• Tidak ada hasil yang ditemukan

Summary

Dalam dokumen Handbook on the Physics and (Halaman 92-99)

X- RAY SCATTERING STUDIES OF LANTHANIDE MAGNETISM 81 lanthanide series seems well accounted for. The same arguments apply to the variation of

6. Summary

Starting with the first experiments performed by de Bergevin and Brunel on NiO in 1972, remarkable progress has been made in the study of magnetism using X-rays. Progress was at first steady, but has accelerated rapidly within the last decade as more and better sources of synchrotron radiation have come on line, and a greater understanding of how to exploit them has been won. X-ray studies of the lanthanides in particular have produced a great wealth of information. This includes, on the one hand, a deeper insight into the specific magnetic properties of these elements, while on the other, it has allowed general principles of the X-ray scattering cross-section to be both explored and developed. On the theoretical front the salient features of the non-resonant and the resonant cross-sections are now well understood. Probably the main challenge here is to establish a framework for the resonant cross-section that is capable of explaining the discrepancies from the one-electron view of the resonant process, such as the asymmetry in the branching ratios (L-edges) for the light and heavy lanthanides, and to push into the inelastic regime. Presently, the pace of innovation in experimental techniques shows no sign of slowing, with recent examples including the observation of surface magnetic scattering (Ferret et al. 1996, G.M. Watson et al. 1996), and the application of high-energy X-rays to the study of magnetic phase transitions in transition metal compounds (Brfickel et al. 1993). It is certain that more extensive use will be made of the polarization dependence of the X-ray cross-section, most immediately by exploiting ¼-wave plates on undulator sources (Sutter et al. 1997).

In this regard it is worth making the point that polarization analysis is in many ways easier to perform for X-rays than neutrons, and this gives even greater incentive to develop fully these techniques.

Acknowledgements

We would like to express our deep gratitude to all of our colleagues who have contributed to the work described in this review. In particular we would like to thank to John Hill for his careful reading of the manuscript. The work at Brookhaven is supported under a grant by the US DOE under contract No. DE-ACH02-276CH00016.

82 D.E McMORROW et al.

R e f e r e n c e s

Aharony, A., R.J. Birgeneau, J.D. Brock and J.D. Lister, 1986, Phys. Rev. Lett. 57, 1012.

Ali, N., and E Willis, 1990, Phys. Rev. B 42, 6820.

Bak, E, 1982, Rep. Prog. Phys. 45, 587.

Bak, E, and D. Mttkamel, 1976, Phys. Rev. B 13, 5086.

Bates, S., C. Patterson, G.J. MacIntyre, S.B. Palmer, A. Mayer, R.A. Cowley and R. Melville, 1988, J.

Phys. C 21, 4125.

Bjerram Moller, H., S.M. Shapiro and R.J. Birgenean, 1977, Phys. Rev. Lett. 39, 1921.

Blume, M., 1985, J. Appl. Phys. 57, 3615.

Blume, M., 1994, in: Resonant Anomalous X-ray Scattering - Theory and Practice, eds G. Materlik, C.J. Sparks and K. Fischer (Elsevier Science) p. 495.

Blume, M., and D. Gibbs, 1988, Phys. Rev. B 37, 1779.

Blume, M., A.J. Freeman and R.E. Watson, 1962, J. Chem. Phys. 37, 1245.

Bohr, J., D. Gibbs, D.E. Moncton and K.L. D'Amico, 1986, Physica 140A, 349.

Bohr, J., D. Gibbs, J.D. Axe, D.E. Moneton, K.L.

D'Amico, C.E Majkrzak, J. Kwo, M. Hong, C.L.

Chen and J. Jensen, 1989, Physica B 159, 93.

Bohr, J., D. Gibbs and Kegang Huang, 1990, Phys.

Rev. B 42, 4322.

Brock, J.D., A. Aharony, R.J. Birgenean, K.W. Evans- Lutterrodt, J.D. Listei, EM. Horn, G.B. Stephenson and A.R. Tajbakhsh, 1986, Phys. Rev. Lett. 57, 98.

Briickel, T., M. Lippert, R. Bouchard, T. Schmidt, J.R. Schneider and W Janch, 1993, Acta Crystallogr.

A 49, 679.

Bran, T.O., S.K. Sinha, N. Wakabayashi, G.H. Lander, L.R. Edwards and EH. Spedding, 1970, Phys. Rev.

B 1, 1251.

Brunel, M., and E de Bergevin, 1981, Acta Crystallogr.

A 37, 324.

Brunel, M., G. Patraff, E de Bergevin, E Rousseau and M. Lemonnier, 1983, Acta Crystallogr. A 39, 84.

Cable, J.W., E.O. Wollan, W.C. Koehler and M.K.

Wilkinson, 1965, Phys. Rev. 140, 1896.

Carra, E, M. Fabrizio, G. Santoro and B.T. Thole, 1996, Phys. Rev. B 53, R5994.

Chattopadhay, T., G. Griibel, J.D. Axe and D. Gibbs, 1992, J. Magn. Magn. Mater. 104-107, 1213.

Compton, A.H., 1936, Phys. Rev. 50, 878.

Costa, M.M.R., M.J.M. de Almeida, W.J. Nutall, W.G.

Stirling, C.C. Tang, J.B. Forsyth and M.J. Cooper, 1996, J. Phys. Condens. Matter 8, 2425.

Cowley, R.A., and S. Bates, 1988, J. Phys. C 21, 4113.

Cowley, R.A., and J. Jensen, 1992, J. Phys. Condens.

Matter 4, 9673.

Cowley, R.A., D.A. Jehan, D.E McMorrow and G.J.

McIntyre, 1991, Phys. Rev. Lett. 66, 1521.

Cowley, R.A., D.E MeMorrow, RE Swaddling, R.C.C.

Ward and M.R. Wells, t995, Ind. J. Pure Appl. Phys.

33, 509.

Darnell, EJ., 1963, Phys. Rev. 130, 1825.

de Bergevin, E, and M. Brunel, 1972, Phys. Lett. A 39, 141.

de B ergevin, E, and M. Bnmel, 1981, Acta Crystallogr.

A 37, 314.

Detlefs, C., A.I. Goldman, C. Stassis, RC. Canfield, B.K. Cho, J.E Hill and D. Gibbs, 1996, Phys. Rev.

B 53, 6355.

Detlefs, C., A.H.M.Z. Islam, A.I. Goldman, C. Stassis, EC. Canfield, J.R Hill and D. Gibbs, 1997, Phys.

Rev. B 55, R680.

Eccleston, R.S., and S.B. Pahner, 1992, J. Phys.

Condens. Matter 4, 10037.

Eekert, J., and G. Shirane, 1976, Solid State Commun.

19, 911.

Elliott, R.J., 1972, Magnetic Properties of Rare Earth Metals (Plenum Press, London).

Everitt, B.A., M.B. Salamon, B.J. Park, C.E Flyrm, T Thnrston and D. Gibbs, 1995, Phys. Rev. Lett.

75, 3182.

Felcher, G.R, G.H. Lander, T. Arai, S.K. Sinha and EH. Spedding, 1976, Phys. Rev, B 13, 3034.

Ferret, S., P. Fajardo, E de Bergevin, J. Alvarez, X.

Torrelles, H.A. van der Vegt and VH. Etgens, 1996, Phys. Rev. Lett. 77, 747.

Forgan, E.M., E.E Gibbons, K.A. McEwen and D. Fort, 1989, Phys. Rev. Lett. 62, 470.

Forgan, E.M., S.L. Lee, WG. Marshall and D. Fort, 1992, J. Magn. Magn. Mater. 104-107, 913.

Gehring, RM., L. Rebelsky, D. Gibbs and G. Shirane, 1992, Phys. Rev. B 45, 243.

Gehring, P.M., A. Vigilante, D.E McMorrow, D.

Gibbs, C.E Majkrzak, G. Helgesen, R.A. Cowley, R.C.C. Ward and M.R. Wells, 1996, Physica B 221, 398.

Gell-Mann, M., and M.J. Goldberger, 1954, Phys. Rev.

96, 1433.

Gibbs, D., 1989, J. Less-Common Met. 148, 109.

Gibbs, D., D.E. Moncton, K.L. D'Amico, J. Bohr and B.H. Grier, 1985, Phys. Rev. Lett. 55, 234.

Gibbs, D., J. Bohr, J.D. Axe, D.E. Moncton and K.L.

D'Amico, 1986, Phys. Rev. B 34, 8182.

Gibbs, D., D.R. Harshman, E.D. Isaacs, D.B. McWhan, D. Mills and C. VeRier, 1988, Phys. Rev. Lett. 61, 1241.

Gibbs, D., G. Grfibel, D.R. Harshman, E.D. Isaacs, D.B. McWhan, D. Mills and C. Vettier, 1991, Phys.

Rev. B 43, 5663.

Giles, C., C. Malgrange, J. Gonlon, E de Bergevin, C. Vettier, A. Fontaine, E. Dartyge, S. Pizzini, E Baudelet and A. Freund, 1995, Rev. Sci. Inst. 66, 1549.

Goff, J.R, C. Bryn-Jacobsen, D.F. McMorrow, G.J.

McIntyre, J.A. Simpson, R.C.C. Ward and M.R.

Wells, 1998, Phys. Rev. B 57, 5933.

Greenough, R.D., 1979, J. Phys. C 12, 1113.

Greenough, R.D., and G.N. Blackie, 1981, J. Phys.

Chem. Solids 42, 533.

Habenschuss, M., C. Stassis, S.K. Sinha, H.W. Deck- man and EH. Spedding, 1974, Phys. Rev. B 10,

1020.

Hamrick, M., 1994, Ph.D. Thesis (Rice University, USA).

Harmon, J.E, G.T. Tramell, M. Blttme and D. Gibbs, 1988, Phys. Rev. Lett. 61, 1245.

Helgesen, G., J.P. Hill, T.R. Thurston, D. Gibbs, J. Kwo and M. Hong, 1994, Phys. Rev. B 50, 2990.

Helgesen, G., J.R Hill, T.R. Thurston and D. Gibbs, 1995, Phys. Rev. B 52, 9446.

Helgesen, G., Y. Tanaka, J.E Hill, R Wochner, D.

Gibbs, C.R Flyrm and M.B. Salamon, 1997, Phys.

Rev. B 56, 2635.

Hettiarachchi, N.E, and R.D. Greenough, 1982, J. Phys. C 15, 4573.

Hill, J.R, and D.E McMorrow, 1996, Acta Crystallogr.

A 52, 236.

Hill, J.R, A. Vigliante, D. Gibbs, J.L. Peng and R.L.

Greene, 1995a, Phys. Rev. B 52, 6575.

Hill, J.P., G. Helgesen and D. Gibbs, 1995b, Phys. Rev.

B 51, 10336.

Hill, J.R, B.J. Sternlieb, D. Gibbs, C. Detlefs, A.I.

Goldman, C. Stassis, EC. Canfield and B.K. Cho, 1996, Phys. Rev. B 53, 3487.

Hill, J.E, C.-C. Kao and D.R McMorrow, 1997, Phys.

Rev. B 55, R8662.

Howard, B.K., and J. Bohr, 1991, Phys. Scripta T 39, 96.

Isaacs, E.D., D.B. McWhan, D.R Siddons, J.B. Hast- ings and D. Gibbs, 1989, Plays. Rev. B 40, 9336.

Jehan, D.A., D.E McMorrow, R.A. Cowley and G.J.

McIntyre, 1992, Europhys. Lett. 17, 553.

Jehan, D.A., D.E McMorrow, J.A. Simpson, R.A. Cow- ley, P.R Swaddling and K.N. Clausen, 1994, Phys.

Rev. B 50, 3085.

Jensen, J., 1976, J. Phys. F 6, 1145.

Jensen, J., 1996, Phys. Rev. B 54, 4021.

Jensen, J., and A.R. Mackintosh, 1991, Rare Earth Magnetism: Structure and Excitations (Oxford University Press, Oxford).

Kawamura, H., 1988, J. Appl. Phys. 63, 3086.

Keating, D.T., 1969, Phys. Rev. 178, 732.

Koehler, W., J.W. Cable, M.K. Wilkinson and E.O.

Wollan, 1966, Phys. Rev. 151, 414.

Koehler, W., J.W. Cable, H.R. Child, M.K. Wilkinson and E.O. Wollan, 1967, Phys. Rev. 158, 450.

Koehler, W.C., 1965, J. Appl. Phys. 36, 1078.

Koehler, W.C., and R.M. Moon, 1972, Phys. Rev. Lett.

29, 1468.

Koehler, W.C., J.W. Cable, E.O. Wollan and M.K.

Wilkinson, 1962, Phys. Rev. 126, 1672.

Lang, J.C., and G. Srajer, 1995, Rev. Sci. Instrum. 66, 1540.

Larsen, C.C., J. Jensen and A.R. Mackintosh, 1987, Phys. Rev. Lett. 59, 712.

Lee, S.L., E.M. Forgan, S.J. Shaikh, C.C. Tang, W.G.

Stirling, S. Langridge, A.J. Rollason, M.M.R. Costa, M.J. Cooper, E. Zukowski, J.B. Forsyth and D. Fort, 1993, J. Magn. Magn. Mater. 127, 145.

Lin, H., M.E Collins, T.M. Holden and W. Wei, 1992, Phys. Rev. B 45, 12873.

Lovesey, S.W., and S.R Collins, 1996, X-ray Scattering and Absorption by Magnetic Materials (Oxford University Press, Oxford).

Low, EE., 1954, Phys. Rev. 96, 1428.

Luo, J., G.T. Trammell and J.E Harmon, 1993, Phys.

Rev. Lett. 71, 287.

Majkrzak, C.E, J. Kwo, M. Hong, Y. Yafet, D. Gibbs, C.L. Chen and J. Bohr, 1991, Adv. Phys. 40, 99.

McEwen, K.A., E.M. Forgan, H.B. Stanely, J. Bonillot and D. Fort, 1985, Physica B 130, 360.

MeMillan, W.L., 1976, Phys. Rev. B 14, 1496.

MeMorrow, D.F., Y. Fujii, N. Hamaya, S. Shimomura, S. Kishimoto and H. Iwasaki, 1990, Solid State Commun. 76, 443.

McMorrow, D.E, C. Patterson, H. Godfrin and D.A.

Jehan, 1991, Europhys. Lett. 15, 541.

84 D.E McMORROW et al.

McMorrow, D.E, D.A. Jehan, R.A. Cowley, R. Ec- cleston and G.J. McIntyre, 1992, J. Phys. Condens.

Matter 4, 8599.

McMorrow, D.E, J.A. Simpson, R.A. Colwey, D.A.

Jehan, R.C.C. Ward, M.R. Wells, T.R. Thurston and D. Gibbs, 1995, J. Magn. Magn. Mater. 140-144, 779.

McMorrow, D.E, J.-G. Lussier, B. Lebech, S.Aa.

Sorensen and M.J. Christensen, 1997, J. Phys.

Condens. Matter 9, 1133.

McWhan, D.B., C. Vettier, E.D. Isaacs, G.E. Ice, D.R Siddons, J.B. Hastings, C. Peters and O. Vogt, 1990, Phys. Rev. B 42, 6007.

McWhan, D.B., E.D. Isaacs, R Carra, S.M. Shapiro, B.T. Thole and S. Hoshino, 1993, Phys. Rev. B 47, 8630.

Moon, R.M., J.W. Cable and W.C. Koehler, 1964, J.

Appl. Phys. 35, 1041.

Namikawa, K., 1992, KEK Monthly Report, National Laboratory for High-Energy Physics 21 No. 5, p.

6.

Namikawa, K., M. Ando, T. Nakajima and H. Kawata, 1985, J. Phys. Soc. Jpn. 54, 4099.

Peehan, M.J., and C. Stassis, 1984, J. Appl. Phys. 55, 1900.

Pengra, D.B., N.B. Thoft, M. Wulff, R. Feidenhans'l and J. Bohr, 1994, J. Phys. Condens. Matter 6, 2409.

Perry, S.C., M.M.R. Costa, W.G. Stifling, M.J. Long- ford, D. Mannix and I". Brfiekel, 1998, J. Phys.:

Condens. Matter 10, 1451.

Platzman, RM., and N. Tzoar, 1970, Phys. Rev. 2, 3556.

Rhyne, J.J., M.B. Salamon, C.P. Flynn, R.W. Erwin and J.A. Borchers, 1994, J. Magn. Magn. Mater.

129, 39.

Sanyal, M.K., D. Gibbs, J. Bohr and M. Wulff, 1994, Phys. Rev. B 49, 1079.

Simpson, J.A., D.E McMorrow, D.A. Jehan, R.A. Cow- ley, M.R. Wells, R.C.C. Ward and K.N. Clausen, 1994, Phys. Rev. Lett. 73, 1162.

Simpson, J.A., D.E McMorrow, D.A. Jehan and R.A.

Cowley, 1995, Phys. Rev. B 51, 16073.

Simpson, J.A., R.A. Cowley, D.A. Jehan, R.C.C. Ward, M.R. Wells, D.E McMorrow, K.N. Clansen, T.R.

Thurston and D. Gibbs, 1996, Z. Phys. B 101, 35.

Steinitz, M.O., M. Kahrizi, D.A. Tindall and N. Ali, 1989, Phys. Rev. B 40, 763.

Stunault, A., C. Vettier, F. de Bergevin, E Maier, G. Griibel, R.M. Gelera and S.B. Palmer, 1995, J. Magn. Magn. Mater. 140-144, 753.

Sutter, C., G. Gflibel, C. Vettier, E de Bergevin, A.

Stunault, D. Gibbs and D. Giles, 1997, Phys. Rev.

B 55 954.

Sutter, C., G. Grfibel, D. Gibbs, C. Vettier, E de Bergevin and A. Stunault, 1999, to be published.

Tang, C.C., W.G. Stifling, G.H. Lander, D. Gibbs, W. Herzog, E Carra, B.T. Thole, K. Mattenberger and O. Vogt, 1992a, Phys. Rev. B 46, 5287.

Tang, C.C., W.G. Stifling, D.L. Jones, P.W. Haycock, A.J. Rollason, A.H. Thomas and D. Fort, 1992b, J. Magn. Magn. Mater. 103, 86.

Thurston, T.R., G. Helgesen, D. Gibbs, J.P. Hill, B.D.

Gaulin and G. Shirane, 1993, Phys. Rev. B 70, 3151.

Tindall, D.A., M.O. Steinitz and M.T. Holden, 1993, J. Appl. Phys. 73, 6543.

van Veenendaal, M., J.B. Goedkoop and B.T. Thole, 1997, Phys. Rev. Lett. 78, 1162.

Venter, A.M., P de V dn Plessis and E. Fawcett, 1992, Physica B 180-181, 290.

Vettier, C., D.B. McWhan, E.M. Gyorgy, J. Kwo, B.M.

Btmtschuh and B.W. Batterman, 1986, Phys. Rev.

Lett. 56, 757.

Vigliante, A., M.J. Christensen, J.R Hill, G. Helgesen, S.A. Sorensen, D.E McMorrow, D. Gibbs, R.C.C.

Ward and M.R. Wells, 1998, Phys. Rev. B 57, 5941.

Vigren, D.T., 1976, Solid State Commun. 18, 1599.

Vogt, O., and K. Mattenberger, 1993, in: Handbook on the Physics and Chemistry of the Rare Earths, Vol. 17, eds K.A. Gsclmeidner Jr. and L. Eyring (North-Holland, Amsterdam) ch. 114.

Watson, B., and N. Ali, 1995, J. Phys. Condens. Matter 7, 4713.

Watson, B., and N. Ali, 1996a, J. Phys. Condens.

Matter 8, 361.

Watson, B., and N. Ali, 1996b, J. Phys. Condens.

Matter 8, 1797.

Watson, D., E.M. Forgan, WG. Stifling, W.J. Nutall, S.C. Perry, M.M.R. Costa and D. Fort, 1995, J.

Magn. Magn. Mater. 140-144, 743.

Watson, D., E.M. Forgan, W.J. Nutall, W.G. Stifling and D. Fort, 1996, Phys. Rev. B 53, 726.

Watson, G.M., D. Gibbs, G.H. Lander, B.D. GaMin, L.E. Berman, H. Matzke and W. Ellis, 1996, Phys.

Rev. Lett. 77, 751.

Willis, E, and N. Ali, 1992, J. Alloys and Compounds 181, 287.

Yahnke, C.J., G. Srajer, D.R. Haeffner and L. Mills, 1994, Nuc. Inst. Meth. A 347, 128.

Zheludev, A., J.P. Hill and D.J. Buttrey, 1996, Phys.

Rev. B 54 7216.

Zinkin, M.R, D.E McMorrow, J.E Hill, R.A. Cowley, J.-G. Lussier, A. Gibaud, G. Grfibel and C. Sutter, 1996, Phys. Rev. B 54, 3115.

Zoehowski, S.W., K.A. McEwen and E. Fawcett, 1991, J. Phys. Condens. Matter 3, 8079.

Handbook on the Physics and Chemistry of Rare Earths VoL 26

edited by K.A. Gschneidner, Jr and L. Eyring

© 1999 Elsevier Science B. V All rights reser•ed

Chapter 170

S T A T I C A N D D Y N A M I C S T R E S S E S A.M. TISHIN and Yu.I. SPICHKIN

Faculty o f Physics, M. E Lomonosov Moscow Stare University, Moscow, 119899, Russia

J. B O H R

Department o f Physics, Technical University o f Denmark, Building 307, DK-280Õ Lyngby, Denmark

C o ~ e ~ s

List of symbols Abbreviations 1. Introduction

2. Effect of static pressure on the phase transition to a magnetically ordered state 2.1. Systems with localized magnetic

moments

2.1.1. General considerations

2.1.2. Lanthanide metals and their alloys 2.1.3. Lanthanide nonmagnetic element

compounds

2.2. Lanthanide 3d laansition metal systems 2.2.1. General considerations for the R -

Fe, R - C o and R - N i compounds 2.2.2. First-order transitions in RCo 2 2.2.3. R2Fel7 compounds

3. Influence o f static pressure on the magnetic phase diagrams and magnetic orde~order phase transitions

4. The effect of static pressure on the spin structures o f the lanthanide metals 5. Influence o f static pressure on the

magnetization

6. Sound attenuation and internal friction 6.1. Introduction

6.2. Paramagnetic phase

88 6.2.1. Ultrasound attenuation 122

89 6.2.2. Internal friction 129

89 6.3. Magnetically ordered state 132 6.3.1. Ultrasound attenuation 132

90 6.3.2. Internal friction 138

7. Elastic properties 140

90 7.1. Introduction 140

90 7.2. Anomalies near magnetic transitions 140 94 7.2.1. Thermodynamic consideration 140 7.2.2. Microscopic models 145 101 7.3. Magnetically ordered stare of the heavy 103 lanthanide metals and their alloys 146

7.3.1. Helical phase 146

103 7.3.2. Ferromagnetie phase 152

110 7.4. Gadolinium 156

112 7.5. The effect of commensurate magnetic structures on the elastic properties 158 7.6. Young's moduli of the metals and their

113 alloys 162

7.7. Elastic properties of R-Fe and R - C o

115 intermetallic compounds 163

7.8. Higher-order elastic constants of the

119 metals 167

122 8. Conclusion 170

122 Acknowledgments 170

122 References 170

87

List o f

C/

ai A b

a c~

B12, B22, B r, B ~ C

cd

¢ij A c o e

««

E A E

EF Eù,o E=

F

G

gJ H 7-[

Her Hma~

h

I0, I, Ioù.

I(0)

I(Q) J K

K,,r~S kB

k~

N *

symbols

a-axis lattice constant lattice constaut amplitude of sormd wave b-axis lattice constant

armihilation and creation phonon operators single-ion magnetoelastic coupling constants

c-axis lattice constant

c-axis basis vector of reciprocal unit cell Curie constant of the lanthanide ions d-electron Curie constant

elastic constants change in elastic constant electronic charge

polarization vector o f a sound wave Young's modulus

change in Young's modulus Fermi energy

magnetoelastic energy anisotropic energy free energy

de Germes factor = (~j 1)2j(j + 1) Landé factor

magnetic field Hamiltonian critical magnetic field

maximum value of critical magnetic field Planck's constant divided by 2g exchange interaction integrals effective exchange interaction integral between itinerant electrons

paramagnetic indirect exchange integral Fourier transformation of exchange integral

total angular magnetic moment quantum number

kinetic coefficient

magnetocrystalline anisotropy constants Boltzmann's constant

wave vector

conduction electron wave vector at the Fermi smface

effective mass of the conduction electron

M~j,z« first-order magnetoelastic interaction t e n s o r

nRR, nRM molecular field constants

N number of lanthanide ions per unit volume N ( £ ) density of states per unit volume P, Pi tmiaxial mechanical stress

P pressure

magnetic spin smacture wave vector Q< internal friction

Qs spin-slip magnetic structure ware vector reciprocal space vector

R distance between ions /~~ atom position vector

interatomic distance vector F conduction electron position vector Ro,kloo second-order magnetoelastic interaction

tensor

s 0 elastic compliance constants S spin momentum quantum number

spin angular moment T absolute temperature T c Curie temperature T N Néel temperamre

Tp paramagnetic Curie tempera~lre ATNc interval where helical strucmre exists T~~ spin-reorientation transition temperamre T d Curie temperature of the d-electron system Tcy transition temperature to cycloidal

structure

T D Debye's temperature

Bj components of the mechanical stress tensor

ü lattice displacement vector

V volume

Va atomic volume

U D U t longitudinal and shear sound velocities x concentration

W bandwidth

z coordination number Z ionic charge

a,/3, y, e thermodynamic coefficients in free energy expansion

a T linear coefficient of thermal expansion

STATIC AND DYNAMIC STRESSES 89 a M molecular field constant for collective a 0

d-electrons a~

al, at, ŒÜ sound attenuation coefficients as F(~]), F 0 s-f exchange interaction integrals r A~i degree of relaxation of Young's modulus ¢ 6(r) Dirac's function

e~ mechanical strain tensor components cp

volume compressibility Xd

A linear magnetostriction

#B Bohr magneton Zs

#s saturation magnetic moment

#«f effective magnetic moment Zd0

v critical exponent of the attenuation

coefficient Xhf

p density X(q)

Pm magnetic contribution to resistivity

a magnetization m

saturation magnetization at T = 0 K component of magnetization vector saturation magnetization

relaxation time

angle between the magnetic moment and c-axis

helical turn angle

magnetic snsceptibility of collective d-electrons

magnetic susceptibility of lanthanide spin system

magnetic susceptibility of noninteracfing eollective d-electrons

high field magnetic susceptibility generalized conduction eleetron magnetic susceptibility

frequency

Abbreviations

FM ferromagnetic phase R

HAFM helicoidal antiferromagnetic structure TM

LSW longitudinal spin wave RKKY

lanthanide (rare earth) metals transition metal

Ruderman-Kittel-Kasuya-Yosida

Dalam dokumen Handbook on the Physics and (Halaman 92-99)