• Tidak ada hasil yang ditemukan

Special Cases

Dalam dokumen TABLE OF CONTENTS (Halaman 36-47)

Chapter IV: Mathematical Optimization for the Discrete Problem

4.4 Special Cases

Subtracting 12๐‘‹๐‘‡

1๐‘‹1+ 1

2๐‘‹๐‘‡

2๐‘‹2from both sides, we find 0=โˆ’1

4๐‘‹๐‘‡

1๐‘‹1+ 1 4๐‘‹๐‘‡

1๐‘‹2+ 1 4๐‘‹๐‘‡

2๐‘‹1โˆ’ 1 4๐‘‹๐‘‡

2๐‘‹2

=โˆ’1

4(๐‘‹1โˆ’๐‘‹2)๐‘‡(๐‘‹1โˆ’ ๐‘‹2).

This implies ๐‘‹1=๐‘‹2. Hence, the solution of (4.5) is unique.

Due to exactness, any solution๐‘1, . . . , ๐‘๐‘˜of (4.4) corresponds to an optimal solution

๐‘ = ๐ผ๐‘‘ ๐‘‹

๐‘‹๐‘‡ ๐‘‹๐‘‡๐‘‹

!

of (4.5) via ๐‘‹ =

๐‘1 . . . ๐‘๐‘˜

. Consequently, the solution of

(4.4) is also unique. โ–ก

We have shown that ๐‘๐‘– โˆˆH๐‘Ÿ โˆฉ๐ต๐‘– for๐‘– > ๐‘Ÿ.

We claim that|๐œ๐‘–โˆ’๐‘๐‘–| โ‰ฅ inf๐‘งโˆˆH๐‘Ÿโˆฉ๐ต๐‘– |๐œ๐‘–โˆ’๐‘ง|=|๐œ๐‘–โˆ’๐‘๐‘Ÿ|for๐‘– > ๐‘Ÿ. To see this, consider the problem

minimize |๐œ๐‘–โˆ’๐‘ง|2 s.t.

๐‘งโˆ’ ๐‘๐‘Ÿ +๐œƒ๐‘– 2

2

โ‰ค

๐‘๐‘Ÿ โˆ’๐œƒ๐‘– 2

2

, (๐œƒ๐‘Ÿ โˆ’ ๐‘๐‘Ÿ) ยท (๐‘งโˆ’ ๐‘๐‘Ÿ) โ‰ค 0.

The Lagrangian is ๐ฟ(๐‘ง, ๐œ†1, ๐œ†2)

= |๐œ๐‘–โˆ’๐‘ง|2+๐œ†1

๐‘งโˆ’ ๐‘๐‘Ÿ +๐œƒ๐‘– 2

2

โˆ’

๐‘๐‘Ÿ โˆ’๐œƒ๐‘– 2

2

+๐œ†2(๐œƒ๐‘Ÿ โˆ’๐‘๐‘Ÿ) ยท (๐‘งโˆ’๐‘๐‘Ÿ)

= |๐œ๐‘–โˆ’๐‘ง|2+๐œ†1(๐‘๐‘Ÿ โˆ’๐‘ง) (๐œƒ๐‘–โˆ’๐‘ง) +๐œ†2(๐œƒ๐‘Ÿ โˆ’ ๐‘๐‘Ÿ) ยท (๐‘งโˆ’ ๐‘๐‘Ÿ)

= (1+๐œ†1) |๐‘ง|2+

โˆ’2๐œ1โˆ’๐œ†1(๐‘๐‘Ÿ +๐œƒ๐‘–) +๐œ†2(๐œƒ๐‘Ÿ โˆ’๐‘๐‘Ÿ)

ยท๐‘ง + |๐œ๐‘–|2+๐œ†1๐‘๐‘Ÿ ยท๐œƒ๐‘–โˆ’๐œ†2๐œƒ๐‘Ÿ ยท ๐‘๐‘Ÿ,

where๐œ†1, ๐œ†2 โ‰ฅ 0.

โˆ‡๐‘ง๐ฟ(๐‘ง, ๐œ†1, ๐œ†2) =๐œ†1(โˆ’๐‘๐‘Ÿ โˆ’๐œƒ๐‘–+2๐‘ง) +๐œ†2(โˆ’๐‘๐‘Ÿ +๐œƒ๐‘Ÿ) +2๐‘งโˆ’2๐œ๐‘–. Itโ€™s easy to verify that๐‘ง = ๐‘๐‘Ÿ,๐œ†1= 2(๐œƒ๐‘Ÿโˆ’๐œ๐‘–)

๐œƒ๐‘–โˆ’๐œƒ๐‘Ÿ ,๐œ†2= 2(๐œƒ๐‘–โˆ’๐œ๐‘–)

๐œƒ๐‘–โˆ’๐œƒ๐‘Ÿ satisfyโˆ‡๐‘ง๐ฟ(๐‘ง, ๐œ†1, ๐œ†2) =0.

Note that ๐‘ง = ๐‘๐‘Ÿ is primal feasible. Also, since ๐œ๐‘– โ‰ค ๐œƒ๐‘Ÿ < ๐œƒ๐‘–, ๐œ†1, ๐œ†2 โ‰ฅ 0 must be dual feasible. We found a primal-dual pair satisfying the Karush-Kuhn-Tucker condition. Hence, ๐‘๐‘Ÿ is the minimizer.

Define e๐‘1, . . . ,

e๐‘๐‘˜ by e๐‘๐‘– = ๐‘๐‘– for๐‘– =1, . . . , ๐‘Ÿ โˆ’1, and e๐‘๐‘– = ๐‘๐‘Ÿ for๐‘– =๐‘Ÿ , . . . , ๐‘˜. We claim that they satisfy

(๐œƒ๐‘–โˆ’ e๐‘๐‘–) ยท (

๐‘e๐‘— โˆ’

๐‘e๐‘–) โ‰ค0 for all๐‘– โ‰  ๐‘— , (๐œƒ๐‘–โˆ’

e๐‘๐‘–) ยท (โˆ’

๐‘e๐‘–) โ‰ค0 for all๐‘– . By construction, it suffices to check

(๐œƒ๐‘—โˆ’ ๐‘๐‘Ÿ) ยท (๐‘๐‘–โˆ’ ๐‘๐‘Ÿ) โ‰ค 0 for๐‘– < ๐‘Ÿ < ๐‘— , (๐œƒ๐‘— โˆ’ ๐‘๐‘Ÿ) ยท (โˆ’๐‘๐‘Ÿ) โ‰ค 0 for ๐‘— > ๐‘Ÿ .

To prove the first inequality, fix๐‘– < ๐‘Ÿ < ๐‘—. First note that ๐‘๐‘– โ‰ค ๐œƒ๐‘–. This follows directly from (๐œƒ๐‘– โˆ’ ๐‘๐‘–) ยท (โˆ’๐‘๐‘–) โ‰ค 0. Next, we have ๐‘๐‘– โ‰ค ๐‘โ€ฒ

๐‘Ÿ (recall that ๐‘โ€ฒ

๐‘Ÿ is the

first coordinate of ๐‘๐‘Ÿ โˆˆ R2). Indeed, suppose, to the contrary, ๐‘๐‘– > ๐‘โ€ฒ

๐‘Ÿ. Then ๐‘โ€ฒ

๐‘Ÿ < ๐‘๐‘– โ‰ค ๐œƒ๐‘– โ‰ค ๐œƒ๐‘Ÿ, and|๐œƒ๐‘Ÿ โˆ’ ๐‘๐‘Ÿ|2 = |๐œƒ๐‘Ÿ โˆ’ ๐‘โ€ฒ

๐‘Ÿ|2+ |๐‘ž๐‘Ÿ|2 > |๐œƒ๐‘Ÿ โˆ’ ๐‘๐‘–|2. ๐‘๐‘– would be a closer point in ฮ“to ๐œƒ๐‘Ÿ than ๐‘๐‘Ÿ, contradiction. Since๐‘– < ๐‘Ÿ < ๐‘—, ๐‘๐‘– โ‰ค ๐‘โ€ฒ

๐‘Ÿ, ๐œƒ๐‘Ÿ โ‰ค ๐œƒ๐‘—, and

(๐œƒ๐‘—โˆ’๐œƒ๐‘Ÿ) ยท (๐‘๐‘–โˆ’ ๐‘๐‘Ÿ) =(๐œƒ๐‘—โˆ’๐œƒ๐‘Ÿ) (๐‘๐‘–โˆ’ ๐‘โ€ฒ

๐‘Ÿ) โ‰ค 0. We already know

(๐œƒ๐‘Ÿ โˆ’๐‘๐‘Ÿ) ยท (๐‘๐‘–โˆ’๐‘๐‘Ÿ) โ‰ค0, so adding the two inequalities gives

(๐œƒ๐‘— โˆ’๐‘๐‘Ÿ) ยท (๐‘๐‘–โˆ’๐‘๐‘Ÿ) โ‰ค0.

For the second inequality, fix ๐‘— > ๐‘Ÿ. We know that (๐œƒ๐‘Ÿ โˆ’ ๐‘๐‘Ÿ) ยท (โˆ’๐‘๐‘Ÿ) = (๐œƒ๐‘Ÿ โˆ’ ๐‘โ€ฒ

๐‘Ÿ) (โˆ’๐‘โ€ฒ

๐‘Ÿ) + |๐‘ž๐‘Ÿ|2 โ‰ค 0. From this, we deduce that ๐‘โ€ฒ

๐‘Ÿ โ‰ฅ 0 (if ๐‘โ€ฒ

๐‘Ÿ < 0, then from (๐œƒ๐‘Ÿ โˆ’๐‘โ€ฒ

๐‘Ÿ) (โˆ’๐‘โ€ฒ

๐‘Ÿ) โ‰ค0 we find๐œƒ๐‘Ÿโˆ’ ๐‘โ€ฒ

๐‘Ÿ โ‰ค0, so 0 โ‰ค ๐œƒ๐‘Ÿ โ‰ค ๐‘โ€ฒ

๐‘Ÿ < 0, contradiction). Since ๐œƒ๐‘— โ‰ฅ ๐œƒ๐‘Ÿ and๐‘โ€ฒ

๐‘Ÿ โ‰ฅ 0,

(๐œƒ๐‘— โˆ’๐œƒ๐‘Ÿ) ยท (โˆ’๐‘๐‘Ÿ) โ‰ค0. We already know

(๐œƒ๐‘Ÿโˆ’ ๐‘๐‘Ÿ) ยท (โˆ’๐‘๐‘Ÿ) โ‰ค0, so adding the two inequalities gives

(๐œƒ๐‘— โˆ’๐‘๐‘Ÿ) ยท (โˆ’๐‘๐‘Ÿ) โ‰ค0.

Now define ๐‘

1, . . . , ๐‘

๐‘˜ as follows: ๐‘

๐‘– =

๐‘e๐‘– = ๐‘๐‘– for๐‘– < ๐‘Ÿ, ๐‘

๐‘– = ๐‘โ€ฒ

๐‘Ÿ

0

!

for๐‘– โ‰ฅ ๐‘Ÿ. Itโ€™s easy to verify that they satisfy

(๐œƒ๐‘–โˆ’ ๐‘

๐‘–) ยท (๐‘

๐‘— โˆ’๐‘

๐‘–) โ‰ค0 for all๐‘– โ‰  ๐‘— , (๐œƒ๐‘–โˆ’ ๐‘

๐‘–) ยท (โˆ’๐‘

๐‘–) โ‰ค0 for all๐‘– .

By Proposition 8, there exists a convex region ฮ“ โІ R๐‘‘ containing 0 such that ๐‘๐‘– = ๐‘

ฮ“(๐œƒ๐‘–) for๐‘– =1, . . . , ๐‘˜. Moreover,

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–|๐œ๐‘–โˆ’ ๐‘๐‘–|2โ‰ฅ

๐‘Ÿโˆ’1

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–|๐œ๐‘–โˆ’๐‘๐‘–|2+

๐‘˜

โˆ‘๏ธ

๐‘–=๐‘Ÿ

๐‘ค๐‘–|๐œ๐‘–โˆ’๐‘๐‘Ÿ|2

>

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–|๐œ๐‘–โˆ’ ๐‘

๐‘–|2.

It follows that the convex setฮ“we started with cannot be optimal. โ–ก

The situation covered by Proposition 17 is one-dimensional. We next study a special case that goes beyond one dimension. We show that when ๐œƒ1, . . . , ๐œƒ๐‘˜ are linearly independent, (4.5) is exact. It results from the convenient structure of the dual problem (4.12). We will use the following lemma:

Lemma 18. Suppose ๐‘ฆโˆ—

๐‘– ๐‘—, ๐‘งโˆ—

๐‘–, ๐‘‰โˆ— are optimal for the dual problem (4.12). Let๐‘†โˆ— = ๐ถโˆ’ร

๐‘–โ‰ ๐‘—๐‘ฆโˆ—

๐‘– ๐‘—๐ด๐‘– ๐‘— โˆ’ร๐‘˜

๐‘–=1๐‘งโˆ—

๐‘–๐ต๐‘–โˆ’ ๐‘‰ 0

0 0

!

. If rank๐‘†โˆ— โ‰ฅ ๐‘˜, then (4.5) is exact.

Proof. Suppose ๐‘โˆ— is optimal for (4.5). Then ๐‘โˆ— โ€ข ๐‘†โˆ— = 0. Since ๐‘โˆ—, ๐‘†โˆ— are both positive semidefinite, we have the matrix product ๐‘โˆ—๐‘†โˆ— = 0. Since๐‘โˆ—, ๐‘†โˆ— are (๐‘‘+ ๐‘˜) ร— (๐‘‘ +๐‘˜), rank ๐‘โˆ—+rank๐‘†โˆ— โ‰ค ๐‘‘+ ๐‘˜. Since rank๐‘†โˆ— โ‰ฅ ๐‘˜, it must be that rank๐‘โˆ— โ‰ค ๐‘‘. By Proposition 10, Problem (4.5) is exact. โ–ก With Lemma 18, it suffices to show that rank ๐‘†โˆ— โ‰ฅ ๐‘˜ whenever we wish to show that the SDP relaxation is exact. We now present the special case of interest.

Proposition 19.Suppose๐œƒ1, . . . , ๐œƒ๐‘˜are linearly independent. Then for any๐‘ค1, . . . , ๐‘ค๐‘˜ >

0, problem (4.5) with parameters (๐œƒ , ๐‘ค)is exact.

Proof. Suppose ๐‘ฆโˆ—

๐‘– ๐‘—, ๐‘งโˆ—

๐‘–, ๐‘‰โˆ— are optimal for (4.12). Let ๐‘†โˆ— = ๐ถ โˆ’ ร

๐‘–โ‰ ๐‘— ๐‘ฆโˆ—

๐‘– ๐‘—๐ด๐‘– ๐‘— โˆ’ ร๐‘˜

๐‘–=1๐‘งโˆ—

๐‘–๐ต๐‘–โˆ’ ๐‘‰ 0

0 0

!

. Then๐‘†โˆ—takes the form

๐‘†โˆ— =

ยฉ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยซ ร๐‘˜

๐‘–=1๐‘ค๐‘–

๐œƒ๐‘–๐œƒ๐‘‡

๐‘–

4 โˆ’๐‘‰โˆ— ๐‘“1 ๐‘“2 . . . ๐‘“๐‘˜ ๐‘“๐‘‡

1 ๐‘’11 ๐‘’12 . . . ๐‘’1๐‘˜ ๐‘“๐‘‡

2 ๐‘’21 ๐‘’22 . . . ๐‘’2๐‘˜ ..

.

.. .

.. .

... .. . ๐‘“๐‘‡

๐‘˜ ๐‘’๐‘˜1 ๐‘’๐‘˜2 . . . ๐‘’๐‘˜ ๐‘˜ ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ ,

where

๐‘“๐‘– =โˆ’๐‘ค๐‘– ๐œƒ๐‘–

2 +โˆ‘๏ธ

๐‘—โ‰ ๐‘–

๐‘ฆโˆ—

๐‘– ๐‘—

๐œƒ๐‘– 2 +๐‘งโˆ—

๐‘–

๐œƒ๐‘– 2 โˆ’โˆ‘๏ธ

๐‘—โ‰ ๐‘–

๐‘ฆโˆ—

๐‘— ๐‘–

๐œƒ๐‘—

2, ๐‘–=1, . . . , ๐‘˜ , ๐‘’๐‘–๐‘– =๐‘ค๐‘–โˆ’โˆ‘๏ธ

๐‘—โ‰ ๐‘–

๐‘ฆโˆ—

๐‘– ๐‘— โˆ’๐‘งโˆ—

๐‘–, ๐‘–=1, . . . , ๐‘˜ , ๐‘’๐‘– ๐‘— =โˆ’1

2๐‘ฆโˆ—

๐‘– ๐‘— โˆ’ 1 2๐‘ฆโˆ—

๐‘— ๐‘–, ๐‘– โ‰  ๐‘— .

We show that ๐‘“1, ๐‘“2, . . . , ๐‘“๐‘˜ are linearly independent. Write ๐‘“๐‘– =

โˆ’๐‘ค๐‘–+โˆ‘๏ธ

๐‘—โ‰ ๐‘–

๐‘ฆโˆ—

๐‘– ๐‘— +๐‘งโˆ—

๐‘–

๐œƒ๐‘– 2 โˆ’โˆ‘๏ธ

๐‘—โ‰ ๐‘–

๐‘ฆโˆ—

๐‘— ๐‘–

๐œƒ๐‘— 2 . Since๐œƒ1, . . . , ๐œƒ๐‘˜ are linearly independent, it suffices to show that

ยฉ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยซ

โˆ’๐‘ค1+ร

๐‘—โ‰ 1๐‘ฆโˆ—

1๐‘— +๐‘งโˆ—

1 โˆ’๐‘ฆโˆ—

12 . . . โˆ’๐‘ฆโˆ—

1๐‘˜

โˆ’๐‘ฆโˆ—

21 โˆ’๐‘ค2+ร

๐‘—โ‰ 2๐‘ฆโˆ—

2๐‘— +๐‘งโˆ—

2 . . . โˆ’๐‘ฆโˆ—

2๐‘˜

.. .

.. .

.. .

.. .

โˆ’๐‘ฆโˆ—

๐‘˜1 โˆ’๐‘ฆโˆ—

๐‘˜2 . . . โˆ’๐‘ค๐‘˜ +ร

๐‘—โ‰ ๐‘˜๐‘ฆโˆ—

๐‘˜ ๐‘— +๐‘งโˆ—

๐‘˜

ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ is nonsingular. Since ๐‘ฆโˆ—

๐‘– ๐‘— โ‰ค 0, ๐‘งโˆ—

๐‘– โ‰ค 0, this matrix is strictly diagonally dominant, hence indeed nonsingular.

Having established linear independence of ๐‘“1, . . . , ๐‘“๐‘˜, we have shown that rank๐‘†โˆ— โ‰ฅ

๐‘˜. By Lemma 18, Problem (4.5) is exact. โ–ก

This result can be partially extended to the case when๐‘‘ โ‰ฅ ๐‘˜.

Lemma 20. Let ๐‘ฃ(๐œƒ , ๐‘ค) be the optimal value of problem (4.5) with parameters (๐œƒ , ๐‘ค). Then for any pair๐œƒ , ๐œƒโ€ฒโˆˆR๐‘‘ร—๐‘˜,

|๐‘ฃ(๐œƒ , ๐‘ค) โˆ’๐‘ฃ(๐œƒโ€ฒ, ๐‘ค) | โ‰ค 9 4

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–[2 max{|๐œƒ๐‘–|,|๐œƒโ€ฒ

๐‘–|}|๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–| + |๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–|2]. (4.14) In particular, if๐œƒ๐‘™ โˆˆR๐‘‘ร—๐‘˜ converges to๐œƒ, thenlim๐‘™โ†’โˆž๐‘ฃ(๐œƒ๐‘™, ๐‘ค) =๐‘ฃ(๐œƒ , ๐‘ค).

Proof. Put ๐œ๐‘– = ๐œƒ2๐‘–. By Theorem 15, there exists ๐‘Ÿ โ‰ฅ 0 and a closed convex set ฮ“ โІ R๐‘‘+๐‘Ÿ such that 0 โˆˆ ฮ“ and ๐‘ฃ(๐œƒ , ๐‘ค) = ร๐‘˜

๐‘–=1๐‘ค๐‘–|๐œ๐‘– โˆ’ ๐‘ฮ“(๐œƒ๐‘–) |2. The map ๐‘ฮ“ : R๐‘‘ โ†’ R๐‘‘ is contractive, that is, |๐‘ฮ“(๐‘ฅ) โˆ’ ๐‘ฮ“(๐‘ฆ) | โ‰ค |๐‘ฅ โˆ’ ๐‘ฆ| (see [13]).

Consequently,

|๐œโ€ฒ

๐‘– โˆ’ ๐‘ฮ“(๐œƒโ€ฒ

๐‘–) | =|๐œ๐‘–โˆ’๐‘ฮ“(๐œƒ๐‘–) โˆ’ [๐œ๐‘–โˆ’ ๐‘ฮ“(๐œƒ๐‘–)] + [๐œโ€ฒ

๐‘– โˆ’ ๐‘ฮ“(๐œƒโ€ฒ

๐‘–)] |

โ‰ค |๐œ๐‘–โˆ’ ๐‘ฮ“(๐œƒ๐‘–) | + |๐œ๐‘–โˆ’๐œโ€ฒ

๐‘–| + |๐‘ฮ“(๐œƒ๐‘–) โˆ’ ๐‘ฮ“(๐œƒโ€ฒ

๐‘–) |

โ‰ค |๐œ๐‘–โˆ’ ๐‘ฮ“(๐œƒ๐‘–) | + 1

2|๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–| + |๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–|, and

|๐œโ€ฒ

๐‘– โˆ’ ๐‘ฮ“(๐œƒโ€ฒ

๐‘–) |2

โ‰ค |๐œ๐‘–โˆ’ ๐‘ฮ“(๐œƒ๐‘–) |2+3|๐œ๐‘–โˆ’๐‘ฮ“(๐œƒ๐‘–) ||๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–| + 9

4|๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–|2

โ‰ค |๐œ๐‘–โˆ’ ๐‘ฮ“(๐œƒ๐‘–) |2+ 9

2|๐œƒ๐‘–||๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–| + 9

4|๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–|2.

Upon summation over๐‘–, we find ๐‘ฃ(๐œƒโ€ฒ, ๐‘ค) โ‰ค

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–|๐œโ€ฒ

๐‘– โˆ’ ๐‘ฮ“(๐œƒโ€ฒ

๐‘–) |2

โ‰ค ๐‘ฃ(๐œƒ , ๐‘ค) + 9 4

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘ค๐‘–[2|๐œƒ๐‘–||๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–| + |๐œƒ๐‘–โˆ’๐œƒโ€ฒ

๐‘–|2].

Inequality (4.14) follows from reversing the roles of๐œƒ and๐œƒโ€ฒ. โ–ก Corollary 21. When๐‘‘ โ‰ฅ ๐‘˜, Problem (4.5) admits a solution of rank๐‘‘.

Proof. Since๐‘‘ โ‰ฅ ๐‘˜, there exists a sequence (๐œƒ๐‘™

1, . . . , ๐œƒ๐‘™

๐‘˜) โ†’ (๐œƒ1, . . . , ๐œƒ๐‘˜) such that for each ๐‘™, ๐œƒ๐‘™

1, . . . , ๐œƒ๐‘™

๐‘˜ are linearly independent. Let ๐ถ๐‘™, ๐ด๐‘™

๐‘– ๐‘—, ๐ต๐‘™

๐‘– be the coefficient matrices for Problem (4.5) with input (๐œƒ๐‘™

1, . . . , ๐œƒ๐‘™

๐‘˜).

Let ๐‘๐‘™ =

ยฉ

ยญ

ยญ

ยญ

ยญ

ยญ

ยซ

๐ผ๐‘‘ ๐‘๐‘™

1 . . . ๐‘๐‘™

๐‘˜

(๐‘๐‘™

1)๐‘‡ ๐‘ฆ๐‘™

11 . . . ๐‘ฆ๐‘™

1๐‘˜

.. .

.. .

... .. . (๐‘๐‘™

๐‘˜)๐‘‡ ๐‘ฆ๐‘™

๐‘˜1 . . . ๐‘ฆ๐‘™

๐‘˜ ๐‘˜

ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ

be the optimal solution for Problem (4.5) with

input ๐œƒ๐‘™. By Proposition 19, rank ๐‘๐‘™ = ๐‘‘, and there exists a closed convex set ฮ“๐‘™ โІ R๐‘‘ such that 0 โˆˆ ฮ“๐‘™, and ๐‘๐‘™

๐‘– = ๐‘ฮ“๐‘™(๐œƒ๐‘™

๐‘–). We know that |๐‘๐‘™

๐‘–| โ‰ค |๐œƒ๐‘™

๐‘–|. Moreover, since rank ๐‘๐‘™ = ๐‘‘, we must have |๐‘ฆ๐‘™

๐‘– ๐‘—| = |๐‘๐‘™

๐‘– ยท ๐‘๐‘™

๐‘—| โ‰ค |๐œƒ๐‘™

๐‘–||๐œƒ๐‘™

๐‘—|. This analysis shows that the sequence{๐‘๐‘™}โˆž

๐‘™=1is bounded. After passing to a subsequence,๐‘๐‘™converges to some matrix ๐‘. Note that ๐‘ is feasible for Problem (4.5) with input ๐œƒ, and that rank๐‘ =๐‘‘. Also, lim๐‘™โ†’โˆž๐‘๐‘™ โ€ข๐ถ๐‘™ = ๐‘โ€ข๐ถ. By Lemma 20,๐‘ is optimal.

โ–ก Remark 8. This result is weaker than Proposition 19 because it does not imply uniqueness of solution for (4.5). It guarantees that an optimal solution of rank ๐‘‘ exists, but there may be additional solutions with higher rank.

Stated in terms of the fund menu problem, if there are at least as many assets as the number of types, then the manager cannot (strictly) increase aggregate fee by introducing additional independent assets with zero mean return.

BIBLIOGRAPHY

[1] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex opti- mization: analysis, algorithms, and engineering applications. SIAM, 2001.

[2] Carl M Bender et al. โ€œWhat is the optimal shape of a city?โ€ In: Journal of Physics A: Mathematical and General37.1 (2003), p. 147.

[3] Mats Bengtsson and Bjรถrn Ottersten. โ€œOptimum and suboptimum transmit beamformingโ€. In:Handbook of antennas in wireless communications. CRC press, 2018, pp. 18โ€“1.

[4] Samuel Burer and Yinyu Ye. โ€œExact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programsโ€. In:Mathematical Programming181.1 (2020), pp. 1โ€“17.

[5] Guillaume Carlier, Ivar Ekeland, and Nizar Touzi. โ€œOptimal derivatives de- sign for meanโ€“variance agents under adverse selectionโ€. In:Mathematics and Financial Economics1.1 (2007), pp. 57โ€“80.

[6] Jakลกa Cvitaniฤ‡ and Julien Hugonnier. โ€œOptimal fund menusโ€. In:Mathemat- ical Finance32.2 (2022), pp. 455โ€“516.

[7] Georg Faber. โ€œBeweis, dass unter allen homogenen Membranen von gleicher Flรคche und gleicher Spannung die kreisfรถrmige den tiefsten Grundton gibtโ€.

In: (1923).

[8] Michel X Goemans and David P Williamson. โ€œImproved approximation al- gorithms for maximum cut and satisfiability problems using semidefinite programmingโ€. In:Journal of the ACM (JACM)42.6 (1995), pp. 1115โ€“1145.

[9] Sunyoung Kim and Masakazu Kojima. โ€œExact solutions of some noncon- vex quadratic optimization problems via SDP and SOCP relaxationsโ€. In:

Computational optimization and applications26.2 (2003), pp. 143โ€“154.

[10] Antoine Lemenant and Edoardo Mainini. โ€œOn convex sets that minimize the average distanceโ€. In: ESAIM: Control, Optimisation and Calculus of Variations18.4 (2012), pp. 1049โ€“1072.

[11] Michael Mussa and Sherwin Rosen. โ€œMonopoly and product qualityโ€. In:

Journal of Economic theory18.2 (1978), pp. 301โ€“317.

[12] Jean-Charles Rochet and Philippe Chonรฉ. โ€œIroning, sweeping, and multidi- mensional screeningโ€. In:Econometrica(1998), pp. 783โ€“826.

[13] Rolf Schneider. Convex bodies: the Brunnโ€“Minkowski theory. 151. Cam- bridge university press, 2014.

[14] Anthony Man-Cho So and Yinyu Ye. โ€œTheory of semidefinite program- ming for sensor network localizationโ€. In:Mathematical Programming109.2 (2007), pp. 367โ€“384.

[15] VA Yakubovich. โ€œS-procedure in nonlinear control theoryโ€. In: Vestnick Leningrad Univ. Math.4 (1997), pp. 73โ€“93.

[16] Fuzhen Zhang.The Schur complement and its applications. Vol. 4. Springer Science & Business Media, 2006.

A p p e n d i x A

GAMMA CONVERGENCE

We provide justification for focusing on the finite case of minimizing ร๐‘˜

๐‘–=1๐‘ค๐‘–

๐œƒ๐‘–

2 โˆ’ ๐‘ฮ“(๐œƒ๐‘–)

2.

Consider a bounded regionฮฉ โІ R๐‘‘and a finite measure๐œ‡. We may discretize๐œ‡by partitioning R๐‘‘ into dyadic cubes and forming a weighted sum of point-masses at the centers. Formally, letD๐‘›be the collection of dyadic cubes inR๐‘‘ of length 2โˆ’๐‘›. For each๐‘„๐‘– โˆˆ D๐‘›, let๐œƒ๐‘–be the center of๐‘„๐‘–. Define

๐œ‡๐‘›:= โˆ‘๏ธ

๐‘„๐‘–โˆˆD๐‘›

๐œ‡(ฮฉโˆฉ๐‘„๐‘–)๐›ฟ๐œƒ

๐‘– (A.1)

Let C be the collection of closed convex subsets of R๐‘‘ containing the origin, and let F๐‘›(ฮ“) := โˆซ

๐œƒ

2 โˆ’ ๐‘ฮ“(๐œƒ)

2

๐‘‘๐œ‡๐‘›. Loosely speaking, as the dyadic cube partition gets finer, the discretized problem minimizeฮ“โˆˆCF๐‘›(ฮ“) โ€œapproximatesโ€ the target problem minimizeฮ“โˆˆCF (ฮ“)better. The precise formulation of such approximation (often known as gamma-convergence in calculus of variations) is given by the following result:

Proposition 22. Suppose ฮฉ โІ R๐‘‘ is bounded, and ๐œ‡ is a finite measure on ฮฉ.

Define ๐œ‡๐‘› as in (A.1). Then there exists a sequence of minimizers {ฮ“๐‘›} for prob- lems minimizeฮ“โˆˆCF๐‘›(ฮ“) having an accumulation point inฮ”๐ป. Moreover, any such accumulation point is an optimal solution of minimizeฮ“โˆˆCF (ฮ“).

Lemma 23. Suppose {ฮ“๐‘›} is a sequence in C such that ฮ“๐‘› โ†’ ฮ“ in ฮ”๐ป. Then F๐‘›(ฮ“๐‘›) โ†’ F (ฮ“).

Proof. |F๐‘›(ฮ“๐‘›) โˆ’ F (ฮ“) | โ‰ค |F๐‘›(ฮ“๐‘›) โˆ’ F (ฮ“๐‘›) | + |F (ฮ“๐‘›) โˆ’ F (ฮ“) |. By Proposition 6, the second term on the right tends to 0 as๐‘›โ†’ โˆž.

Now consider the first term. On each dyadic cube ๐‘„๐‘–, โˆซ

๐‘„๐‘–

๐œƒ 2 โˆ’ ๐‘ฮ“

๐‘›(๐œƒ)

2

๐‘‘๐œ‡๐‘› =

โˆซ

๐‘„๐‘–

๐œƒ๐‘–

2 โˆ’๐‘ฮ“

๐‘›(๐œƒ๐‘–)

2๐‘‘๐œ‡. Since|๐‘ฮ“

๐‘›(๐œƒ) | โ‰ค |๐œƒ|, and|๐‘ฮ“

๐‘›(๐œƒ๐‘–) โˆ’ ๐‘ฮ“

๐‘›(๐œƒ) | โ‰ค |๐œƒ๐‘–โˆ’๐œƒ|,

โˆซ

๐‘„๐‘–

๐œƒ๐‘– 2 โˆ’๐‘ฮ“

๐‘›(๐œƒ๐‘–)

2

๐‘‘๐œ‡โˆ’

โˆซ

๐‘„๐‘–

๐œƒ 2 โˆ’๐‘ฮ“

๐‘›(๐œƒ)

2

๐‘‘๐œ‡ โ‰ฒ

โˆซ

๐‘„๐‘–

(|๐œƒ๐‘–| + |๐œƒ|) |๐œƒ๐‘–โˆ’๐œƒ|๐‘‘๐œ‡.

By the dominated convergence theorem, as ๐‘› โ†’ โˆž, ร

๐‘„๐‘–โˆˆD๐‘›

โˆซ

๐‘„๐‘–

(|๐œƒ๐‘–| + |๐œƒ|) |๐œƒ๐‘– โˆ’

๐œƒ|๐‘‘๐œ‡โ†’0. โ–ก

Proof of Proposition 22. Sinceฮฉis bounded, all๐œ‡๐‘›are supported in a large enough ball, and we may assume thatฮ“๐‘›are contained in this ball. By the Blaschke selection theorem, we may assume that {ฮ“๐‘›} contains a subsequence that converges in the Hausdorff distance. Supposeฮ“is any accumulation point of {ฮ“๐‘›}. By Lemma 23, F๐‘›(ฮ“๐‘›) โ†’ F (ฮ“). Moreover, ifฮ“โ€ฒโˆˆ C, then

F (ฮ“โ€ฒ) =limF๐‘›(ฮ“โ€ฒ) โ‰ฅlimF๐‘›(ฮ“๐‘›) =F (ฮ“).

Consequently,ฮ“is a minimizer ofF (ยท). โ–ก

A p p e n d i x B

NUMERICAL RESULTS

We examine the numerical solutions of Problem (4.5) in several cases of interest.

Each case consists of points๐œƒ1, . . . , ๐œƒ๐‘˜inR2with uniform weight๐‘ค1=ยท ยท ยท=๐‘ค๐‘˜ =1.

We plot the types ๐œƒ1, . . . , ๐œƒ๐‘˜ (blue), the optimal convex set ฮ“ (shaded region), as well as the projection points๐‘ฮ“(๐œƒ1), . . . , ๐‘ฮ“(๐œƒ๐‘˜).

In addition to the plots, we will be interested in the numerical value of๐œ†๐‘‘+1(๐‘†โˆ—)โ€”the (๐‘‘+1)-st smallest eigenvalue of the optimal dual slack matrix

๐‘†โˆ— =๐ถโˆ’โˆ‘๏ธ

๐‘–โ‰ ๐‘—

๐‘ฆโˆ—

๐‘– ๐‘—๐ด๐‘– ๐‘— โˆ’

๐‘˜

โˆ‘๏ธ

๐‘–=1

๐‘งโˆ—

๐‘–๐ต๐‘–โˆ’ ๐‘‰โˆ— 0

0 0

!

for Problem (4.12). A strictly positive value implies rank๐‘†โˆ— โ‰ฅ ๐‘˜. By Lemma (18), it allows us to verify, a posteriori, that the SDP numerical solution is exact for the complete problem (4.4).

The numerical solution is implemented with Python packageCVXPY.

Dalam dokumen TABLE OF CONTENTS (Halaman 36-47)

Dokumen terkait