Chapter VI: đ· and 13 đ¶ isotopic equilibria in alkanes
6.6 Summary
Based on the extensive calculations performed in this study, we briefly state our key observations for heavy isotope fractionation, clumping and position-specific effect in gaseous dihydrogen, water, and small alkanes at 0 to 500 degrees C. We believe that these ideas extend beyond the strict confines of the examples considered here and we hope that they will serve a useful guide for future studies of stable isotope geochemistry.
1. Clumped heavy isotope effects enjoy significant error cancellation and can be computed better than experimental accuracy using a simple Bigeleisen-Urey harmonic approach and a cheap DFT potential like B3LYP/6-311G(d,p).
2. On the contrary, fractionation of heavy isotopes between alkanes and position- specific isotope effect in propane require the use of highly accurate potential and accounting for the anharmonic effects.
3. The DBO correction is negligible for equilibria involving carbon-13, but can be important for fractionations and position-specific effects involving deuterium.
4. Clumped heavy isotope effect is the strongest for two atoms that are directly bonded to each other and decays significantly with each additional bond.
5. In alkanes, both D+D and13C+D clumped heavy isotope effects of a particular carbon decreases in the following order: CH4 > CH3 > CH2. Moreover, the total clumping decreases sharply due to the increasing importance of the weakly-clumped isotopologue with distant heavy isotopes.
6. Path-integral-based methods are a method of choice for accurate calculations of fractionation between small gaseous molecules. We do not see evidence that path-integral-based approaches are necessary to accurately describe the clumped isotope effects in alkanes.
BIBLIOGRAPHY
1T. E. Markland and M. Ceriotti, âNuclear quantum effects enter the mainstreamâ, Nature Reviews Chemistry2, 0109 (2018)10.1038/s41570-017-0109.
2R. P. Feynman and A. R. Hibbs,Quantum mechanics and path integrals(McGraw- Hill, 1965).
3D. Chandler and P. G. Wolynes, âExploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluidsâ, The Journal of Chemical Physics74, 4078â4095 (1981)10.1063/1.441588.
4D. M. Ceperley, âPath integrals in the theory of condensed heliumâ, Reviews of Modern Physics67, 279â355 (1995)10.1103/RevModPhys.67.279.
5M. Parrinello and A. Rahman, âStudy of an F center in molten KClâ, The Journal of Chemical Physics80, 860â867 (1984)10.1063/1.446740.
6I. R. Craig and D. E. Manolopoulos, âChemical reaction rates from ring polymer molecular dynamicsâ, The Journal of Chemical Physics 122, 084106 (2005) 10.1063/1.1850093.
7I. R. Craig and D. E. Manolopoulos, âA refined ring polymer molecular dynamics theory of chemical reaction ratesâ, The Journal of Chemical Physics123, 034102 (2005)10.1063/1.1954769.
8E. Geva, Q. Shi, and G. A. Voth, âQuantum-mechanical reaction rate constants from centroid molecular dynamics simulationsâ, The Journal of Chemical Physics 115, 9209â9222 (2001)10.1063/1.1412870.
9T. F. Miller and D. E. Manolopoulos, âQuantum diffusion in liquid water from ring polymer molecular dynamicsâ, The Journal of Chemical Physics123, 154504 (2005)10.1063/1.2074967.
10T. D. Hone and G. A. Voth, âA centroid molecular dynamics study of liquid para- hydrogen and ortho-deuteriumâ, The Journal of Chemical Physics 121, 6412â
6422 (2004)10.1063/1.1780951.
11S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, âComparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid waterâ, The Journal of Chemical Physics 129, 074501 (2008) 10.1063/
1.2968555.
12A. Kaczmarek, M. Shiga, and D. Marx, âQuantum Effects on Vibrational and Electronic Spectra of Hydrazine Studied by âOn-the-Flyâ ab Initio Ring Polymer Molecular Dynamicsâ, The Journal of Physical Chemistry A 113, 1985â1994 (2009)10.1021/jp8081936.
13A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, âOn the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopyâ, The Journal of Chemical Physics130, 194510 (2009)10.1063/
1.3125009.
14F. Paesani and G. A. Voth, âA quantitative assessment of the accuracy of centroid molecular dynamics for the calculation of the infrared spectrum of liquid waterâ, The Journal of Chemical Physics132, 014105 (2010)10.1063/1.3291212.
15I. R. Craig and D. E. Manolopoulos, âQuantum statistics and classical mechanics:
Real time correlation functions from ring polymer molecular dynamicsâ, The Journal of Chemical Physics121, 3368â3373 (2004)10.1063/1.1777575.
16S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, âRing- Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Spaceâ, Annual Review of Physi- cal Chemistry 64, 387â413 (2013) 10.1146/annurev- physchem- 040412- 110122.
17J. Cao and G. A. Voth, âThe formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical propertiesâ, The Journal of Chemical Physics100, 5106â5117 (1994)10.1063/1.467176.
18G. A. Voth, âPath-Integral Centroid Methods in Quantum Statistical Mechanics and Dynamicsâ, Advances in Chemical Physics 93, edited by I. Prigogine and S. A. Rice, 135â218 (1996)10.1002/9780470141526.ch4.
19G. J. Martyna, A. Hughes, and M. E. Tuckerman, âMolecular dynamics algo- rithms for path integrals at constant pressureâ, The Journal of Chemical Physics 110, 3275â3290 (1999)10.1063/1.478193.
20P. Minary, G. J. Martyna, and M. E. Tuckerman, âAlgorithms and novel ap- plications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamicsâ, The Journal of Chemical Physics 118, 2510 (2003) 10.
1063/1.1534582.
21A. Beskos, G. Roberts, A. Stuart, and J. Voss, âMCMC Methods for Dif- fusion Bridgesâ, Stochastics and Dynamics 8, 319â350 (2008) 10 . 1142 / S0219493708002378.
22A. Beskos, F. Pinski, J. Sanz-Serna, and A. Stuart, âHybrid Monte Carlo on Hilbert spacesâ, Stochastic Processes and their Applications 121, 2201â2230 (2011)10.1016/J.SPA.2011.06.003.
23J. Lu, Y. Lu, and Z. Zhou, âContinuum limit and preconditioned Langevin sam- pling of the path integral molecular dynamicsâ, Journal of Computational Physics 423, 109788 (2020)10.1016/j.jcp.2020.109788.
24Z. Zhang, X. Liu, Z. Chen, H. Zheng, K. Yan, and J. Liu, âA unified thermostat scheme for efficient configurational sampling for classical/quantum canonical en- sembles via molecular dynamicsâ, The Journal of Chemical Physics147, 034109 (2017)10.1063/1.4991621.
25J. Liu and Z. Zhang, âPath integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methaneâ, The Journal of Chemical Physics 144, 034307 (2016)10.1063/1.4939953.
26B. J. Braams and D. E. Manolopoulos, âOn the short-time limit of ring polymer molecular dynamicsâ, The Journal of Chemical Physics 125, 124105 (2006) 10.1063/1.2357599.
27M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, âEfficient stochastic thermostatting of path integral molecular dynamicsâ, The Journal of Chemical Physics133, 124104 (2010)10.1063/1.3489925.
28M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, âAccelerating the conver- gence of path integral dynamics with a generalized Langevin equationâ, The Journal of Chemical Physics134, 084104 (2011)10.1063/1.3556661.
29M. Rossi, M. Ceriotti, and D. E. Manolopoulos, âHow to remove the spurious resonances from ring polymer molecular dynamicsâ, The Journal of Chemical Physics140, 234116 (2014)10.1063/1.4883861.
30M. Rossi, V. Kapil, and M. Ceriotti, âFine tuning classical and quantum molecular dynamics using a generalized Langevin equationâ, The Journal of Chemical Physics148, 102301 (2018)10.1063/1.4990536.
31M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, âEfficient molecu- lar dynamics and hybrid Monte Carlo algorithms for path integralsâ, The Journal of Chemical Physics99, 2796â2808 (1993)10.1063/1.465188.
32G. Bussi, D. Donadio, and M. Parrinello, âCanonical sampling through velocity rescalingâ, The Journal of Chemical Physics 126, 14101 (2007) 10.1063/1.
2408420.
33H. A. Stern and B. J. Berne, âQuantum effects in liquid water: Path-integral sim- ulations of a flexible and polarizable ab initio modelâ, The Journal of Chemical Physics115, 7622â7628 (2001)10.1063/1.1407287.
34G. Trenins, M. J. Willatt, and S. C. Althorpe, âPath-integral dynamics of water using curvilinear centroidsâ, Journal of Chemical Physics 151, 054109 (2019) 10.1063/1.5100587.
35R. L. Benson, G. Trenins, and S. C. Althorpe, âWhich quantum statistics-classical dynamics method is best for water?â, Faraday Discussions221, 350â366 (2020) 10.1039/C9FD00077A.
36J. A. Poulsen, G. Nyman, and P. J. Rossky, âPractical evaluation of condensed phase quantum correlation functions: A FeynmanâKleinert variational linearized path integral methodâ, The Journal of Chemical Physics 119, 12179â12193 (2003)10.1063/1.1626631.
37M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A.
Morales, and T. E. Markland, âNuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challengesâ, Chemical Reviews116, 7529â7550 (2016)10.1021/acs.chemrev.5b00674.
38T. D. Hone, P. J. Rossky, and G. A. Voth, âA comparative study of imaginary time path integral based methods for quantum dynamicsâ, The Journal of Chemical Physics124, 154103 (2006)10.1063/1.2186636.
39N. Bou-Rabee, âCayley Splitting for Second-Order Langevin Stochastic Partial Differential Equationsâ, 10.48550/arXiv.1707.05603 (2017) 10.48550/
arXiv.1707.05603.
40L. R. Petzold, L. O. Jay, and J. Yen, âNumerical solution of highly oscillatory ordinary differential equationsâ, Acta Numerica 6, 437â483 (1997)10.1017/
S0962492900002750.
41L. Tierney, âA note on Metropolis-Hastings kernels for general state spacesâ, The Annals of Applied Probability8, 1â9 (1998)10.1214/aoap/1027961031.
42N. Bou-Rabee and E. Vanden-EÄłnden, âA patch that imparts unconditional stabil- ity to explicit integrators for Langevin-like equationsâ, Journal of Computational Physics231, 2565â2580 (2012)10.1016/J.JCP.2011.12.007.
43N. Bou-Rabee and J. M. Sanz-Serna, âGeometric integrators and the Hamil- tonian Monte Carlo methodâ, Acta Numerica 27, 113â206 (2018) 10 . 1017 / S0962492917000101.
44M. G. Krein, âA generalization of some investigations of linear differential equa- tions with periodic coefficientsâ, in Dokl. akad. nauk sssr a, Vol. 73 (1950), pp. 445â448.
45V. I. Arnold, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
46M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987).
47D. Frenkel and B. Smit,Understanding Molecular Simulation: From Algorithms to Applications(Academic press, 2002).
48N. Bou-Rabee, âTime Integrators for Molecular Dynamicsâ, Entropy 16, 138â
162 (2014)10.3390/e16010138.
49B. Leimkuhler and C. Matthews, Molecular Dynamics, Vol. 39, Interdisci- plinary Applied Mathematics (Springer International Publishing, Cham, 2015), 10.1007/978-3-319-16375-8.
50J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry (Springer Texts in Applied Mathematics, 1999).
51T. Andreescu, Essential linear algebra with applications : a problem-solving approach.(2016).
52B. Leimkuhler and C. Matthews, âRational Construction of Stochastic Numerical Methods for Molecular Samplingâ, Applied Mathematics Research eXpress2013, 34â56 (2013)10.1093/amrx/abs010.
53J. Crank and P. Nicolson, âA practical method for numerical evaluation of so- lutions of partial differential equations of the heat-conduction typeâ, Mathe- matical Proceedings of the Cambridge Philosophical Society 43, 50â67 (1947) 10.1017/S0305004100023197.
54W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, and Cambridge University Press,Numerical recipes : the art of scientific computing(2007).
55R. S. Judson, D. B. McGarrah, O. A. Sharafeddin, D. J. Kouri, and D. K. Hoffman,
âA comparison of three time-dependent wave packet methods for calculating electronâatom elastic scattering cross sectionsâ, The Journal of Chemical Physics 94, 3577â3585 (1991)10.1063/1.459729.
56X. Ma, D. J. Kouri, and D. K. Hoffman, âMonte carlo evaluation of real time Feynman path integrals using distributed approximating functions. Modified- Cayley versus symmetric split-operator formalismâ, Chemical Physics Letters 208, 207â213 (1993)10.1016/0009-2614(93)89063-N.
57N. Bou-Rabee and A. Eberle, âTwo-scale coupling for preconditioned Hamilto- nian Monte Carlo in infinite dimensionsâ, (2019).
58N. Bou-Rabee, A. Donev, and E. Vanden-EÄłnden, âMetropolis Integration Schemes for Self-Adjoint Diffusionsâ, Multiscale Modeling & Simulation 12, 781â831 (2014)10.1137/130937470.
59N. Bou-Rabee and H. Owhadi, âLong-run accuracy of variational integrators in the stochastic contextâ, SIAM Journal on Numerical Analysis 48, 278â297 (2010)10.1137/090758842.
60R. Korol, N. Bou-Rabee, and T. F. Miller III, âCayley modification for strongly sta- ble path-integral and ring-polymer molecular dynamicsâ, The Journal of Chem- ical Physics151, 124103 (2019)10.1063/1.5120282,
61D. Li, X. Han, Y. Chai, C. Wang, Z. Zhang, Z. Chen, J. Liu, and J. Shao,
âStationary state distribution and efficiency analysis of the Langevin equation via real or virtual dynamicsâ, The Journal of Chemical Physics 147, 184104 (2017) 10.1063/1.4996204.
62S. Kakutani, âOn equivalence of infinite product measuresâ, Annals of Mathe- matics49, 214â224 (1948)10.2307/1969123.
63V. I. Bogachev,Gaussian measures, 62 (American Mathematical Soc., 1998).
64A. PĂ©rez and M. E. Tuckerman, âImproving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemesâ, The Journal of Chemical Physics135, 064104 (2011)10.1063/1.3609120.
65O. Marsalek, P.-Y. Chen, R. Dupuis, M. Benoit, M. MĂ©heut, Z. BaÄiÄ, and M. E. Tuckerman, âEfficient Calculation of Free Energy Differences Associ- ated with Isotopic Substitution Using Path-Integral Molecular Dynamicsâ, Jour- nal of Chemical Theory and Computation 10, 1440â1453 (2014) 10 . 1021 / ct400911m.
66J. A. Barker, âA quantum-statistical Monte Carlo method; path integrals with boundary conditionsâ, The Journal of Chemical Physics 70, 2914â2918 (1979) 10.1063/1.437829.
67M. F. Herman, E. J. Bruskin, and B. J. Berne, âOn path integral Monte Carlo simulationsâ, The Journal of Chemical Physics76, 5150â5155 (1982)10.1063/
1.442815.
68B. GarcĂa-Archilla, J. M. Sanz-Serna, and R. D. Skeel, âLong-time-step methods for oscillatory differential equationsâ, SIAM Journal on Scientific Computing20, 930â963 (1998)10.1137/S1064827596313851.
69E. Hairer and C. Lubich, âLong-time energy conservation of numerical methods for oscillatory differential equationsâ, SIAM Journal on Numerical Analysis 38, 414â441 (2000)10.1137/S0036142999353594.
70J. M. Sanz-Serna, âMollified Impulse Methods for Highly Oscillatory Differential Equationsâ, SIAM Journal on Numerical Analysis 46, 1040â1059 (2008) 10.
1137/070681636.
71R. I. McLachlan and A. Stern, âModified Trigonometric Integratorsâ, SIAM Journal on Scientific Computing52, 1378â1397 (2014)10.1137/130921118.
72A. L. Gibbs and F. E. Su, âOn choosing and bounding probability metricsâ, International Statistical Review70, 419â435 (2002) 10.1111/j.1751-5823.
2002.tb00178.x.
73S. Habershon and D. E. Manolopoulos, âZero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid waterâ, The Journal of Chemical Physics131, 244518 (2009)10.1063/1.3276109.
74V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuzzocrea, R. H. MeiĂner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P.
Bienvenue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C.
Corminboeuf, T. D. KĂŒhne, D. E. Manolopoulos, T. E. Markland, J. O. Richard- son, A. Tkatchenko, G. A. Tribello, V. Van Speybroeck, and M. Ceriotti, âi-PI 2.0:
A universal force engine for advanced molecular simulationsâ, Computer Physics Communications236, 214â223 (2019)10.1016/j.cpc.2018.09.020.
75J. Gardner, O. A. Douglas-Gallardo, W. G. Stark, J. Westermayr, S. M. Janke, S. Habershon, and R. J. Maurer, âNQCDynamics.jl: A Julia package for nonadi- abatic quantum classical molecular dynamics in the condensed phaseâ, Journal of Chemical Physics156, 174801 (2022)10.1063/5.0089436.
76T. Plé, N. Mauger, O. Adjoua, T. J. Inizan, L. LagardÚre, S. Huppert, and J. P.
Piquemal, âRoutine Molecular Dynamics Simulations Including Nuclear Quan- tum Effects: From Force Fields to Machine Learning Potentialsâ, Journal of Chemical Theory and Computation 19, 1432â1445 (2023) 10 . 1021 / ACS . JCTC.2C01233.
77B. J. Sutherland, W. H. Moore, and D. E. Manolopoulos, âNuclear quantum effects in thermal conductivity from centroid molecular dynamicsâ, Journal of Chemical Physics154, 174104 (2021)10.1063/5.0051663/200146.
78X. Gui, W. Fan, J. Sun, and Y. Li, âNew Stable and Fast Ring-Polymer Molecular Dynamics for Calculating Bimolecular Rate Coefficients with an Example of OH + CH4â, Journal of Chemical Theory and Computation 18, 5203â5212 (2022) 10.1021/acs.jctc.2c00522.
79C. Li, Q. Liu, L. Zhang, Y. Li, and B. Jiang, âRing polymer molecular dy- namics in gas-surface reactions: tests on initial sampling and potential energy landscapeâ, Molecular Physics 120, 7475â7481 (2021) 10.1080/00268976.
2021.1941367.
80J. E. Lawrence and D. E. Manolopoulos, âConfirming the role of nuclear tunneling in aqueous ferrous-ferric electron transferâ, Journal of Chemical Physics 153, 154114 (2020)10.1063/5.0022678/315577.
81J. L. Rosa-RaĂces, J. Sun, N. Bou-Rabee, and T. F. Miller, âA generalized class of strongly stable and dimension-free T-RPMD integratorsâ, Journal of Chemical Physics154, 24106 (2021)10.1063/5.0036954.
82W. A. Brand, S. S. Assonov, and T. B. Coplen, âCorrection for the 17O inter- ference in đż(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report)â, Pure and Applied Chemistry82, 1719â
1733 (2010)10.1351/PAC-REP-09-01-05.
83R. E. Criss, âPrinciples of stable isotope distributionâ, 254 (1999).
84Z. Sharp, âPrinciples of Stable Isotope Geochemistryâ, Open Textbooks, 2nd Edition (2017)10.25844/h9q1-0p82.
85A. Gilbert, âThe Organic Isotopologue Frontierâ, https://doi.org/10.1146/annurev- earth-071420-05313449, 435â464 (2021)10.1146/ANNUREV-EARTH-071420- 053134.
86M. A. Webb and T. F. Miller, âPosition-Specific and Clumped Stable Isotope Studies: Comparison of the Urey and Path-Integral Approaches for Carbon Diox- ide, Nitrous Oxide, Methane, and Propaneâ, Journal of Physical Chemistry A 118, 467â474 (2014)10.1021/jp411134v.
87A. Piasecki, A. Sessions, B. Peterson, and J. Eiler, âPrediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theoryâ, Geochimica et Cosmochimica Acta 190, 1â12 (2016) 10 . 1016/j.gca.2016.06.003.
88H. Xie, C. Ponton, M. J. Formolo, M. Lawson, G. S. Ellis, M. D. Lewan, A. A.
Ferreira, E. T. Morais, A. L. Spigolon, A. L. Sessions, and J. M. Eiler, âPosition- specific distribution of hydrogen isotopes in natural propane: Effects of thermal cracking, equilibration and biodegradationâ, Geochimica et Cosmochimica Acta 290, 235â256 (2020)10.1016/J.GCA.2020.09.009.
89J. M. Eiler, ââClumped-isotopeâ geochemistryâThe study of naturally-occurring, multiply-substituted isotopologuesâ, Earth and Planetary Science Letters 262, 309â327 (2007)10.1016/j.epsl.2007.08.020.
90P. Richet, Y. Bottinga, and M. Javoy, âA Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Moleculesâ, Annual Review of Earth and Planetary Sciences 5, 65â110 (1977) 10.1146/annurev.ea.05.050177.000433.
91Z. Wang, E. A. Schauble, and J. M. Eiler, âEquilibrium thermodynamics of multi- ply substituted isotopologues of molecular gasesâ, Geochimica et Cosmochimica Acta68, 4779â4797 (2004)10.1016/j.gca.2004.05.039.
92J. Bigeleisen and M. G. Mayer, âCalculation of Equilibrium Constants for Isotopic Exchange Reactionsâ, The Journal of Chemical Physics 15, 261â267 (1947) 10.1063/1.1746492.
93M. A. Webb, Y. Wang, B. J. Braams, J. M. Bowman, and T. F. Miller Iii, âEqui- librium clumped-isotope effects in doubly substituted isotopologues of ethaneâ, Geochimica et Cosmochimica Acta197, 14â26 (2017)10.1016/j.gca.2016.
10.001.
94D. L. Eldridge, R. Korol, M. K. Lloyd, A. C. Turner, M. A. Webb, T. F. Miller, and D. A. Stolper, âComparison of Experimental vs Theoretical Abundances of 13CH3D and 12CH2D2 for Isotopically Equilibrated Systems from 1 to 500 âŠCâ, ACS Earth and Space Chemistry 3, 2747â2764 (2019) 10 . 1021 / acsearthspacechem.9b00244.
95X. Cao and Y. Liu, âTheoretical estimation of the equilibrium distribution of clumped isotopes in natureâ, Geochim. Cosmochim. Acta 77, 292â303 (2012) 10.1016/j.gca.2011.11.021.
96H. C. Urey, âThe Thermodynamic Properties of Isotopic Substancesâ, Journal of the Chemical Society, 562â581 (1947)10.1039/JR9470000562.
97M. Blanchard, E. Balan, and E. A. Schauble, âEquilibrium fractionation of non- traditional isotopes: A molecular modeling perspectiveâ, inNon-traditional stable isotopes, Vol. 82, 1 (Walter de Gruyter GmbH, Mar. 2017), pp. 27â64,10.2138/
rmg.2017.82.2.
98D. L. Eldridge, R. Korol, M. K. Lloyd, A. C. Turner, M. A. Webb, T. F.
Miller, and D. A. Stolper, âComparison of Experimental vs Theoretical Abun- dances of 13đ¶ đ»3đ· and 12đ¶ đ»2đ·2 for Isotopically Equilibrated Systems from 1 to 500 âŠCâ, ACS Earth and Space Chemistry 3, 2747â2764 (2019)10.1021/
acsearthspacechem.9b00244,
99A. C. Turner, R. Korol, D. L. Eldridge, M. Bill, M. E. Conrad, T. F. Miller, and D. A. Stolper, âExperimental and theoretical determinations of hydrogen isotopic equilibrium in the systemđ¶ đ»4âđ»2â đ»2đ from 3 to 200âŠCâ, Geochimica et Cosmochimica Acta314, 223â269 (2021)10.1016/J.GCA.2021.04.026,
100Q. Liu, X. Yin, Y. Zhang, M. Julien, N. Zhang, A. Gilbert, N. Yoshida, and Y.
Liu, âTheoretical calculation of position-specific carbon and hydrogen isotope equilibriums in butane isomersâ, Chemical Geology 561, 120031 (2021) 10 . 1016/J.CHEMGEO.2020.120031.
101T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg, âAttenuating the fermion sign problem in path integral Monte Carlo simulations using the Bo- goliubov inequality and thermodynamic integrationâ, The Journal of chemical physics153, 234104 (2020)10.1063/5.0030760.
102B. Cheng and M. Ceriotti, âDirect path integral estimators for isotope fractiona- tion ratiosâ, The Journal of Chemical Physics 141, 244112 (2014)10.1063/1.
4904293.
103M. Born and R. Oppenheimer, âZur Quantentheorie der Molekelnâ, Annalen der Physik389, 457â484 (1927)10.1002/andp.19273892002.
104N. C. Handy, Y. Yamaguchi, and H. F. Schaefer, âThe diagonal correction to the BornâOppenheimer approximation: Its effect on the singletâtriplet splitting of CH2 and other molecular effectsâ, The Journal of Chemical Physics 84, 4481â
4484 (1986)10.1063/1.450020.
105R. D. Bardo and M. Wolfsberg, âThe adiabatic correction for nonlinear triatomic molecules: Techniques and calculationsâ, The Journal of Chemical Physics 68, 2686â2695 (1978)10.1063/1.436104.
106S. Nasiri, S. Bubin, and L. Adamowicz, âTreating the motion of nuclei and electrons in atomic and molecular quantum mechanical calculations on an equal footing: Non-BornâOppenheimer quantum chemistryâ, Advances in Quantum Chemistry81, 143â166 (2020)10.1016/BS.AIQ.2020.05.004.
107M. J. Whiticar, E. Faber, and M. Schoell, âBiogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidenceâ, Geochimica et Cosmochimica Acta 50, 693â709 (1986)10.1016/
0016-7037(86)90346-7.
108M. J. Whiticar, âCarbon and hydrogen isotope systematics of bacterial formation and oxidation of methaneâ, Chemical Geology161, 291â314 (1999)10.1016/
S0009-2541(99)00092-3.
109B. B. Bernard, J. M. Brooks, and W. M. Sackett, âNatural gas seepage in the Gulf of Mexicoâ, Earth and Planetary Science Letters 31, 48â54 (1976) 10.1016/
0012-821X(76)90095-9.
110H. M. Chung, J. R. Gormly, and R. M. Squires, âOrigin of gaseous hydro- carbons in subsurface environments: Theoretical considerations of carbon iso- tope distributionâ, Chemical Geology 71, 97â104 (1988) 10 . 1016 / 0009 - 2541(88)90108-8.
111D. A. Stolper, A. L. Sessions, A. A. Ferreira, E. V. Santos Neto, A. Schimmel- mann, S. S. Shusta, D. L. Valentine, and J. M. Eiler, âCombined 13C-D and D-D clumping in methane: Methods and preliminary resultsâ, Geochimica et Cosmochimica Acta126, 169â191 (2014)10.1016/j.gca.2013.10.045.
112S. Ono, D. T. Wang, D. S. Gruen, B. Sherwood Lollar, M. S. Zahniser, B. J. Mc- Manus, and D. D. Nelson, âMeasurement of a Doubly Substituted Methane Iso- topologue, 13CH3D, by Tunable Infrared Laser Direct Absorption Spectroscopyâ, Analytical Chemistry86, 6487â6494 (2014)10.1021/ac5010579.
113E. D. Young, I. E. Kohl, B. S. Lollar, G. Etiope, D. Rumble, S. Li, M. A.
Haghnegahdar, E. A. Schauble, K. A. McCain, D. I. Foustoukos, C. Sutclife, O.
Warr, C. J. Ballentine, T. C. Onstott, H. Hosgormez, A. Neubeck, J. M. Marques, I. PĂ©rez-RodrĂguez, A. R. Rowe, D. E. LaRowe, C. Magnabosco, L. Y. Yeung, J. L. Ash, and L. T. Bryndzia, âThe relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gasesâ, Geochimica et Cosmochimica Acta203, 235â264 (2017) 10.1016/j.gca.2016.12.041.
114P. M. Douglas, D. A. Stolper, J. M. Eiler, A. L. Sessions, M. Lawson, Y. Shuai, A.
Bishop, O. G. Podlaha, A. A. Ferreira, E. V. Santos Neto, M. Niemann, A. S. Steen, L. Huang, L. Chimiak, D. L. Valentine, J. Fiebig, A. J. Luhmann, W. E. Seyfried, G. Etiope, M. Schoell, W. P. Inskeep, J. J. Moran, and N. Kitchen, âMethane clumped isotopes: Progress and potential for a new isotopic tracerâ, Organic Geochemistry113, 262â282 (2017)10.1016/j.orggeochem.2017.07.016.
115F. Inagaki, K. U. Hinrichs, Y. Kubo, M. W. Bowles, V. B. Heuer, W. L. Hong, T. Hoshino, A. Ijiri, H. Imachi, M. Ito, M. Kaneko, M. A. Lever, Y. S. Lin, B. A. Methé, S. Morita, Y. Morono, W. Tanikawa, M. Bihan, S. A. Bowden, M. Elvert, C. Glombitza, D. Gross, G. J. Harrington, T. Hori, K. Li, D. Limmer, C. H. Liu, M. Murayama, N. Ohkouchi, S. Ono, Y. S. Park, S. C. Phillips, X.
Prieto-Mollar, M. Purkey, N. Riedinger, Y. Sanada, J. Sauvage, G. Snyder, R.
Susilawati, Y. Takano, E. Tasumi, T. Terada, H. Tomaru, E. Trembath-Reichert, D. T. Wang, and Y. Yamada, âExploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean floorâ, Science349, 420â424 (2015) 10.1126/SCIENCE.AAA6882.
116T. Giunta, E. D. Young, O. Warr, I. Kohl, J. L. Ash, A. Martini, S. O. Mundle, D. Rumble, I. PĂ©rez-RodrĂguez, M. Wasley, D. E. LaRowe, A. Gilbert, and B.
Sherwood Lollar, âMethane sources and sinks in continental sedimentary sys- tems: New insights from paired clumped isotopologues 13CH3D and 12CH2D2â, Geochimica et Cosmochimica Acta 245, 327â351 (2019) 10 . 1016 / j . gca . 2018.10.030.
117J. Ash, M. Egger, T. Treude, I. Kohl, B. Cragg, R. Parkes, C. Slomp, B. Sher- wood Lollar, and E. Young, âExchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methaneâ, Geochemical Perspectives Let- ters, 26â30 (2019)10.7185/geochemlet.1910.
118D. T. Wang, E. P. Reeves, J. M. McDermott, J. S. Seewald, and S. Ono, âClumped isotopologue constraints on the origin of methane at seafloor hot springsâ, Geochimica et Cosmochimica Acta 223, 141â158 (2018) 10 . 1016 / j . gca . 2017.11.030.
119D. T. Wang, D. S. Gruen, B. Sherwood Lollar, K. U. Hinrichs, L. C. Stewart, J. F.
Holden, A. N. Hristov, J. W. Pohlman, P. L. Morrill, M. Könneke, K. B. Delwiche, E. P. Reeves, C. N. Sutcliffe, D. J. Ritter, J. S. Seewald, J. C. McIntosh, H. F.
Hemond, M. D. Kubo, D. Cardace, T. M. Hoehler, and S. Ono, âNonequilibrium clumped isotope signals in microbial methaneâ, Science 348, 428â431 (2015) 10.1126/science.aaa4326.
120D. A. Stolper, M. Lawson, C. L. Davis, A. A. Ferreira, E. V. Santos Neto, G. S.
Ellis, M. D. Lewan, A. M. Martini, Y. Tang, M. Schoell, A. L. Sessions, and J. M.
Eiler, âFormation temperatures of thermogenic and biogenic methaneâ, Science 344, 1500â1503 (2014)10.1126/science.1254509.
121D. A. Stolper, A. M. Martini, M. Clog, P. M. Douglas, S. S. Shusta, D. L.
Valentine, A. L. Sessions, and J. M. Eiler, âDistinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopo- loguesâ, Geochimica et Cosmochimica Acta 161, 219â247 (2015)10.1016/J.
GCA.2015.04.015.
122Y. Shuai, G. Etiope, S. Zhang, P. M. Douglas, L. Huang, and J. M. Eiler, âMethane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs.
biotic hydrocarbon formationâ, Earth and Planetary Science Letters 482, 213â
221 (2018)10.1016/J.EPSL.2017.10.057.
123P. M. Douglas, D. A. Stolper, D. A. Smith, K. M. Walter Anthony, C. K. Paull, S. Dallimore, M. Wik, P. M. Crill, M. Winterdahl, J. M. Eiler, and A. L. Sessions,
âDiverse origins of Arctic and Subarctic methane point source emissions iden- tified with multiply-substituted isotopologuesâ, Geochimica et Cosmochimica Acta188, 163â188 (2016)10.1016/J.GCA.2016.05.031.
124J. M. Eiler, M. Clog, P. Magyar, A. Piasecki, A. Sessions, D. Stolper, M. Deerberg, H. J. Schlueter, and J. Schwieters, âA high-resolution gas-source isotope ratio mass spectrometerâ, International Journal of Mass Spectrometry 335, 45â56 (2013)10.1016/j.ijms.2012.10.014.
125E. D. Young, D. Rumble, P. Freedman, and M. Mills, âA large-radius high-mass- resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gasesâ, International Journal of Mass Spectrometry401, 1â10 (2016)10.1016/j.ijms.2016.01.006.
126A. Wilhelms, S. R. Larter, I. Head, P. Farrimond, R. Di-Primio, and C. Zwach,
âBiodegradation of oil in uplifted basins prevented by deep-burial sterilizationâ, Nature 2001 411:6841411, 1034â1037 (2001)10.1038/35082535.
127D. L. Valentine, âEmerging Topics in Marine Methane Biogeochemistryâ, Annual Review of Marine Science 3, 147â171 (2010) 10 . 1146 / ANNUREV - MARINE - 120709-142734.
128J. M. Hunt,Petroleum geochemistry and geology(1996).
129D. T. Wang, A. Sattler, M. Paccagnini, and F. G. Chen, âMethod for calibrating methane clumped isotope measurements via catalytic equilibration of methane isotopologues onđŸ-aluminaâ, Rapid Communications in Mass Spectrometry34, e8555 (2020)10.1002/RCM.8555.
130Q. Liu and Y. Liu, âClumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2â, Geochimica et Cosmochimica Acta175, 252â270 (2016) 10.1016/j.gca.2015.11.040.
131Q. Ma, S. Wu, and Y. Tang, âFormation and abundance of doubly-substituted methane isotopologues (13CH3D) in natural gas systemsâ, Geochimica et Cos- mochimica Acta72, 5446â5456 (2008)10.1016/j.gca.2008.08.014.
132Q. Liu, J. A. Tossell, and Y. Liu, âOn the proper use of the Bigeleisen-Mayer equation and corrections to it in the calculation of isotopic fractionation equi- librium constantsâ, Geochimica et Cosmochimica Acta 74, 6965â6983 (2010) 10.1016/j.gca.2010.09.014.
133T. J. Lee, J. M. L. Martin, and P. R. Taylor, âAn accurate ab initio quartic force field and vibrational frequencies for CH4 and isotopomersâ, The Journal of Chemical Physics102, 254â261 (1995)10.1063/1.469398.
134M. Schoell, âThe hydrogen and carbon isotopic composition of methane from natural gases of various originsâ, Geochimica et Cosmochimica Acta 44, 649â
665 (1980)10.1016/0016-7037(80)90155-6.
135G. Etiope and B. Sherwood Lollar, âAbiotic methane on earthâ, Reviews of Geophysics51, 276â299 (2013)10.1002/rog.20011.