• Tidak ada hasil yang ditemukan

Sobolev Left inverse operator for fusion frames

rth-orderΣ∆quantization withF by:

ef =F({qn}).

And we also know that,

f =FTW,w (f) =F({πWn(f)}) =F({xn}).

Hence, the error can be written as:

kf−efk2=kF({xn} −F({qn})k2=kF({xn−qn})k2=kF(∆rn)k2=kF(D)r(u)k2.

Here,u= [u1,u2, . . . ,un]and

D=

I −πW2 0 · · · 0 0 I −πW3 · · · 0

. .. . ..

0 · · · 0 I −πWn 0 · · · 0 0 I

. (4.5.1)

Note that D is invertible and

D−1=

I πW2 πW2πW3 · · · πW2πW3· · ·πWn 0 I πW3 · · · πW3πW4· · ·πWn

. .. . ..

0 · · · 0 I πWn

0 · · · 0 0 I

 .

Hence we get kF(D)r(u)k2≤ kF(D)rkOPkuk2 ≤C√

NkF(D)rkOP, where C is a positive constant by Theorem 4.2.7 and Theorem 4.3.4. Thus by Theorem 4.5.2 we know

(a) (b)

Figure 4.2: Numerical experiment

Sobolev left inverse leads the minimal squared error.

For now we can not give a accurate estimation for the error boundkF(D)rkOP. Instead, we give the following numerical experiment for the error performance of rth order Σ∆

quantization with Sobolev left inverse. The figure(a)and(b)shows the result whenr=2 andr=3. In each figure, the x-coordinate is always the size N of the fusion frame. In the top graph, the y-coordinate is the operator norm ofF(D)rwhich is the upper bound of the error. In the middle graph, the y-coordinate is the operator norm ofF(D)rtimesN2r, and in the bottom graph, y-coordinate is ln((F(D)r))divided by ln(N), which shows the order of decay speed. We can observe the error is almost equal toO(N−r).

BIBLIOGRAPHY

[Ben48] William Ralph Bennett, Spectra of quantized signals, Bell System Technical Journal27(1948), no. 3, 446–472.

[BF03] John J Benedetto and Matthew Fickus, Finite normalized tight frames, Ad- vances in Computational Mathematics18(2003), no. 2-4, 357–385.

[BH01] Helmut B¨olcskei and Franz Hlawatsch,Noise reduction in oversampled filter banks using predictive quantization, Information Theory, IEEE Transactions on47(2001), no. 1, 155–172.

[BLPY10] James Blum, Mark Lammers, Alexander M Powell, and ¨Ozg¨ur Yılmaz, Sobolev duals in frame theory and sigma-delta quantization, Journal of Fouri- er Analysis and Applications16(2010), no. 3, 365–381.

[BP07] Bernhard G Bodmann and Vern I Paulsen,Frame paths and error bounds for sigma–delta quantization, Applied and Computational Harmonic Analysis22 (2007), no. 2, 176–197.

[BPA07a] Bernhard G Bodmann, Vern I Paulsen, and Soha A Abdulbaki,Smooth frame- path termination for higher order sigma-delta quantization, Journal of Fourier Analysis and Applications13(2007), no. 3, 285–307.

[BPA07b] , Smooth frame-path termination for higher order sigma-delta quan- tization, Journal of Fourier Analysis and Applications13(2007), no. 3, 285–

307.

[BPY06a] John J Benedetto, Alexander M Powell, and ¨Ozg¨ur Yılmaz, Second-order sigma–delta (σ δ) quantization of finite frame expansions, Applied and Com- putational Harmonic Analysis20(2006), no. 1, 126–148.

[BPY06b] , Sigma-delta (σ δ) quantization and finite frames, Information Theo- ry, IEEE Transactions on52(2006), no. 5, 1990–2005.

[BT01] John J Benedetto and Oliver M Treiber,Wavelet frames: multiresolution anal- ysis and extension principles, Wavelet transforms and time-frequency signal analysis, Springer, 2001, pp. 3–36.

[BYP04] John J Benedetto, ¨Ozg¨ur Yilmaz, and Alexander M Powell,Sigma-delta quan- tization and finite frames., ICASSP (3), 2004, pp. 937–940.

[Cas99] Peter G Casazza, The art of frame theory, arXiv preprint math/9910168 (1999).

[Chr02] Ole Christensen,An introduction to frames and riesz bases, Springer, 2002.

[CK03] Peter G Casazza and Gitta Kutyniok, Frames of subspaces, arXiv preprint math/0311384 (2003).

[CKL08] Peter G Casazza, Gitta Kutyniok, and Shidong Li, Fusion frames and dis- tributed processing, Applied and computational harmonic analysis25(2008), no. 1, 114–132.

[CKP13] Peter G Casazza, Gitta Kutyniok, and Friedrich Philipp,Introduction to finite frame theory, Finite Frames, Springer, 2013, pp. 1–53.

[D+92] Ingrid Daubechies et al.,Ten lectures on wavelets, vol. 61, SIAM, 1992.

[DD03] Ingrid Daubechies and Ron DeVore, Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order, Annals of mathematics (2003), 679–710.

[EC06] Yonina C Eldar and Ole Christensen,Characterization of oblique dual frame pairs, EURASIP Journal on Advances in Signal Processing2006(2006), no. 1, 1–11.

[GKK01] Vivek K Goyal, Jelena Kovaˇcevi´c, and Jonathan A Kelner, Quantized frame expansions with erasures, Applied and Computational Harmonic Analysis10 (2001), no. 3, 203–233.

[GLP+10] C Sinan G¨unt¨urk, Mark Lammers, Alex Powell, Rayan Saab, and ¨Ozg¨ur Yil- maz, Sigma delta quantization for compressed sensing, Information Sciences and Systems (CISS), 2010 44th Annual Conference on, IEEE, 2010, pp. 1–6.

[GLV01] C Sinan G¨unt¨urk, Jeffrey C Lagarias, and Vinay A Vaishampayan, On the robustness of single-loop sigma-delta modulation, Information Theory, IEEE Transactions on47(2001), no. 5, 1735–1744.

[Gra90] Robert M Gray,Quantization noise spectra, Information Theory, IEEE Trans- actions on36(1990), no. 6, 1220–1244.

[G¨un03] C Sinan G¨unt¨urk, One-bit sigma-delta quantization with exponential accu- racy, Communications on Pure and Applied Mathematics 56(2003), no. 11, 1608–1630.

[GVT98a] Vivek K Goyal, Martin Vetterli, and Nguyen T Thao,Quantized overcomplete expansions in ir n: analysis, synthesis, and algorithms, Information Theory, IEEE Transactions on44(1998), no. 1, 16–31.

[GVT98b] , Quantized overcomplete expansions in ir n: analysis, synthesis, and algorithms, Information Theory, IEEE Transactions on44 (1998), no. 1, 16–

31.

[Hei10] Christopher Heil,A basis theory primer: expanded edition, Springer, 2010.

[HMBZ13] Sigrid Heineken, Patricia Morillas, Ana Benavente, and Mar´ıa Zakowicz,Dual fusion frames, arXiv preprint arXiv:1308.4595 (2013).

[JWW07] David Jimenez, Long Wang, and Yang Wang,White noise hypothesis for uni- form quantization errors, SIAM journal on mathematical analysis 38(2007), no. 6, 2042–2056.

[Kas77] BS Kashin, Sections of some finite dimensional sets and classes of smooth functions, Izv. Acad. Nauk SSSR41(1977), no. 2, 334–351.

[Li95] Shidong Li,On general frame decompositions, Numerical functional analysis and optimization16(1995), no. 9-10, 1181–1191.

[LO04] Shidong Li and Hidemitsu Ogawa,Pseudoframes for subspaces with applica- tions, Journal of Fourier Analysis and Applications10(2004), no. 4, 409–431.

[LPY10] Mark Lammers, Alexander M Powell, and ¨Ozg¨ur Yılmaz, Alternative du- al frames for digital-to-analog conversion in sigma–delta quantization, Ad- vances in Computational Mathematics32(2010), no. 1, 73–102.

[LV10] Yurii Lyubarskii and Roman Vershynin, Uncertainty principles and vector quantization, Information Theory, IEEE Transactions on 56 (2010), no. 7, 3491–3501.

[Mun92] Niels Juul Munch,Noise reduction in tight weyl-heisenberg frames, Informa- tion Theory, IEEE Transactions on38(1992), no. 2, 608–616.

[Pis99] Gilles Pisier, The volume of convex bodies and banach space geometry, vol. 94, Cambridge University Press, 1999.

[PL93] Steven C Pinault and Philip V Lopresti, On the behavior of the double-loop sigma-delta modulator, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on40(1993), no. 8, 467–479.

[RG02] Gagan Rath and Christine Guillemot, Syndrome decoding and performance

Dokumen terkait