Fig. 7.3 shows the detailed information, measurements and analyses for all the III-N devices evaluated in this dissertation. The GaN MOSCAP is first analyzed in this work. The performance of different treatments and gate stacks was evaluated. For the treatments evaluated in this work, the combination of HCl:H2O and TMA 10s shows the best performance among all, but it still requires better interface in terms of Dit and hysteresis. As for the gate oxide layers, 8nm Al2O3 gives a better performance compared with the other gate stack. Therefore, the future GaN technology should consider using the Al2O3 as the gate oxide with a thickness close to 8 nm.
Fig. 7.3. Schematic of the III-N devices information and significant results evaluated in this dissertation. The different measurements and analyses for each wafer is presented in this figure.
116
The GaN-based devices on 200mm-Si for RF applications using the gate stack and treatment suggested from the previous GaN MOSCAP results. The DC characteristics and 1/f noise have been compared of three device types (MOSFET, MOSHEMT and HEMT) at room temperature.
Predominantly 1/f noise is observed; the results indicate the low-frequency noise in GaN RF devices is caused by the fluctuation of carrier numbers resulted from the charge exchange between channel and defects, at or near semiconductor/insulator interface instead of mobility fluctuation.
The noise power spectral density is the lowest for the MOSHEMT because the AlGaN barrier separates the GaN channel from the oxide, which increases the effective tunneling distance for charge carriers between channel and the oxide. MOSFET has the highest PSD, which is because the GaN channel forms a direct interface with the gate oxide. This increases the oxide-trapping component of 1/f noise. Besides, the DC characteristics and BTI results indicate that MOSHEMT is the most robust device structure.
In conclusion, III-V and III-N devices have a great potential in the future logic and RF applications. Some wafers already present a great DC, 1/f, and radiation performance, but further study is required to optimize the device structure and gate stack quality to enhance the performance, long-term reliability and radiation response.
117
REFERENCES
[1] S. Datta, “Recent advances in high performance CMOS transistors: From planar to non-planar,” Electrochem. Soc.
Interface, vol. 22, no. 1, pp. 41–46, Jan. 2013.
[2] J. A. Del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, no. 7373, pp.
317–323, Nov. 2011.
[3] J. A. Del Alamo et al., “InGaAs MOSFETs for CMOS: recent advances in process technology,” in Technical Digest - International Electron Devices Meeting, IEDM, 2013, pp. 2.1.1-2.1.4.
[4] K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,”
Nature, vol. 488, no. 7410, pp. 189–192, Aug. 2012.
[5] F. Schwierz, J. Pezoldt, and R. Granzner, “Two-dimensional materials and their prospects in transistor electronics,”
Nanoscale, vol. 7, no. 18, pp. 8261–8283, Mar. 2015.
[6] D. M. Fleetwood, “Evolution of total ionizing dose effects in MOS devices with moore’s law scaling,” IEEE Trans. Nucl.
Sci., vol. 65, no. 8, pp. 1465–1481, Aug. 2018.
[7] L. Witters et al., “Strained germanium quantum well p-FinFETs fabricated on 45nm Fin pitch using replacement channel, replacement metal gate and germanide-free local interconnect,” in Digest of Technical Papers - Symposium on VLSI Technology, 2015, pp. T56–T57.
[8] S. Takagi et al., “Carrier-transport-enhanced channel CMOS for improved power consumption and performance,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21–39, Jan. 2008.
[9] K. Ni et al., “Gate bias and geometry dependence of total-ionizing-dose effects in InGaAs quantum-well MOSFETs,”
IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 239–244, Jan. 2017.
[10] T. R. Weatherford and W. T. Anderson, “Historical perspective on radiation effects in III-V devices,” IEEE Trans. Nucl.
Sci., vol. 50 III, no. 3, pp. 704–710, Jun. 2003.
[11] M. Heyns and W. Tsai, “Ultimate scaling of CMOS logic devices with Ge and III-V materials,” MRS Bull., vol. 34, no. 7, pp. 485–488, Jul. 2009.
[12] K. Yuk, G. R. Branner, and C. Cui, “Future directions for GaN in 5G and satellite communications,” in IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2017, pp. 803–806.
[13] S. Onoe, “Evolution of 5G mobile technology toward 2020 and beyond,” in Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2016, vol. 59, pp. 23–28.
[14] U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287–305, Jan. 2008.
[15] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, “A review of GaN on SiC high electron- mobility power transistors and MMICs,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1764–1783, Feb. 2012.
[16] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs - an overview of device operation and applications,” Proc.
IEEE, vol. 90, no. 6, pp. 1022–1031, Jan. 2002.
[17] M. Golio, Rf and microwave semiconductor device handbook. FL: CRC, 2003.
[18] J. Piprek, Nitride semiconductor devices; principles and simulation. Portland: Wiley-VCH, 2007.
[19] M. S. Shur, R. Gaska, and A. Bykhovski, “GaN-based electronic devices,” Solid. State. Electron., vol. 43, no. 8, pp. 1451–
1458, 1999.
[20] R. S. Muller, T. I. Kamins, M. Chan, and P. K. Ko, Device electronics for integrated circuits, 2nd ed. New York: Wiley New York, 2003.
118
[21] J. Fan and P. K.-H. Chu, Silicon carbide nanostructures: fabrication, structure, and properties, 1st ed. Springer, 2014.
[22] J. A. Del Alamo and E. S. Lee, “Stability and reliability of lateral GaN power field-effect transistors,” IEEE Trans. Electron Devices, vol. 66, no. 11, pp. 4578–4590, Nov. 2019.
[23] G. Meneghesso et al., “Reliability of GaN high-electron-mobility transistors: state of the art and perspectives,” IEEE Trans.
Device Mater. Reliab., vol. 8, no. 2, pp. 332–343, Jun. 2008.
[24] M. Meneghini, A. Tajalli, P. Moens, A. Banerjee, E. Zanoni, and G. Meneghesso, “Trapping phenomena and degradation mechanisms in GaN-based power HEMTs,” Mater. Sci. Semicond. Process., vol. 78, pp. 118–126, Oct. 2018.
[25] C. Sanabria, A. Chakraborty, H. Xu, M. J. Rodwell, U. K. Mishra, and R. A. York, “The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 19–21, Jan. 2006.
[26] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1196–1198, Nov. 2008.
[27] U. Peralagu et al., “CMOS-compatible GaN-based devices on 200mm-Si for RF applications: integration and performance,” in Technical Digest - International Electron Devices Meeting, IEDM, 2019.
[28] V. Putcha et al., “Exploring the DC reliability metrics for scaled GaN-on-Si devices targeted for RF/5G applications,” in International Reliability Physics Symposium, 2020.
[29] B. Parvais et al., “Advanced transistors for high frequency applications,” ECS Trans., vol. 97, no. 5, pp. 27–38, May 2020.
[30] C. Mahata, Y. C. Byun, C. H. An, S. Choi, Y. An, and H. Kim, “HfO2/Al2O3 and nanolaminated (HfAlOx) dielectrics on In0.53Ga0.47As,” ACS Appl. Mater. Interfaces, vol. 5, no. 10, pp. 4195–4201, May 2013.
[31] C. Canali, F. Castaldo, F. Fantini, D. Ogliari, L. Umena, and E. Zanoni, “Gate metallization ‘sinking’ into the active channel in Ti/W/Au metallized power MESFET’s,” IEEE Electron Device Lett., vol. 7, no. 3, pp. 185–187, Mar. 1986.
[32] M. Meneghini et al., “Trapping in GaN-based metal-insulator-semiconductor transistors: role of high drain bias and hot electrons,” Appl. Phys. Lett., vol. 104, no. 14, p. 143505, Apr. 2014.
[33] T. P. Ma and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits. New York : Wiley, 1989.
[34] J. R. Schwank et al., “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1833–1853, Aug. 2008.
[35] T. R. Oldham and F. B. McLean, “Total ionizing dose effects in MOS oxides and devices,” vol. 50, no. 3, pp. 483–499, Jun. 2003.
[36] D. M. Fleetwood, “Total-ionizing-dose effects, border traps, and 1/f noise in emerging MOS technologies,” IEEE Trans.
Nucl. Sci., vol. 67, no. 7, pp. 1216–1240, Jul. 2020.
[37] D. M. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices,” IEEE Trans.
Nucl. Sci., vol. 60, no. 3, pp. 1706–1730, Aug. 2013.
[38] W. Liao et al., “Total-ionizing-dose effects on Al/SiO2 bimorph electrothermal microscanners,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2260–2267, Aug. 2018.
[39] R. Jiang et al., “Total-ionizing-dose response of Nb2O5-based MIM diodes for neuromorphic computing applications,”
IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 78–83, Jan. 2018.
[40] J. Bogaerts, B. Dierickx, G. Meynants, and D. Uwaerts, “Total dose and displacement damage effects in a radiation- hardened CMOS APS,” IEEE Trans. Electron Devices, vol. 50, no. 1, pp. 84–90, Jan. 2003.
[41] J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans.
Nucl. Sci., vol. 50, no. 3, pp. 653–670, Jun. 2003.
[42] G. P. Summers, E. A. Burke, and M. A. Xapsos, “Displacement damage analogs to ionizing radiation effects,” Radiat.
Meas., vol. 24, no. 1, pp. 1–8, 1995.
[43] G. C. Messenger, “A summary review of displacement damage from high energy radiation in silicon semiconductors and
119
semiconductor devices,” IEEE Trans. Nucl. Sci., vol. 39, no. 3, pp. 468–473, Jun. 1992.
[44] A. K. Geremew et al., “Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices,” Nanoscale, vol. 11, no. 17, pp. 8380–8386, Apr. 2019.
[45] C. Virmontois et al., “Radiation-induced dose and single event effects in digital CMOS image sensors,” IEEE Trans. Nucl.
Sci., vol. 61, no. 6, pp. 3331–3340, Dec. 2014.
[46] C. Dyer, A. Hands, K. Ryden, and F. Lei, “Extreme atmospheric radiation environments and single event effects,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 432–438, Jan. 2018.
[47] R. A. Reed et al., “Anthology of the development of radiation transport tools as applied to single event effects,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1876–1911, Jun. 2013.
[48] J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, “Radiation hardness assurance testing of microelectronic devices and integrated circuits: test guideline for proton and heavy ion single-event effects,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp.
2101–2118, Jun. 2013.
[49] R. D. Schrimpf and D. M. Fleetwood, Radiation effects and soft errors in integrated circuits and electronic devices.
Singapore: World Scientific Publishing Co. Pte. Ltd, 2004.
[50] R. C. Hughes, “Hole mobility and transport in thin SiO2 films,” Appl. Phys. Lett., vol. 26, no. 8, pp. 436–438, Apr. 1975.
[51] P. S. Winokur, H. E. Boesch, J. M. McGarrity, and F. B. McLean, “Two-stage process for buildup of radiation-induced interface states,” J. Appl. Phys., vol. 50, no. 5, pp. 3492–3494, May 1979.
[52] D. M. Fleetwood, “Border traps and bias-temperature instabilities in MOS devices,” Microelectron. Reliab., vol. 80, no.
11, pp. 266–277, Jan. 2018.
[53] D. M. Fleetwood et al., “Effects of oxide traps, interface traps, and ‘border traps’ on metal-oxide-semiconductor devices,”
J. Appl. Phys., vol. 73, no. 10, pp. 5058–5074, Jan. 1993.
[54] D. M. Fleetwood, “Border traps in MOS devices,” vol. 39, no. 2, pp. 269–271, Dec. 1992.
[55] D. M. Fleetwood, “Fast and slow border traps in MOS devices,” IEEE Trans. Nucl. Sci., vol. 43, no. 3, pp. 779–786, Jun.
1996.
[56] E. X. Zhang et al., “Total ionizing dose effects on strained Ge pMOS FinFETs on bulk Si,” IEEE Trans. Nucl. Sci., vol.
64, no. 1, pp. 226–232, Jan. 2017.
[57] S. E. Zhao et al., “Capacitance-frequency estimates of border-trap densities in multi-fin MOS capacitors,” IEEE Trans.
Nucl. Sci., vol. 65, no. 1, pp. 175–183, Jan. 2018.
[58] N. Waldron et al., “An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates,” in Digest of Technical Papers - Symposium on VLSI Technology, 2014.
[59] P. Magnone et al., “1/f Noise in drain and gate current of MOSFETs with high-k gate stacks,” IEEE Trans. Device Mater.
Reliab., vol. 9, no. 2, pp. 180–189, Jun. 2009.
[60] G. He, J. Gao, H. Chen, J. Cui, Z. Sun, and X. Chen, “Modulating the interface quality and electrical properties of HfTiO/InGaAs gate stack by atomic-layer-deposition-derived Al2O3 passivation layer,” ACS Appl. Mater. Interfaces, vol.
6, no. 24, pp. 22013–22025, Dec. 2014.
[61] E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, “Border traps in Al2O3 / In0.53Ga0.47As (100) gate stacks and their passivation by hydrogen anneals,” Appl. Phys. Lett., vol. 96, no. 1, p. 12906, Jan. 2010.
[62] J. R. Weber, A. Janotti, and C. G. Van De Walle, “Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide- semiconductor-based devices,” J. Appl. Phys., vol. 109, no. 3, p. 033715, Feb. 2011.
[63] A. Vais et al., “A new quality metric for III-V/high-k MOS gate stacks based on the frequency dispersion of accumulation capacitance and the CET,” IEEE Electron Device Lett., vol. 38, no. 3, pp. 318–321, Mar. 2017.
120
[64] X. Sun et al., “Total ionizing dose radiation effects in Al2O3-gated ultra-thin body In0.53Ga0.47As MOSFETs,” IEEE Trans.
Nucl. Sci., vol. 60, no. 1, pp. 402–407, Feb. 2013.
[65] S. Ren et al., “Total ionizing dose (TID) effects in extremely scaled ultra-thin channel nanowire (NW) gate-all-around (GAA) InGaAs MOSFETs,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2888–2893, Dec. 2015.
[66] D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci., vol. 62, no. 4, pp. 1462–1486, Aug. 2015.
[67] J. B. Johnson, “Thermal agitation of electricity in conductors,” Nature, vol. 119, no. 2984, pp. 50–51, Jan. 1927.
[68] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, no. 1, pp. 110–113, Jul. 1928.
[69] A. Van Der Ziel, “Flicker noise in electronic devices,” Adv. Electron. Electron Phys., vol. 49, pp. 225–297, 1979.
[70] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol.
44, no. 5, pp. 479–532, 1981.
[71] A. A. Balandin, Noise and fluctuations in electronic devices and circuits. CA, Los Angeles: Amer. Sci. Publishers, 2002.
[72] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys., vol. 53, no. 3, pp. 497–516, 1981.
[73] M. B. Weissman, “1/f noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys., vol. 60, no. 2, pp. 537–571, 1988.
[74] N. Giordano, “Defect motion and low-frequency noise in disordered metals,” Rev. Solid State Sci., vol. 3, no. 1, pp. 27–
69, 1989.
[75] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency 1/f noise,” Adv. Phys., vol. 38, no. 4, pp. 367–468, 1989.
[76] L. K. J. Vandamme, “Noise as a diagnostic tool for quality and reliability of electronic devices,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 2176–2187, Nov. 1994.
[77] D. M. Fleetwood, T. L. Meisenheimer, and J. H. Scofield, “1/f noise and radiation effects in MOS devices,” vol. 41, no.
11, pp. 1953–1964, Nov. 1994.
[78] E. Simoen and C. Claeys, “On the flicker noise in submicron silicon MOSFETs,” Solid. State. Electron., vol. 43, no. 5, pp.
865–882, 1999.
[79] G. Ghibaudo and T. Boutchacha, “Electrical noise and RTS fluctuations in advanced CMOS devices,” Microelectron.
Reliab., vol. 42, no. 4–5, pp. 573–582, 2002.
[80] D. M. Fleetwood et al., “Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices,”
IEEE Trans. Nucl. Sci., vol. 49 I, no. 6, pp. 2674–2683, Dec. 2002.
[81] A. L. McWhorter, 1/f noise and germanium surface properties in semiconductor surface physics. Philadelphia, PA, USA:
Univ. Pennsylvania Press, 1957.
[82] F. N. Hooge, “1/f noise is no surface effect,” Phys. Lett. A, vol. 29, no. 3, pp. 139–140, Apr. 1969.
[83] J. H. Scofield, N. Borland, and D. M. Fleetwood, “Reconciliation of different gate-voltage dependencies of 1/f noise in n- MOS and p-MOS transistors,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1946–1952, Nov. 1994.
[84] S. Bonaldo et al., “Total-ionizing-dose effects in InGaAs MOSFETs with high-k gate dielectrics and InP substrates,” IEEE Trans. Nucl. Sci., vol. 67, no. 7, pp. 1312–1319, Jul. 2020.
[85] F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, and S. Gerardin, “Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2933–2940, Dec. 2015.
[86] F. Faccio et al., “Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65-nm MOSFETs irradiated to ultrahigh doses,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 164–174, Jan. 2018.
121
[87] N. Waldron et al., “Replacement fin processing for III-V on Si: from FinFETs to nanowires,” Solid. State. Electron., vol.
115, pp. 81–91, Jan. 2016.
[88] D. H. Triyoso et al., “Evaluation of low temperature silicon nitride spacer for high-k metal gate integration,” ECS J. Solid State Sci. Technol., vol. 2, no. 11, pp. N222–N227, Sep. 2013.
[89] S. E. Zhao et al., “Gate bias and length dependences of total ionizing dose effects in InGaAs FinFETs on bulk Si,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1599–1605, Jul. 2019.
[90] H. D. Xiong, D. M. Fleetwood, B. K. Choi, and A. L. Sternberg, “Temperature dependence and irradiation response of 1/f noise in MOSFETs,” IEEE Trans. Nucl. Sci., vol. 49, no. 6, pp. 2718–2723, Dec. 2002.
[91] E. Simoen et al., “Border traps in Ge/III-V channel devices: analysis and reliability aspects,” IEEE Trans. Device Mater.
Reliab., vol. 13, no. 4, pp. 444–455, Dec. 2013.
[92] F. El Mamouni et al., “Fin-width dependence of ionizing radiation-induced subthreshold-swing degradation in 100-nm- gate-length FinFETs,” IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3250–3255, Dec. 2009.
[93] G. X. Duan et al., “Bias dependence of total ionizing dose effects in SiGe-SiO2/HfO2 pMOS FinFETs,” IEEE Trans. Nucl.
Sci., vol. 61, no. 6, pp. 2834–2838, Dec. 2014.
[94] X. J. Zhou, D. M. Fleetwood, J. A. Felix, E. P. Gusev, and C. D’Emic, “Bias-temperature instabilities and radiation effects in MOS devices,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2231–2238, Dec. 2005.
[95] J. L. Gavartin, D. M. Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, “Negative oxygen vacancies in HfO2 as charge traps in high-k stacks,” Appl. Phys. Lett., vol. 89, no. 8, Aug. 2006.
[96] R. C. Hughes, “The origin of interfacial charging in irradiated silicon nitride capacitors,” J. Appl. Phys., vol. 56, no. 4, pp.
1044–1050, Aug. 1984.
[97] J. R. Schwank, S. B. Roeske, D. E. Beutler, D. J. Moreno, and M. R. Shaneyfelt, “A dose rate independent pMOS dosimeter for space applications,” IEEE Trans. Nucl. Sci., vol. 43, no. 6, pp. 2671–2678, Dec. 1996.
[98] V. A. K. Raparla, S. C. Lee, R. D. Schrimpf, D. M. Fleetwood, and K. F. Galloway, “A model of radiation effects in nitride- oxide films for power MOSFET applications,” Solid. State. Electron., vol. 47, no. 5, pp. 775–783, 2003.
[99] C. D. Liang et al., “Defects and low-frequency noise in irradiated black phosphorus MOSFETs sith HfO2 gate dielectrics,”
IEEE Trans. Nucl. Sci., vol. 65, no. 6, pp. 1227–1238, Jun. 2018.
[100] M. Gorchichko et al., “Total-ionizing-dose effects and low-frequency noise in 30-nm gate-length bulk and SOI FinFETs with SiO2/HfO2 gate dielectrics,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 245–252, Jan. 2020.
[101] G. Ghibaudo, O. Roux, C. Nguyen‐Duc, F. Balestra, and J. Brini, “Improved analysis of low frequency noise in field‐
effect MOS transistors,” Phys. status solidi, vol. 124, no. 2, pp. 571–581, Apr. 1991.
[102] S. A. Francis, A. Dasgupta, and D. M. Fleetwood, “Effects of total dose irradiation on the gate-voltage dependence of the 1/f noise of nMOS and pMOS transistors,” vol. 57, no. 2, pp. 503–510, Feb. 2010.
[103] P. Wang et al., “1/f noise in as-processed and proton-irradiated AlGaN/GaN HEMTs due to carrier number fluctuations,”
IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 181–189, Jan. 2017.
[104] S. A. Francis et al., “Comparison of charge pumping and 1/f noise in irradiated Ge pMOSFETs,” IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 735–741, Aug. 2012.
[105] C. X. Zhang et al., “Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 117–119, Jan. 2013.
[106] C. X. Zhang et al., “Temperature dependence and postirradiation annealing response of the 1/f noise of 4H-SiC MOSFETs,”
IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2361–2367, Jul. 2013.
[107] J. Chen et al., “Proton-induced dehydrogenation of defects in AlGaN/GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 60, no.
122 6, pp. 4080–4086, Dec. 2013.
[108] Z. Celik and T. Y. Hsiang, “Study of 1/f noise in n-MOSFET’s: linear region,” IEEE Trans. Electron Devices, vol. 32, no.
12, pp. 2797–2802, Dec. 1985.
[109] P. S. Winokur and M. M. Sokoloski, “Comparison of interface-state buildup in MOS capacitors subjected to penetrating and nonpenetrating radiation,” Appl. Phys. Lett., vol. 28, no. 10, pp. 627–630, 1976.
[110] S. K. Lai, “Interface trap generation in silicon dioxide when electrons are captured by trapped holes,” J. Appl. Phys., vol.
54, no. 5, pp. 2540–2546, Jan. 1983.
[111] F. Balestra and G. Ghibaudo, “Physics and performance of nanoscale semiconductor devices at cryogenic temperatures,”
Semicond. Sci. Technol., vol. 32, no. 2, p. 23002, Jan. 2017.
[112] F. Faccio and C. Giovanni, “Radiation-induced edge effects in deep submicron CMOS transistors,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2413–2420, Dec. 2005.
[113] L. Gonella et al., “Total Ionizing Dose effects in 130-nm commercial CMOS technologies for HEP experiments,” Nucl.
Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 582, no. 3, pp. 750–754, Jul.
2007.
[114] D. M. Fleetwood, M. R. Shaneyfelt, W. L. Warren, J. R. Schwank, T. L. Meisenheimer, and P. S. Winokur, “Border traps:
issues for MOS radiation response and long-term reliability,” Microelectron. Reliab., vol. 35, no. 3, pp. 403–428, Mar.
1995.
[115] S. Bonaldo et al., “Total-ionizing-dose efects and low-frequency noise in 16-nm InGaAs FinFETs with HfO2/Al2O3
dielectrics,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 210–220, Jan. 2020.
[116] O. A. Dicks, J. Cottom, A. L. Shluger, and V. V. Afanas’Ev, “The origin of negative charging in amorphous Al2O3 films:
the role of native defects,” Nanotechnology, vol. 30, no. 20, pp. 205201–205201, Mar. 2019.
[117] C. G. Van De Walle, “Universal alignment of hydrogen levels in semiconductors and insulators,” Phys. B Condens. Matter, vol. 376–377, no. 1, pp. 1–6, Apr. 2006.
[118] M. Choi, A. Janotti, and C. G. Van De Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys., vol.
113, no. 4, p. 44501, Jan. 2013.
[119] M. L. Huang et al., “Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure,” Appl. Phys. Lett., vol. 89, no. 1, p. 12903, Jul. 2006.
[120] M. L. Huang, Y. C. Chang, Y. H. Chang, T. D. Lin, J. Kwo, and M. Hong, “Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1-xAs,” Appl. Phys. Lett., vol. 94, no. 5, p. 052106, Feb. 2009.
[121] Y. C. Chang et al., “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: passivation and energy-band parameters,” Appl. Phys.
Lett., vol. 92, no. 7, p. 72901, Feb. 2008.
[122] G. K. Dalapati, A. Sridhara, A. S. Wong, C. Chia, and D. Chi, “Plasma nitridation of HfO2 gate dielectric on p-GaAs substrates,” ECS Trans., vol. 16, no. 5, pp. 387–392, Dec. 2019.
[123] W. Wang, K. Xiong, R. M. Wallace, and K. Cho, “Impact of interfacial oxygen content on bonding, stability, band offsets, and interface states of GaAs:HfO2 interfaces,” J. Phys. Chem. C, vol. 114, no. 51, pp. 22610–22618, Oct. 2010.
[124] D. J. Arent, K. Deneffe, C. Van Hoof, J. De Boeck, and G. Borghs, “Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures,” J. Appl. Phys., vol. 66, no. 4, pp. 1739–1747, Aug. 1989.
[125] M. Oloumi and C. C. Matthai, “Electronic structure of InGaAs and band offsets in InGaAs/GaAs superlattices,” J. Phys.
Condens. Matter, vol. 3, no. 50, pp. 9981–9987, 1991.
[126] S. E. Zhao et al., “Total-ionizing-dose effects on InGaAs FinFETs with modified gate-stack,” IEEE Trans. Nucl. Sci., vol.
67, no. 1, pp. 253–259, Dec. 2019.