While several decades of research have been devoted to understanding thermal transport across composite interfaces, relatively few studies have probed the thermal boundary resistance at the individual contact level due to the tremendous challenges presented by nanoscale experimentation. Here, however, through the application of the suspended, micro-fabricated thermal bridge measurement approach, the effects of single composite interfaces on the thermal transport through composite materials is probed directly. These findings are then used to guide the fabrication of high-performance polymer composites utilizing a novel fabrication and assembly techniques. The key findings from this dissertation are summarized in this chapter.
To explore the effects of thermal boundary resistance at the single interface level, measurements were performed to characterize thermal transport through continuous, PVP-coated AgNWs and contacting AgNWs where a PVP interlayer was present. By comparing the continuous and contact nanowire morphologies, the impact of an individual polymer interface on heat transfer through composite structures was able to be deduced. The results indicate that, while there is a significant reduction in the thermal conductance for composite nanowires containing PVP interlayers, the area normalized thermal boundary resistance is up to an order of magnitude lower than that which has been demonstrated for other, phonon dominant filler materials. EMA modelling would suggest that in polymer composites containing a low volume fraction of filler materials (< 5%) this low thermal boundary resistance of AgNWs could lead to a thermal conductivity enhancement as much as 26 times that of the base polymer. This compares to just 3 times for comparable polymer-CNT systems.
108
In order to measure thermal transport in bulk composite systems, the steady-state DC thermal bridge measurement scheme was developed and validated. This allowed for the accurate thermal characterization of PVP-AgNW thin films with varying volume fractions of embedded AgNWs.
Thin films were fabricated through a layering approach where individual film layers were cast from a dilute suspension of AgNWs and PVP in ethanol. Doing so not only helped ensure a homogenous dispersion of fillers within each layer but also allowed the AgNWs to naturally align themselves to the in-plane direction as the length of the AgNWs was greater than the film layer thickness. The resulting composite thin films were highly anisotropic and demonstrated an in- plane thermal conductivity as high as 27 W m-1 K-1 at AgNW volume fractions of 20%.
Interestingly, however, despite the high intrinsic thermal conductivity of CNTs, it was found that introducing an equal volume of AgNWs and FWCNTs into a PVP matrix actually decreased the measured thermal conductivity of the composite when compared to the PVP-AgNW composites at the same AgNW volume fraction.
While RIE has been widely applied to the fabrication of complex polymeric structures, observed etching rates for PDMS can vary significantly when the preparation of PDMS is not tightly controlled. By carefully characterizing the dry etching rates for PDMS films fabricated with varying mixing ratios and curing times, it was shown that the etching rate is inversely correlated with the mechanical properties of the PDMS. Recognizing that etching is essentially a bond breaking process, it follows that PDMS structures with the lowest Young’s modulus, and by extension the fewest number of cross-links, would exhibit the highest etching rates. This understanding of the relationship between material preparation and the etching rate will help the RIE process to be better applied to the fabrication of novel, high-performance polymer composite materials.
109
References
Agari, Y., Tanaka, M., Nagai, S. and Uno, T., 1987. Thermal conductivity of a polymer composite filled with mixtures of particles. Journal of Applied Polymer Science, 34(4), pp.1429-1437.
Agari, Y. and Uno, T., 1985. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. Journal of Applied Polymer Science, 30(5), pp.2225-2235.
Agari, Y. and Uno, T., 1986. Estimation on thermal conductivities of filled polymers. Journal of Applied Polymer Science, 32(7), pp.5705-5712.
Armani, D., Liu, C. and Aluru, N., 1999, January. Re-configurable fluid circuits by PDMS elastomer micromachining. Technical Digest. IEEE International MEMS 99 Conference.
Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.
99CH36291) (pp. 222-227). IEEE.
Achhammer, B.G., Reiney, M.J., and Reinhart, F.W.. 1951 "Study of degradation of polystyrene using infrared spectrophotometry." J. Res. Nat. Bur. Stand., 47, 116.
Augustine, B., Remes, K., Lorite, G.S., Varghese, J. and Fabritius, T., 2019. Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment. Solar Energy Materials and Solar Cells, 194, pp.74-82.
Al-Saidi, W.A., Feng, H. and Fichthorn, K.A., 2012. Adsorption of polyvinylpyrrolidone on Ag surfaces: insight into a structure-directing agent. Nano letters, 12(2), pp.997-1001.
Balachander, N., Seshadri, I., Mehta, R.J., Schadler, L.S., Borca-Tasciuc, T., Keblinski, P. and Ramanath, G., 2013. Nanowire-filled polymer composites with ultrahigh thermal conductivity.
Applied Physics Letters, 102(9), p.093117.
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N., 2008.
Superior thermal conductivity of single-layer graphene. Nano letters, 8(3), pp.902-907.
Barrat, J.L. and Chiaruttini, F., 2003. Kapitza resistance at the liquid—solid interface. Molecular Physics, 101(11), pp.1605-1610.
Benveniste, Y., 1987. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. Journal of applied physics, 61(8), pp.2840-2843.
Berber, S., Kwon, Y.K. and Tománek, D., 2000. Unusually high thermal conductivity of carbon nanotubes. Physical review letters, 84(20), p.4613.
Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T. and Fischer, J.E., 2002. Carbon nanotube composites for thermal management. Applied physics letters, 80(15), pp.2767-2769.
Bifano, M.F., Park, J., Kaul, P.B., Roy, A.K. and Prakash, V., 2012. Effects of heat treatment and contact resistance on the thermal conductivity of individual multiwalled carbon nanotubes using a Wollaston wire thermal probe. Journal of Applied Physics, 111(5), p.054321.
Bigg, D.M., 1986. Thermally conductive polymer compositions. Polymer composites, 7(3), pp.125-140.
Bruggeman, V.D., 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physik, 416(7), pp.636-664.
110
Bryning, M.B., Milkie, D.E., Islam, M.F., Kikkawa, J.M. and Yodh, A.G., 2005. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites.
Applied Physics Letters, 87(16), p.161909.
Cahill, D.G., 1990. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Review of scientific instruments, 61(2), pp.802-808.
Cahill, D.G., Watson, S.K. and Pohl, R.O., 1992. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), p.6131.
Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L. and Chen, B., 2016.
Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, pp.41-85.
Chen, W., Lam, R.H. and Fu, J., 2012. Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab on a Chip, 12(2), pp.391-395.
Chen, Yu-Mao, and Jyh-Ming Ting. "Ultra high thermal conductivity polymer composites."
Carbon 40.3 (2002): 359-362.
Choi, E.S., Brooks, J.S., Eaton, D.L., Al-Haik, M.S., Hussaini, M.Y., Garmestani, H., Li, D. and Dahmen, K., 2003. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied physics, 94(9), pp.6034- 6039.
Chou, N., Kim, Y. and Kim, S., 2016. A method to pattern silver nanowires directly on wafer- scale PDMS substrate and its applications. ACS Applied Materials & Interfaces, 8(9), pp.6269- 6276.
Desai, S.P., Freeman, D.M. and Voldman, J., 2009. Plastic masters—rigid templates for soft lithography. Lab on a Chip, 9(11), pp.1631-1637.
Dodson, K.H., Echevarria, F.D., Li, D., Sappington, R.M. and Edd, J.F., 2015. Retina-on-a-chip:
a microfluidic platform for point access signaling studies. Biomedical Microdevices, 17(6), pp.1-10.
Eda, G. and Chhowalla, M., 2009. Graphene-based composite thin films for electronics. Nano letters, 9(2), pp.814-818.
Eddington, D.T., Crone, W.C. and Beebe, D.J., 2003, October. Development of process protocols to fine tune polydimethylsiloxane material properties. 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (pp. 1089-1092).
Every, A.G., Tzou, Y., Hasselman, D.P.H. and Raj, R., 1992. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 40(1), pp.123-129.
Fitzgerald, M.L., Tsai, S., Bellan, L.M., Sappington, R., Xu, Y. and Li, D., 2019. The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS).
Biomedical microdevices, 21(1), pp.1-8.
Fitzgerald, M.L., Zhao, Y., Pan, Z., Yang, L., Lin, S., Sauti, G. and Li, D., 2021. Contact Thermal Resistance between Silver Nanowires with Poly (vinylpyrrolidone) Interlayers. Nano Letters, 21(10), pp.4388-4393.
Folch, A. and Toner, M., 1998. Cellular micropatterns on biocompatible materials. Biotechnology Progress, 14(3), pp.388-392.
111
Fragiadakis, D. and Pissis, P., 2007. Glass transition and segmental dynamics in poly (dimethylsiloxane)/silica nanocomposites studied by various techniques. Journal of Non- Crystalline Solids, 353(47-51), pp.4344-4352.
Fricke, H., 1924. A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Physical Review, 24(5), p.575.
Fu, C., Li, Q., Lu, J., Mateti, S., Cai, Q., Zeng, X., Du, G., Sun, R., Chen, Y., Xu, J. and Wong, C.P., 2018. Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 165, pp.322-330.
Gao, L., Zhou, X. and Ding, Y., 2007. Effective thermal and electrical conductivity of carbon nanotube composites. Chemical Physics Letters, 434(4-6), pp.297-300.
Garnett, J.M., 1904. XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), pp.385-420.
Garra, J., Long, T., Currie, J., Schneider, T., White, R. and Paranjape, M., 2002. Dry etching of polydimethylsiloxane for microfluidic systems. Journal of Vacuum Science & Technology A:
Vacuum, Surfaces, and Films, 20(3), pp.975-982.
Gilani, T.H. and Rabchuk, D., 2018. Electrical resistivity of gold thin film as a function of film thickness. Canadian Journal of Physics, 96(3), pp.272-274.
Gorissen, B., Van Hoof, C., Reynaerts, D. and De Volder, M., 2016. SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators. Microsystems &
Nanoengineering, 2(1), pp.1-5.
Gustafsson, S.E., 1991. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of scientific instruments, 62(3), pp.797- 804.
Haggenmueller, R., Guthy, C., Lukes, J.R., Fischer, J.E. and Winey, K.I., 2007. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules, 40(7), pp.2417-2421.
Hamilton, R.L. and Crosser, O.K., 1962. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), pp.187-191.
Hasselman, D.P.H. and Johnson, L.F., 1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of composite materials, 21(6), pp.508-515.
He, Z., Zhong, C., Huang, X., Wong, W.Y., Wu, H., Chen, L., Su, S. and Cao, Y., 2011.
Simultaneous enhancement of open‐circuit voltage, short‐circuit current density, and fill factor in polymer solar cells. Advanced Materials, 23(40), pp.4636-4643.
Henry, A. and Chen, G., 2008. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Physical review letters, 101(23), p.235502.
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A.
and Yang, P., 2008. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451(7175), pp.163-167.
Hong, W.T. and Tai, N.H., 2008. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond and Related Materials, 17(7-10), pp.1577-1581.
112
Hu, J., Huang, Y., Zeng, X., Li, Q., Ren, L., Sun, R., Xu, J.B. and Wong, C.P., 2018. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Composites Science and Technology, 160, pp.127-137.
Hu, L., Desai, T. and Keblinski, P., 2011. Determination of interfacial thermal resistance at the nanoscale. Physical Review B, 83(19), p.195423.
Huang, X., Jiang, P. and Xie, L., 2009. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Applied Physics Letters, 95(24), p.242901.
Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y. and Tanaka, T., 2013. Polyhedral oligosilsesquioxane‐modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 23(14), pp.1824-1831.
Huxtable, S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M. and Keblinski, P., 2003. Interfacial heat flow in carbon nanotube suspensions. Nature materials, 2(11), pp.731-734.
Hwang, S.J., Oh, D.J., Jung, P.G., Lee, S.M., Go, J.S., Kim, J.H., Hwang, K.Y. and Ko, J.S., 2009.
Dry etching of polydimethylsiloxane using microwave plasma. Journal of Micromechanics and Microengineering, 19(9), p.095010.
Im, H. and Kim, J., 2012. Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon, 50(15), pp.5429-5440.
Jansen, H., Gardeniers, H., de Boer, M., Elwenspoek, M. and Fluitman, J., 1996. A survey on the reactive ion etching of silicon in microtechnology. Journal of Micromechanics and Microengineering, 6(1), p.14.
Johnston, I.D., McCluskey, D.K., Tan, C.K.L. and Tracey, M.C., 2014. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. Journal of Micromechanics and Microengineering, 24(3), p.035017.
Jouni, M., Boudenne, A., Boiteux, G., Massardier, V. and Garnier, B., 2014. Significant enhancement of electrical and thermal conductivities of polyethylene carbon nanotube composites by the addition of a low amount of silver nanoparticles. Polymers for Advanced Technologies, 25(9), pp.1054-1059.
Kanari, K., 1977. Thermal conductivity of composite materials. Kobunshi, 26, pp.557-561.
Kapadia, R.S., Louie, B.M. and Bandaru, P.R., 2014. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube–polymer composites. Journal of heat transfer, 136(1).
Kapitza, P.L., 1941. The study of heat transfer in helium II. J. Phys.(Moscow), 4, p.181.
Kim, P., Shi, L., Majumdar, A. and McEuen, P.L., 2001. Thermal transport measurements of individual multiwalled nanotubes. Physical review letters, 87(21), p.215502.
Kim, J.M., Wolf, F. and Baier, S.K., 2015. Effect of varying mixing ratio of PDMS on the consistency of the soft-contact Stribeck curve for glycerol solutions. Tribology International, 89, pp.46-53.
Konatham, D. and Striolo, A., 2009. Thermal boundary resistance at the graphene-oil interface.
Applied Physics Letters, 95(16), p.163105.
Lee, J.Y., Connor, S.T., Cui, Y. and Peumans, P., 2008. Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 8(2), pp.689-692.
113
Li, D., Wu, Y., Fan, R., Yang, P. and Majumdar, A., 2003a. Thermal conductivity of Si/SiGe superlattice nanowires. Applied Physics Letters, 83(15), pp.3186-3188.
Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A., 2003b. Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 83(14), pp.2934-2936.
Li, H., Gao, Y., Zhu, P., Du, X., Yu, X., Ma, L., Li, G., Sun, R. and Wong, C.P., 2019. Cationic polyelectrolyte bridged boron nitride microplatelet based poly (vinyl alcohol) composite: a novel method toward high thermal conductivity. Advanced Materials Interfaces, 6(17), p.1900787.
Liao, K.H., Mishra, D.K., Chuang, C.M. and Ting, J.M., 2011. Large area vapor grown carbon fiber mat and its composite. Composites Part B: Engineering, 42(5), pp.1251-1256.
Liu, H.S., Pan, B.C. and Liou, G.S., 2017. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale, 9(7), pp.2633-2639.
Liu, W. and Asheghi, M., 2006. Thermal conductivity measurements of ultra-thin single crystal silicon layers.
Lee, J., Lee, W., Lim, J., Yu, Y., Kong, Q., Urban, J.J. and Yang, P., 2016. Thermal transport in silicon nanowires at high temperature up to 700 K. Nano letters, 16(7), pp.4133-4140.
Lewis, T.B. and Nielsen, L.E., 1970. Dynamic mechanical properties of particulate‐filled composites. Journal of Applied Polymer Science, 14(6), pp.1449-1471.
Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., Mu, R., Bellan, L.M. and Li, D., 2015.
Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), pp.16899- 16908.
Ma, P.C., Tang, B.Z. and Kim, J.K., 2008. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 46(11), pp.1497-1505.
Majumdar, A. and Reddy, P., 2004. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Applied Physics Letters, 84(23), pp.4768-4770.
Mata, A., Fleischman, A.J. and Roy, S., 2005. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 7(4), pp.281-293.
McDonald, J.C. and Whitesides, G.M., 2002. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 35(7), pp.491-499.
Moisala, A., Li, Q., Kinloch, I.A. and Windle, A.H., 2006. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Composites Science and Technology, 66(10), pp.1285-1288.
Moon, J., Weaver, K., Feng, B., Gi Chae, H., Kumar, S., Baek, J.B. and Peterson, G.P., 2012.
Note: Thermal conductivity measurement of individual poly (ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Review of Scientific Instruments, 83(1), p.016103.
Moore, A.L. and Shi, L., 2010. On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures.
Measurement Science and Technology, 22(1), p.015103.
Nagai, Y. and Lai, G.C., 1997. Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder. Journal of the ceramic Society of Japan, 105(1219), pp.197-200.
Nan, C.W., Birringer, R., Clarke, D.R. and Gleiter, H., 1997. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 81(10), pp.6692-6699.
114
Nan, C.W., Liu, G., Lin, Y. and Li, M., 2004. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 85(16), pp.3549-3551.
Ngo, Q., Cruden, B.A., Cassell, A.M., Sims, G., Meyyappan, M., Li, J. and Yang, C.Y., 2004.
Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Letters, 4(12), pp.2403-2407.
Nielsen, L.E., 1969. Cross-linking–effect on physical properties of polymers. Journal of Macromolecular Science, Part C, 3(1), pp.69-103.
Nielsen, L.E., 1973. Thermal conductivity of particulate‐filled polymers. Journal of Applied Polymer Science, 17(12), pp.3819-3820.
Oh, S.R., 2008. Thick single-layer positive photoresist mold and poly (dimethylsiloxane)(PDMS) dry etching for the fabrication of a glass–PDMS–glass microfluidic device. Journal of Micromechanics and Microengineering, 18(11), p.115025.
Oliva, A.I., Lugo, J.M., Gurubel-Gonzalez, R.A., Centeno, R.J., Corona, J.E. and Avilés, F., 2017.
Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films, 623, pp.84-89.
Paranjape, M., Garra, J., Brida, S., Schneider, T., White, R. and Currie, J., 2003. A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sensors and Actuators A: Physical, 104(3), pp.195-204.
Parker, W.J., 1961. Laser flash method of determining thermal diffusivity, heat capacity and thermal conductivity. Journal of Applied Physics, 32, pp.1679-1684.
Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H., 2006. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano letters, 6(1), pp.96-100.
Progelhof, R.C., Throne, J.L. and Ruetsch, R.R., 1976. Methods for predicting the thermal conductivity of composite systems: a review. Polymer Engineering & Science, 16(9), pp.615- 625.
Qi, H., Qian, C. and Liu, J., 2006. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chemistry of Materials, 18(24), pp.5691-5695.
Sandell, S., Maire, J., Chávez-Ángel, E., Torres, C.M.S., Kristiansen, H., Zhang, Z. and He, J., 2020. Enhancement of Thermal Boundary Conductance of Metal–Polymer System.
Nanomaterials, 10(4), p.670.
Shahil, K.M. and Balandin, A.A., 2012. Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano letters, 12(2), pp.861-867.
Shen, H., Guo, J., Wang, H., Zhao, N. and Xu, J., 2015. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS applied materials &
interfaces, 7(10), pp.5701-5708.
Shen, S., Henry, A., Tong, J., Zheng, R. and Chen, G., 2010. Polyethylene nanofibres with very high thermal conductivities. Nature nanotechnology, 5(4), pp.251-255.
Shenogin, S., Xue, L., Ozisik, R., Keblinski, P. and Cahill, D.G., 2004. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics, 95(12), pp.8136-8144.
Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P. and Majumdar, A., 2003. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. Journal of Heat Transfer, 125(5), pp.881-888.
115
Spanoudakis, J. and Young, R.J., 1984. Crack propagation in a glass particle-filled epoxy resin.
Journal of Materials Science, 19(2), pp.473-486.
Stevens, R.J., Smith, A.N. and Norris, P.M., 2005. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. Journal of Heat Transfer, 127(3), pp.315-322.
Su, J., Xiao, Y. and Ren, M., 2013. Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets. physica status solidi (a), 210(12), pp.2699- 2705.
Suh, D., Moon, C.M., Kim, D. and Baik, S., 2016. Ultrahigh thermal conductivity of interface materials by silver‐functionalized carbon nanotube phonon conduits. Advanced Materials, 28(33), pp.7220-7227.
Sundstrom, D.W. and Lee, Y.D., 1972. Thermal conductivity of polymers filled with particulate solids. Journal of Applied Polymer Science, 16(12), pp.3159-3167.
Swartz, E.T. and Pohl, R.O., 1989. Thermal boundary resistance. Reviews of modern physics, 61(3), p.605.
Szmigiel, D., Domański, K., Prokaryn, P. and Grabiec, P., 2006. Deep etching of biocompatible silicone rubber. Microelectronic Engineering, 83(4-9), pp.1178-1181.
Tavman, I.H., 1996. Thermal and mechanical properties of aluminum powder‐filled high‐density polyethylene composites. Journal of Applied Polymer Science, 62(12), pp.2161-2167.
Vlachopoulou, M.E., Tserepi, A., Vourdas, N., Gogolides, E. and Misiakos, K., 2005. Patterning of thick polymeric substrates for the fabrication of microfluidic devices. Journal of Physics:
Conference Series (Vol. 10, No. 1, p. 072). IOP Publishing.
Vlachopoulou, M.E., Kokkoris, G., Cardinaud, C., Gogolides, E. and Tserepi, A., 2013. Plasma etching of poly (dimethylsiloxane): roughness formation, mechanism, control, and application in the fabrication of microfluidic structures. Plasma Processes and Polymers, 10(1), pp.29-40.
Wang, C., Guo, J., Dong, L., Aiyiti, A., Xu, X. and Li, B., 2016. Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Scientific reports, 6(1), pp.1-6.
Wang, F., Zeng, X., Yao, Y., Sun, R., Xu, J. and Wong, C.P., 2016. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity.
Scientific reports, 6(1), pp.1-9.
Wang, J. and Musameh, M., 2003. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical chemistry, 75(9), pp.2075-2079.
Wang, X.B., Weng, Q., Wang, X., Li, X., Zhang, J., Liu, F., Jiang, X.F., Guo, H., Xu, N., Golberg, D. and Bando, Y., 2014. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. Acs Nano, 8(9), pp.9081-9088.
Wang, Z., Zhou, W., Sui, X. and Dong, L., 2015. Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. Journal of Reinforced Plastics and Composites, 34(14), pp.1126-1135.
Wingert, M.C., Chen, Z.C., Kwon, S., Xiang, J. and Chen, R., 2012. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
Review of Scientific Instruments, 83(2), p.024901.
Wong, E.J., 2010. Modeling and control of rapid cure in polydimethylsiloxane (PDMS) for microfluidic device applications (Doctoral dissertation, Massachusetts Institute of Technology).
116
Xie, X., Li, D., Tsai, T.H., Liu, J., Braun, P.V. and Cahill, D.G., 2016. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends.
Macromolecules, 49(3), pp.972-978.
Xia, Y. and Whitesides, G.M., 1998. Angewandte Chemie Int. Ed, 37, pp.550-575.
Yang, J., Waltermire, S., Chen, Y., Zinn, A.A., Xu, T.T. and Li, D., 2010. Contact thermal resistance between individual multiwall carbon nanotubes. Applied Physics Letters, 96(2), p.023109.
Yang, J., Yang, Y., Waltermire, S.W., Gutu, T., Zinn, A.A., Xu, T.T., Chen, Y. and Li, D., 2011.
Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small, 7(16), pp.2334-2340.
Yang, J., Yang, Y., Waltermire, S.W., Wu, X., Zhang, H., Gutu, T., Jiang, Y., Chen, Y., Zinn, A.A., Prasher, R. and Xu, T.T., 2012. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nature Nanotechnology, 7(2), pp.91-95.
Yang, J., Shen, M., Yang, Y., Evans, W.J., Wei, Z., Chen, W., Zinn, A.A., Chen, Y., Prasher, R., Xu, T.T. and Keblinski, P., 2014. Phonon transport through point contacts between graphitic nanomaterials. Physical Review Letters, 112(20), p.205901.
Yang, L., Yang, Y., Zhang, Q., Zhang, Y., Jiang, Y., Guan, Z., Gerboth, M., Yang, J., Chen, Y., Walker, D.G. and Xu, T.T., 2016. Thermal conductivity of individual silicon nanoribbons.
Nanoscale, 8(41), pp.17895-17901.
Yang, L., Zhang, Q., Cui, Z., Gerboth, M., Zhao, Y., Xu, T.T., Walker, D.G. and Li, D., 2017.
Ballistic phonon penetration depth in amorphous silicon dioxide. Nano letters, 17(12), pp.7218-7225.
Yang, L., Tao, Y., Liu, J., Liu, C., Zhang, Q., Akter, M., Zhao, Y., Xu, T.T., Xu, Y., Mao, Z. and Chen, Y., 2018. Distinct signatures of electron–phonon coupling observed in the lattice thermal conductivity of NbSe3 nanowires. Nano letters, 19(1), pp.415-421.
Yang, L., 2019. Phonon Transport in Nanowires–Beyond Classical Size Effects (Doctoral dissertation).
Yang, S.Y., Ma, C.C.M., Teng, C.C., Huang, Y.W., Liao, S.H., Huang, Y.L., Tien, H.W., Lee, T.M. and Chiou, K.C., 2010. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 48(3), pp.592-603.
Yang, S., Xue, B., Li, Y., Li, X., Xie, L., Qin, S., Xu, K. and Zheng, Q., 2020. Controllable Ag- rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chemical Engineering Journal, 383, p.123072.
Yang, X., Wang, X., Wang, W., Fu, Y. and Xie, Q., 2020. Atomic-scale insights into interface thermal resistance between epoxy and boron nitride in nanocomposites. International Journal of Heat and Mass Transfer, 159, p.120105.
Young, R.J. and Lovell, P.A., 2011. Introduction to polymers. CRC press.
Yu, A., Ramesh, P., Itkis, M.E., Bekyarova, E. and Haddon, R.C., 2007. Graphite nanoplatelet−
epoxy composite thermal interface materials. Journal of Physical Chemistry C, 111(21), pp.7565-7569.
Zhang, Q.G., Cao, B.Y., Zhang, X., Fujii, M. and Takahashi, K., 2006. Size effects on the thermal conductivity of polycrystalline platinum nanofilms. Journal of Physics: Condensed Matter, 18(34), p.7937.