set up is conservation vol- unteers (https://www.tcv.org.uk/). The website brings together those who want to help out with existing conservation activities. By bringing different people together, social cohesion is also promoted.

Not only has the Internet enabled local people to meet who would not have otherwise, it has proven to be a powerful way of connecting millions of people with a common interest in ways unimaginable before. An example is retweeting a photo that resonates with a large crowd who finds it amusing and wants to pass it on further. For example, in 2014, the most retweeted selfie was one taken by Ellen DeGeneres (an American comedian and television host) at the Oscar Academy Awards of her in front of a star-studded, smiling group of actors and friends. It was retweeted more than 2 million times (more than three-quarters of a mil- lion in the first half hour of being tweeted)—far exceeding the one taken by Barack Obama at Nelson Mandela’s funeral the previous year.

There has even been an “epic Twitter battle.” A teenager from Nevada, Carter Wilker- son, asked Wendy’s fast-food restaurant how many retweets were needed for him to receive a whole year’s supply of free chicken nuggets. The restaurant replied “18 million” (see Figure 5.12). From that moment on, his quest became viral with his tweet being retweeted more than 2 million times. Ellen’s record was suddenly put in jeopardy, and she intervened, putting out a series of requests on her show for people to continue to retweet her tweet so her record would be upheld. Carter, however, surpassed her record at the 3.5 million mark.

During the Twitter battle, he used his newly found fame to create a website that sold T-shirts promoting his chicken nugget challenge. He then donated all of the proceeds from the sales toward a charity that was close to his heart. The restaurant also gave him a year’s supply of free chicken nuggets—even though he didn’t reach the target of 18 million. Not only that, it also donated $100,000 to the same charity in honor of Carter achieving a new record. It was a win-win situation (except maybe for Ellen).

Another way that Twitter connects people rapidly and at scale is when unexpected events and disasters happen. Those who have witnessed something unusual may upload an image that they have taken of it or retweet what others have posted to inform others about it. Those who like to reach out in this way are sometimes called digital volunteers. For example, while writing this chapter, there was a massive thunderstorm overhead that was very dramatic.

I checked out the Twitter hashtag #hove (I was in the United Kingdom) and found that hundreds of people had uploaded photos of the hailstones, flooding, and minute-by-minute updates of how public transport and traffic were being affected. It was easy to get a sense