• Tidak ada hasil yang ditemukan

Theory and Analysis

Dalam dokumen unsaturated granular systems (Halaman 64-78)

Chapter III: Interparticle forces and effective stress in unsaturated granular

3.2 Theory and Analysis

The following section discusses the four necessary components to directly measure the inter-particle force chains and effective stress in unsaturated granular media:

๐‘–) derivation of the stress partition equation and effective stress in an unsaturated grain system,๐‘–๐‘–)2D numerical simulation of a capillary bridge between solid disks, ๐‘–๐‘–๐‘–) the governing equations of the unsaturated GEM, and ๐‘– ๐‘ฃ) the theory of 1D consolidation.

Effective stress in partially saturated systems

To derive the physical expression of the effective stress in partially saturated systems, this work focuses on granular packings with the following three assumptions: ๐‘–) low saturation (๐‘†๐‘Ÿ โ‰ช 1) with quasi-static state,๐‘–๐‘–) incompressible solid (particles) and fluid constituents, and๐‘–๐‘–๐‘–) cohesionless solid grains with point contacts. For a

partially granular system with a total volume of๐‘‰, similar to the stress decomposition of saturated systems [22], the additive decomposition of partial stresses gives the average stress of the entire granular packing:

ยฏ

๐ˆ=๐ˆยฏ๐‘ +๐ˆยฏ ๐‘“ +๐ˆยฏ๐‘Ž (3.1)

where each partial stress ( ยฏ๐ˆ๐‘ , ยฏ๐ˆ๐‘“, ยฏ๐ˆ๐‘Ž) is the volume average of the stress field in the corresponding phase occupying a volume ๐‘‰๐‘  for the solid (s), ๐‘‰๐‘“ for the fluid (f), and๐‘‰๐‘Žfor the gas (air) phase (a). In an unsaturated system with low saturation ๐‘†๐‘Ÿ =๐‘‰๐‘“/(๐‘‰๐‘“ +๐‘‰๐‘Ž) โ‰ช 1, we further assume the space of pore gas is connected and a constant pore gas pressure๐‘ƒ๐‘Ž throughout the whole system. Equation (3.1) then becomes:

ยฏ

๐ˆ=๐ˆยฏ๐‘ +๐ˆยฏ ๐‘“ +๐œ™๐‘Ž๐‘ƒ๐‘Ž1 (3.2) where๐œ™๐‘Ž:=๐‘‰๐‘Ž/๐‘‰ is the volume fraction occupied by the gas phase. Consider a low saturation granular system consisting of๐‘solid particles and๐‘€ pore fluid clusters.

For a given particle i shown in Fig. 3.2, the conservation of linear and angular momentum yields:

Figure 3.2: Schematic plot of forces acting on a solid grainiin a partially saturated granular packing.

๐‘๐‘ 

๐‘–

โˆ‘๏ธ

๐›ผ=1

๐’‡๐›ผ+

๐‘

๐‘“ ๐‘–

โˆ‘๏ธ

๐›ฝ=1

(

โˆซ

๐‘†

๐›ฝ ๐‘–

ฮ”๐‘ƒ๐›ฝ๐’ห†๐‘‘๐‘†+

โˆซ

๐ฟ

๐›ฝ ๐‘–

๐œธ๐›ฝ๐‘‘๐ฟ) =0 (3.3)

๐‘๐‘ 

๐‘–

โˆ‘๏ธ

๐›ผ=1

๐’™๐›ผร— ๐’‡๐›ผ+

๐‘

๐‘“ ๐‘–

โˆ‘๏ธ

๐›ฝ=1

(

โˆซ

๐‘†

๐›ฝ ๐‘–

๐’™๐›ฝร—ฮ”๐‘ƒ๐›ฝ๐’ห†๐‘‘๐‘†+

โˆซ

๐ฟ

๐›ฝ ๐‘–

๐’™๐›ฝร—๐œธ๐›ฝ๐‘‘๐ฟ) =0 (3.4) ฮ”๐‘ƒ๐›ฝ =๐‘ƒ๐‘Žโˆ’๐‘ƒ

๐›ฝ ๐‘“

where ๐’‡๐›ผis a contact force at particle-particle and particle-boundary contact point ๐’™๐›ผ with ๐‘๐‘ 

๐‘– being the total number of particle-particle contact points acting on particlei. ฮ”๐‘ƒ๐›ฝrepresent the pressure difference between pore gas๐‘ƒ๐‘Žand pore fluid ๐‘ƒ

๐›ฝ

๐‘“ at solid-fluid contact surface ๐‘†๐›ฝ with ๐‘

๐‘“

๐‘– being the total number of solid-fluid contact surfaces acting on particle i. ห†๐’is the point-wise normal unit vector at point ๐’™๐›ฝ on the solid-fluid contact surface ๐‘†๐›ฝ. While๐œธ๐›ฝ represents the surface tension acting on the solid particle at point ๐’™๐›ฝ on contour ๐ฟ๐›ฝ of the solid-fluid contact surface๐‘†๐›ฝ. Here we assume that the gas and fluid are in a quasistatic state and the pressure variance within each fluid cluster is negligible.

In the case of quasistatic states, pointwise linear momentum balance prevails within a solid particlei.

โˆ‡ยท๐ˆ๐‘–(๐’™) =0 โˆ€๐’™ โˆˆฮฉ๐‘– (3.5)

where๐ˆ๐‘–(๐’™) is the stress field at point ๐’™ in the domainฮฉ๐‘– of particlei. Based on Eq. (3.2), the total average stress of a partially saturated system, composed of solid, fluid, and air domains, can be written as:

ยฏ ๐ˆ= 1

๐‘‰

โˆซ

๐‘‰

๐ˆ(๐’™)๐‘‘๐‘‰ =๐œ™๐‘ ๐ˆยฏ๐‘ +๐œ™๐‘“๐ˆยฏ ๐‘“ +๐œ™๐‘Ž๐‘ƒ๐‘Ž1 (3.6) where๐œ™๐‘  :=๐‘‰๐‘ /๐‘‰, ๐œ™๐‘“ :=๐‘‰๐‘“/๐‘‰, and๐œ™๐‘Ž :=๐‘‰๐‘Ž/๐‘‰ are volume fraction of solid, fluid, and gas phases respectively. The average stress of the solid phase and fluid phase can be further expressed separately as:

ยฏ ๐ˆ๐‘  = 1

๐‘‰๐‘ 

๐‘

โˆ‘๏ธ

๐‘–=1

๐‘‰๐‘–๐ˆยฏ๐‘– (3.7)

๐ˆยฏ ๐‘“ = 1 ๐‘‰๐‘“

๐‘€

โˆ‘๏ธ

๐‘—=1

๐‘‰๐‘—๐‘ƒยฏ๐‘—1= 1 ๐‘‰๐‘“

๐‘€

โˆ‘๏ธ

๐‘—=1

๐‘‰๐‘—๐‘ƒ๐‘—1 (3.8)

๐‘

โˆ‘๏ธ

๐‘–=1

๐‘‰๐‘– =๐‘‰๐‘ 

๐‘€

โˆ‘๏ธ

๐‘—=1

๐‘‰๐‘— =๐‘‰๐‘“

where ๐‘‰๐‘– denotes volume associated with solid domain ฮฉ๐‘–, ๐‘‰๐‘— denotes volume associated with fluid domain ๐œ”๐‘—. The sum of volumes of all solid particles/fluid clusters is the volume of the solid phase/fluid phase.

Further considering the expression of solid particle average stress ยฏ๐ˆ๐‘–, combining it with Eq. (3.5) and applying the divergence theorem,

ยฏ ๐ˆ๐‘–= 1

๐‘‰๐‘–

โˆซ

๐‘†๐‘–

๐‘  ๐‘ฆ ๐‘š(๐’•โŠ—๐’™)๐‘‘๐‘†

= 1 ๐‘‰๐‘–

๐‘๐‘ 

๐‘–

โˆ‘๏ธ

๐›ผ=1

๐‘  ๐‘ฆ ๐‘š(๐’‡๐›ผ โŠ—๐’™๐›ผ) โˆ’ 1 ๐‘‰๐‘–

๐‘

๐‘“ ๐‘–

โˆ‘๏ธ

๐›ฝ=1

{

โˆซ

๐ฟ

๐›ฝ ๐‘–

๐‘  ๐‘ฆ ๐‘š(๐œธ๐›ฝโŠ—๐’™๐›ฝ)๐‘‘๐ฟ

+

โˆซ

๐‘†

๐›ฝ ๐‘–

ฮ”๐‘ƒ๐›ฝ๐‘  ๐‘ฆ ๐‘š(๐’ห† โŠ—๐’™๐›ฝ)๐‘‘๐‘†} +๐‘ƒ๐‘Ž1

(3.9)

where๐’• is the traction at any point๐’™ โˆˆ๐‘†๐‘–, ๐’™๐›ผis a vector from an arbitrarily chosen origin to the contact point ๐›ผ, and โŠ— is the dyadic product. To further simplify this expression, it is assumed that the grains have good roundness. The solid-fluid contact area๐‘†๐›ฝis relatively small and can be considered as a spherical surface with a radius๐‘…๐›ฝ. By substituting Eq. (3.9) into Eq. (3.7), and Eqs. (3.7) and (3.8) into Eq. (3.6) the average total stress can be expressed as:

ยฏ ๐ˆ= 1

๐‘‰

๐‘๐‘ 

โˆ‘๏ธ

๐›ผ=1

๐‘  ๐‘ฆ ๐‘š(๐’‡๐›ผโŠ— ๐’๐›ผ) +๐‘ƒ๐‘Ž1โˆ’ 1 ๐‘‰

๐‘€

โˆ‘๏ธ

๐‘—=1

๐‘‰๐‘—(๐‘ƒ๐‘Žโˆ’๐‘ƒ

๐‘— ๐‘“)1

โˆ’ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

ฮ”๐‘ƒ๐›ฝ

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐’ห† โŠ— ๐’ห†๐‘‘๐‘†๐›ฝโˆ’ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐ฟ๐›ฝ

๐‘…๐›ฝ๐‘  ๐‘ฆ ๐‘š(๐œธ๐›ฝโŠ— ๐’)ห† ๐‘‘๐ฟ๐›ฝ

(3.10)

where๐‘๐‘  is the number of particle-particle contacts in the entire domain, and๐‘๐‘“ is the number of solid-fluid contact surfaces in the entire domain. ๐‘ƒ

๐‘—

๐‘“ is the pore fluid pressure in the fluid domain๐œ”๐‘—. ๐’๐›ผ is the branch vector connecting two centroids of the particles contacting at point ๐›ผ, and ๐‘…๐›ฝ are the radii of curvatures of the corresponding solid-fluid contact areas.

In Eq. (3.10), the first term in the expression of ยฏ๐ˆcorresponds to the Love formula and agrees with the form reported by Christoffersen et al. [27, 28]. It is denoted as the effective stress๐ˆโ€ฒas it represents the behavior of the solid phase and is related to inter-particle force chains. While the second term in Eq. (3.10) is the contribution of pore gas pressure, the third, fourth, and fifth terms are due to the presence of both fluid and gas phases. The third term corresponds to the presence of the fluid domain. Additionally, the fourth and fifth terms represent the stress induced by fluid-gas pressure difference and surface energy separately. In systems with low saturation, Eq. (3.10) represents stress transfer in granular packing with capillary bridges between solid particles.

A further comparison between Eq. (3.10) and Bishopโ€™s effective stress can be carried out. For a three-phase system consisting of solid, fluid, and gas, the Bishopโ€™s effective stress states that:

๐ˆโ€ฒ๐ต =๐ˆยฏ โˆ’๐‘ƒ๐‘Ž1+ ๐œ’(๐‘ƒ๐‘Ž1โˆ’๐ˆยฏ ๐‘“) (3.11) where๐ˆโ€ฒ๐ต is Bishopโ€™s single effective stress, and ๐œ’is the effective stress parameter [10]. Note that one should not directly combine Eq. (3.10) with Eq. (3.11) (assuming ๐ˆโ€ฒ = ๐ˆโ€ฒ๐ต) as the definition of the effective stress may be different in different frameworks. Further recall that Bishopโ€™s empirical expression is directly based on Terzaghiโ€™s principle and the effective stress parameter๐œ’should range from 0 to 1, with ๐œ’ =0 refers to dry systems and ๐œ’=1 refers to fully saturated systems.

Therefore, the stress partition equation Eq. (3.10) can be rewritten as:

ยฏ ๐ˆ= 1

๐‘‰

๐‘๐‘ 

โˆ‘๏ธ

๐›ผ=1

๐‘  ๐‘ฆ ๐‘š(๐’‡๐›ผ โŠ—๐’๐›ผ) + 1 ๐‘‰

๐‘€

โˆ‘๏ธ

๐‘—=1

๐‘‰๐‘—๐‘ƒ๐‘—

๐‘“1

+ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

๐‘ƒ

๐›ฝ ๐‘“

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐’ห† โŠ— ๐’ห†๐‘‘๐‘†๐›ฝโˆ’ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐ฟ๐›ฝ

๐‘…๐›ฝ๐‘  ๐‘ฆ ๐‘š(๐œธ๐›ฝ โŠ—๐’)ห† ๐‘‘๐ฟ๐›ฝ

+ (1โˆ’๐œ™๐‘“ โˆ’ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐’ห† โŠ— ๐’ห†๐‘‘๐‘†๐›ฝ)๐‘ƒ๐‘Ž1

(3.12)

For ๐œ’ = 1, Eq. (3.12) should not depend on pore gas pressure๐‘ƒ๐‘Ž. Therefore, the parameter ๐œ’ and the Bishopโ€™s effective stress ๐ˆโ€ฒ๐ต can be derived as the following expressions:

๐œ’1=๐œ™๐‘“1+ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐’ห† โŠ— ๐’ห†๐‘‘๐‘†๐›ฝ =๐‘†๐‘Ÿ๐œ™1+ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐’ห† โŠ—๐’ห†๐‘‘๐‘†๐›ฝ

๐ˆโ€ฒ๐ต = 1 ๐‘‰

๐‘๐‘ 

โˆ‘๏ธ

๐›ผ=1

๐‘  ๐‘ฆ ๐‘š(๐’‡๐›ผโŠ— ๐’๐›ผ) โˆ’ 1 ๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐ฟ๐›ฝ

๐‘…๐›ฝ๐‘  ๐‘ฆ ๐‘š(๐œธ๐›ฝโŠ— ๐’)ห† ๐‘‘๐ฟ๐›ฝ

(3.13)

.

where ๐œ™ is the porosity. Note that, although this expression is deduced under the assumption of low saturation, an equation with a similar form can also be obtained by segmenting the solid-fluid contact area such that the small contact assumption is valid for each segment. It can be derived from Eq. (3.13) that ๐œ’ = 0 when ๐œ™๐‘“ =0 and ๐œ’ = 1 when๐œ™๐‘“ = 1โˆ’๐œ™๐‘ , which is consistent with Bishopโ€™s definition of the effective stress parameter. From Eq. (3.13), the effective stress parameter and the Bishopโ€™s effective stress depend on both the saturation and the fabric of the granular system, which illustrates the intrinsic non-linearity of the parameter ๐œ’ as a function of saturation ๐‘†๐‘Ÿ. Although the matrix ห†๐’โŠ— ๐’ห† is positive definite, it is not generally true that the ๐œ’ is a monotonic function of saturation๐‘†๐‘Ÿ, since the solid-fluid contact area may decrease as the result of particle rearrangement, fluid vaporization, vapor condensation, etc., even if the fluid content increases. This also gives rise to questions concerning the uniqueness of the effective stress parameter ๐œ’as a function of๐‘†๐‘Ÿ [29,30].

For a granular system with large particle number๐‘ and randomly distributed solid- fluid contacts, it can be shown that the expression of parameter ๐œ’ (Eq. (3.13)) can also be written as:

๐œ’ =๐œ™๐‘“ + 1 3๐‘‰

๐‘๐‘“

โˆ‘๏ธ

๐›ฝ=1

โˆซ

๐‘†๐›ฝ

๐‘…๐›ฝ๐‘‘๐‘†๐›ฝ. (3.14)

Therefore, with the stress partition equation Eq. (3.10), the grain-scale expression of the effective stress parameter and the Bishopโ€™s effective stress at low saturation are successfully derived. Note that for the fully saturated case, Eq. (3.10) reduces to Terzaghiโ€™s classic expression at the grain-scale [24],

๐ˆยฏ = 1 ๐‘‰

๐‘๐‘ 

โˆ‘๏ธ

๐›ผ=1

๐‘  ๐‘ฆ ๐‘š(๐’‡๐›ผโŠ— ๐’๐›ผ) +๐‘ƒ๐‘“1=๐ˆโ€ฒ+๐‘ƒ๐‘“1 (3.15) where๐‘ƒ๐‘“ is the pore water pressure in fully saturated media.

Numerical simulation of 2D capillary bridges

The calculation of inter-particle contact forces using Eq. (3.3), Eq. (3.4), and Eq.

(3.9) requires tracking the shape and pressure๐‘ƒ

๐‘—

๐‘“of pore fluid. In a partially saturated granular system, the geometrical shape of pore fluid depends on the pore structure, saturation, gravity, surface energy of the contact surfaces of different phases, etc [31, 32]. The complex shape of fluid clusters increases the difficulty of observation and tracking of unsaturated granular packing at the grain-scale. However, in the case of large particles and low saturation๐‘†๐‘Ÿ โ‰ช 1, pore fluid would form capillary bridges between solid grains in order to minimize its surface energy. For solid particles with high roundness and smooth surfaces, these capillary bridges can be assumed to be axisymmetric.

The shape of the 2D capillary bridge (fluid cluster j) between two disks can be described using the well-known Young-Laplace equation [33],

ฮ”๐‘ƒ =โˆ’๐›พโˆ‡ ยท๐’ห† =โˆ’2๐›พ ๐ป๐‘“ (3.16) whereฮ”๐‘ƒ is the pressure difference across the interface (ฮ”๐‘ƒ = ๐‘ƒ๐‘Ž โˆ’๐‘ƒ

๐‘—

๐‘“), ๐›พ is the surface tension, ห†๐’is the unit outward normal of the surface,๐ป๐‘“ is the mean curvature of the surface (๐ป๐‘“ =1/2๐‘…for 2D capillary bridges,๐‘…is the radius of curvature).

As shown in Fig. 3.2a, a drop of water from a capillary bridge between two rigid disks. In the absence of gravity, knowing the material properties, geometry, and separation distance of the disks, the lateral width ๐‘ค of the capillary bridge can

Figure 3.3: 2D finite element simulation (FEM) of capillary bridges between two disks. (a) Schematic of a 2D capillary bridge between two disks. (b) FEM simulation result of the geometry of a static capillary bridge in the absence of gravity. The colormap represents the area fraction of water (red for the water phase, blue for the air phase). (c) FEM simulation result of the geometry of a static capillary bridge in the presence of gravity. (d) The average pressure difference ยฏฮ”๐‘ƒ =๐‘ƒ๐‘Žโˆ’๐‘ƒยฏ

๐‘—

๐‘“ with and without the influence of gravity as a function of normalized water volume ยฏ๐ด. (e) The filling angle of the upper disk๐œƒ๐‘ข with and without the influence of gravity as a function of normalized water volume ยฏ๐ด.

be determined knowing the filling angle ๐œƒ, the contact angle ๐›ผ, and the water-air pressure differenceฮ”๐‘ƒ.

๐‘ค =๐‘…0๐‘ ๐‘–๐‘›๐œƒ + ๐›พ ฮ”๐‘ƒ

{๐‘ ๐‘–๐‘›(๐œƒ+๐›ผ) โˆ’1} (3.17) where๐‘…0is the radius of the solid disk. The capillary area ๐ด(or volume๐‘‰ for 3D), can be written as the following equation:

๐ด=2๐‘ ๐‘–๐‘›๐œƒ(๐‘…0+๐‘‘)๐‘…0โˆ’ (1

2๐‘ ๐‘–๐‘›2๐œƒ+๐œƒ)๐‘…2

0

+ {1

4๐‘ ๐‘–๐‘›(๐œƒ+๐›ผ) โˆ’ ๐œ‹

2 +๐œƒ+๐›ผ}( ๐›พ ฮ”๐‘ƒ

)2

(3.18)

The capillary force is then represented by the sum of the axial surface tension and hydrostatic force at the neck of the capillary bridge,

๐น =2๐‘คฮ”๐‘ƒ+2๐›พ =2๐‘…0๐‘ ๐‘–๐‘›๐œƒฮ”๐‘ƒ+2๐‘ ๐‘–๐‘›(๐œƒ+๐›ผ)๐›พ . (3.19) While the analytical solution of a static capillary bridge is relatively concise in the absence of gravity, finite element simulation (FEM) is needed to solve the shape of a static capillary bridge in the presence of gravity. The FEM analysis is carried out using the separated multiphase flow models of COMSOL Multiphysics simulation tool [34]. The solid disks with radius ๐‘…0 = 5๐‘š ๐‘š are treated as walls with no-slip boundary conditions. During the formation of the capillary bridge, the water cluster will wet the wall with a constant contact angle. Fig. 3.3b and Fig. 3.3c display two of the FEM simulation results for a static bridge with initial filling angle๐œƒ0 = 30ยฐ and a contact angle ๐›ผ = 70ยฐ with and without the influence of gravity. While the menisci contours of the capillary bridge in the absence of gravity have constant curvature, the contours distort slightly under gravity, as expected. To further analyze the effect of gravity on the shape and hydrostatic pressure of capillary bridges, the average pressure difference ยฏฮ”๐‘ƒand the filling angle of the upper disk๐œƒ๐‘ขare plotted separately in Fig. 3.3d and 3.3e as a function of the normalized water volume ยฏ๐ด. The results indicate that for a small water cluster with volume๐ดโ‰ช ๐ด0 =๐œ‹ ๐‘…2

0(Area of the disk) forms a capillary bridge in a narrow gap between two disks, the surface distortion and pressure variation caused by gravity can be neglected.

Granular element method for partially saturated granular media

The granular element method (GEM) was originally developed for determining inter-particle forces in dry granular media [22, 23] and was also has been used to analyze fully saturated media [24]. Knowing the geometry of water clusters under low saturation condition, the granular element method for partially saturated systems is developed based on Eqs. (3.3), (3.4), and (3.9). While the GEM for dry and fully saturated granular media is already well-developed, modifications are needed in the presence of both pore fluid and pore gas. In quasi-static state, the 2D balance of forces, Eq. (3.3) and moments, Eq. (3.4) can be represented in matrix form:

๐‘ฒ๐‘’ ๐‘ž๐’‡ = ๐’ƒ๐‘’ ๐‘ž (3.20)

๐‘ฒ๐‘’ ๐‘ž =

๐‘ ๐‘ž

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ... 0 . . . 0 . . . ๐‘– 0 ๐‘ฒ๐‘’ ๐‘ž๐‘ 0 ๐‘ฒ๐‘ž๐‘’ ๐‘ž 0

..

. 0 ..

. 0 .

.. ๐‘— 0 โˆ’๐‘ฒ๐‘๐‘’ ๐‘ž 0 0 0

..

. 0 .

.. 0 . ..

๐‘ฒ๐‘’ ๐‘ž๐‘ =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

1 0

0 1

โˆ’๐‘ฅ

๐‘ 2 ๐‘ฅ

๐‘ 1

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

๐’‡๐‘ = ๐‘“

๐‘ 1

๐‘“

๐‘ 2

!

๐’ƒ๐‘’ ๐‘ž๐‘ =ยฉ

ยญ

ยญ

ยซ

โˆ’ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(โˆซ

๐‘†

๐›ฝ ๐‘–

ฮ”๐‘ƒ๐›ฝ๐’ห†๐‘‘๐‘†+โˆซ

๐ฟ

๐›ฝ ๐‘–

๐œธ๐›ฝ๐‘‘๐ฟ)

โˆ’ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(โˆซ

๐‘†

๐›ฝ ๐‘–

ฮ”๐‘ƒ๐›ฝโˆฅ๐’™๐›ฝร—๐’โˆฅห† ๐‘‘๐‘†+โˆซ

๐ฟ

๐›ฝ ๐‘–

โˆฅ๐’™๐›ฝร—๐œธ๐›ฝโˆฅ๐‘‘๐ฟ) ยช

ยฎ

ยฎ

ยฌ where ๐‘– and ๐‘— represent particles, ๐‘ and ๐‘ž represent particleโ€“particle and par- ticleโ€“boundary contacts separately. Matrix ๐‘ฒ๐‘’ ๐‘ž has 3๐‘ rows and ๐‘๐‘  columns, contact force vector ๐’‡ has 2๐‘ rows, and vector ๐’ƒ๐‘’ ๐‘ž has 3๐‘ rows. Assuming the solid-fluid contact region ๐‘†

๐›ฝ

๐‘– is small in the low saturation condition, ๐’ƒ๐‘’ ๐‘ž๐‘ becomes the following term:

๐’ƒ๐‘’ ๐‘ž๐‘ =ยฉ

ยญ

ยซ

โˆ’ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(ฮ”๐‘ƒ๐›ฝ๐‘†

๐›ฝ

๐‘– +๐›พ ๐‘ ๐‘–๐‘›๐›ผ ๐ฟ

๐›ฝ ๐‘–)๐’ยฏ

โˆ’ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(ฮ”๐‘ƒ๐›ฝ๐‘†

๐›ฝ

๐‘– +๐›พ ๐‘ ๐‘–๐‘›๐›ผ ๐ฟ

๐›ฝ

๐‘–) โˆฅ๐’™ยฏ๐›ฝร—๐’โˆฅยฏ ยช

ยฎ

ยฌ

(3.21)

where ยฏ๐’is the average normal vector of the solid-fluid contact surface๐‘†

๐›ฝ

๐‘– (contact line for 2D), ยฏ๐’™๐›ฝis a vector from the origin to the center of๐‘†

๐›ฝ

๐‘– and๐›ผis the solid-fluid contact angle.

The expression of average Cauchy stress for particles in equilibrium (Eq. (3.9)) also has a corresponding matrix form:

๐‘ฒ๐‘ ๐‘ก๐’‡ = ๐’ƒ๐‘ ๐‘ก (3.22)

๐‘ฒ๐‘ ๐‘ก =

๐‘ ๐‘ž

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป ... 0 . . . 0 . . . ๐‘– 0 ๐‘ฒ๐‘ ๐‘ก๐‘ 0 ๐‘ฒ๐‘ž๐‘ ๐‘ก 0

..

. 0 ..

. 0 .

.. ๐‘— 0 โˆ’๐‘ฒ๐‘ ๐‘ก๐‘ 0 0 0

..

. 0 .

.. 0 . ..

๐‘ฒ๐‘๐‘ ๐‘ก =

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ ๐‘ฅ

๐‘

1 0

0 ๐‘ฅ

๐‘ 2

๐‘ฅ

๐‘ 2 ๐‘ฅ

๐‘ 1

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

๐’‡๐‘ = ๐‘“

๐‘ 1

๐‘“

๐‘ 2

!

๐’ƒ๐‘ ๐‘ก๐‘ =

ยฉ

ยญ

ยญ

ยญ

ยญ

ยซ ฮฉ๐‘–๐œŽยฏ๐‘–

11+ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(ฮ”๐‘ƒ๐›ฝ๐‘†

๐›ฝ

๐‘– +๐›พ ๐‘ ๐‘–๐‘›๐›ผ ๐ฟ

๐›ฝ ๐‘–)๐‘›ยฏ1๐‘ฅยฏ

๐›ฝ

1 โˆ’ฮฉ๐‘–๐‘ƒ๐‘Ž ฮฉ๐‘–๐œŽยฏ๐‘–

22+ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(ฮ”๐‘ƒ๐›ฝ๐‘†๐›ฝ

๐‘– +๐›พ ๐‘ ๐‘–๐‘›๐›ผ ๐ฟ๐›ฝ

๐‘–)๐‘›ยฏ2๐‘ฅยฏ๐›ฝ

2 โˆ’ฮฉ๐‘–๐‘ƒ๐‘Ž 2ฮฉ๐‘–๐œŽยฏ๐‘–

12+ร๐‘

๐‘“ ๐‘–

๐›ฝ=1(ฮ”๐‘ƒ๐›ฝ๐‘†

๐›ฝ

๐‘– +๐›พ ๐‘ ๐‘–๐‘›๐›ผ ๐ฟ

๐›ฝ ๐‘–) (๐‘›ยฏ2๐‘ฅยฏ

๐›ฝ 1 +๐‘›ยฏ1๐‘ฅยฏ

๐›ฝ 2)

ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ

whereฮฉ๐‘–is the area of the 2D particle i. Similar to matrix ๐‘ฒ๐‘’ ๐‘ž, the matrix ๐‘ฒ๐‘ ๐‘ก has 3๐‘ rows and ๐‘๐‘  columns and vector ๐’ƒ๐‘ ๐‘ก has 3๐‘ rows. Besides the equations of equilibrium and average Cauchy stress, the contact forces of cohesionless granular materials are also governed by the Coulomb friction law:

โˆ’๐’๐‘๐’‡๐‘ โ‰ฅ 0

โˆ’(๐’๐‘+ 1 ๐œ‡

๐’•๐‘)๐’‡๐‘ โ‰ฅ 0 (3.23)

โˆ’(๐’๐‘โˆ’ 1 ๐œ‡

๐’•๐‘)๐’‡๐‘ โ‰ฅ 0

where ๐’๐‘ and ๐’•๐‘ represent normal and tangential unit vectors at the contact point ๐‘ for a particular particleฮฉ๐‘–. ๐œ‡is the Coulomb friction coefficient. Similarly, Eq.

(3.23) can also be written in a corresponding matrix form:

๐‘ฉ ๐’‡ โ‰ฅ0 (3.24)

๐‘ฉ =

๐‘ ๐‘ ๐‘ž ๐‘ž

๏ฃฎ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฏ

๏ฃฐ

๏ฃน

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃบ

๏ฃป

๐‘ โˆ’๐‘›

๐‘

1 โˆ’๐‘›

๐‘

2 0 0 0

..

. 0 0 ..

. 0 0

๐‘ž 0 0 0 โˆ’๐‘›

๐‘ž

1 โˆ’๐‘›

๐‘ž 2

๐‘ โˆ’๐‘›

๐‘ 1 โˆ’ 1

๐œ‡

๐‘ก

๐‘ 1 โˆ’๐‘›

๐‘ 2 โˆ’ 1

๐œ‡

๐‘ก

๐‘

2 0 0 0

..

. 0 0 .

.. 0 0

๐‘ž 0 0 0 โˆ’๐‘›

๐‘ž 1+ 1

๐œ‡๐‘ก

๐‘ž 1 โˆ’๐‘›

๐‘ž 2 + 1

๐œ‡๐‘ก

๐‘ž 2

๐‘ โˆ’๐‘›

๐‘ 1 โˆ’ 1

๐œ‡๐‘ก

๐‘ 1 โˆ’๐‘›

๐‘ 2 โˆ’ 1

๐œ‡๐‘ก

๐‘

2 0 0 0

..

. 0 0 ..

. 0 0

๐‘ž 0 0 0 โˆ’๐‘›

๐‘ž 1+ 1

๐œ‡๐‘ก

๐‘ž 1 โˆ’๐‘›

๐‘ž 2 + 1

๐œ‡๐‘ก

๐‘ž 2

๐’‡ =

ยฉ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยญ

ยซ ๐‘“

๐‘ 1

๐‘“

๐‘ 2

.. . ๐‘“

๐‘ž 1

๐‘“

๐‘ž 2

ยช

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฎ

ยฌ

Equations (3.20)-(3.22), and constraints Eq. (3.24) are the three sets of governing equations for the unsaturated GEM. Using these equations to solve solid contact force ๐’‡ requires measurement of the entries in matrix ๐‘ฒ๐‘’ ๐‘ž, ๐‘ฒ๐‘ ๐‘ก, ๐‘ฉ, as well as vectors๐’ƒ๐‘’ ๐‘ž

and๐’ƒ๐‘ ๐‘ก. The contact locations and normal and tangent vectors at each contact point (or average normal vectors at each contact surface) can be determined by tracking the solid particles and fluid clusters. The average stress within each particle can be determined using the strain field in the particle. The pore gas pressure can be measured and the pore fluid pressure of the fluid clusters is calculated using the Young-Laplace equation (Eq. 3.16).

Theory of the classic 1D consolidation

Based on Terzaghiโ€™s theory for saturated soils, several research works carried out by Fredlund and others have provided a practical framework for unsaturated soil consolidation [11, 12]. In this section, a 1D consolidation model first developed by Fredlund and Hasan [12] is introduced. The three essential assumptions of the consolidation model are: ๐‘–) the air phase is continuous; ๐‘–๐‘–) the temperature, the coefficients of permeability of water and air, and the bulk moduli remain constant during the transient processes, and๐‘–๐‘–๐‘–)the effects of air diffusing through water and water vapor movement are ignored.

Figure 3.4: Schematic of a soil element with volume๐‘‰ and length ๐‘‘๐‘ฆ under 1D consolidation.

Dissipation of excess pore water and pore air pressure will occur when an external load๐œŽ0is applied to an unsaturated soil in the๐‘ฆdirection. During this process, the governing equations of the consolidation process are the continuity of the water and air phases. For a soil element of volume๐‘‰ shown in Fig. 3.4, if the solid grains are incompressible, the volume changeฮ”๐‘‰ of the soil element can be written as:

ฮ”๐‘‰ = ฮ”๐‘‰๐‘ค+ฮ”๐‘‰๐‘Ž (3.25)

๐‘‘๐‘‰๐‘ค =๐‘‰{๐›ฝ๐‘ค

1๐‘‘(๐œŽ0โˆ’๐‘ƒ๐‘Ž) +๐›ฝ๐‘ค

2๐‘‘(๐‘ƒ๐‘Žโˆ’๐‘ƒ๐‘ค)} (3.26) ๐‘‘๐‘‰๐‘Ž=๐‘‰{๐›ฝ๐‘Ž

1๐‘‘(๐œŽ0โˆ’๐‘ƒ๐‘Ž) +๐›ฝ๐‘Ž

2๐‘‘(๐‘ƒ๐‘Žโˆ’๐‘ƒ๐‘ค)} (3.27) where๐‘‰๐‘ค and๐‘‰๐‘Žare the volume change of the water/air phase respectively. ๐›ฝ๐‘ค

1 and ๐›ฝ๐‘Ž

1 are the compressibility of the water/air phase when๐‘ƒ๐‘Ž = ๐‘ƒ๐‘ค, ๐›ฝ๐‘ค

2 and๐›ฝ๐‘Ž

2 are the compressibility of the water/air phase when๐œŽ0=๐‘ƒ๐‘Ž.

First, the flow of water in the granular system can be described using Darcyโ€™s law:

๐‘ฃ๐‘ค =โˆ’๐‘˜ ๐œˆ

๐œ• ๐‘ƒ๐‘ค

๐œ• ๐‘ฆ (3.28)

where๐‘ฃ๐‘ค is the velocity of water, ๐‘˜ is the permeability of water, ๐œˆ is the dynamic viscosity of water, and ๐‘ฆ is distance in the consolidation direction. Therefore, combining Eq. (3.26) with Eq. (3.28), the net water flux in the soil element is:

๐œ•

๐œ• ๐‘ก (๐‘‰๐‘ค

๐‘‰ ) = ๐œ•

๐œ• ๐‘ก {๐›ฝ๐‘ค

1(๐œŽ0โˆ’๐‘ƒ๐‘Ž) +๐›ฝ๐‘ค

2(๐‘ƒ๐‘Žโˆ’๐‘ƒ๐‘ค)}=โˆ’๐‘˜ ๐œˆ

๐œ•2๐‘ƒ๐‘ค

๐œ• ๐‘ฆ2

. (3.29)

In the case of a constant external load๐œŽ0, Eq. (3.29) can be further simplified. The continuity equation of water can be written as a partial differential equation:

๐œ• ๐‘ƒ๐‘ค

๐œ• ๐‘ก

=โˆ’๐ถ๐‘ค

๐œ• ๐‘ƒ๐‘Ž

๐œ• ๐‘ก +๐‘๐‘ค

๐‘ฃ

๐œ•2๐‘ƒ๐‘ค

๐œ• ๐‘ฆ2

(3.30) ๐ถ๐‘ค =

๐›ฝ๐‘ค

1

๐›ฝ๐‘ค

2

โˆ’1 ๐‘๐‘ค

๐‘ฃ = ๐‘˜

๐œˆ ๐›ฝ๐‘ค

2

where๐ถ๐‘ค is the interactive constant of the water phase, and๐‘๐‘ค

๐‘ฃ is the coefficient of consolidation of the water phase.

Similarly, for the air phase treated as an ideal gas, the flow of air is controlled by Fickโ€™s law in the following form:

๐ฝ๐‘Ž =โˆ’๐ท

๐œ• ๐‘ƒ๐‘Ž

๐œ• ๐‘ฆ

(3.31) where ๐ฝ๐‘Ž is the mass rate of the airflow, and D is the coefficient related to perme- ability. The net airflow through the soil element๐‘‰ can then be derived as:

๐œ•

๐œ• ๐‘ก (๐‘‰๐‘Ž

๐‘‰ ) = ๐œ•

๐œ• ๐‘ก {๐›ฝ๐‘Ž

1(๐œŽ0โˆ’๐‘ƒ๐‘Ž) +๐›ฝ๐‘Ž

2(๐‘ƒ๐‘Žโˆ’๐‘ƒ๐‘ค)}= ๐œ•

๐œ• ๐‘ก (๐‘€๐‘Ž

๐œŒ๐‘‰

) (3.32)

for an ideal gas, the density ๐œŒ is a function of absolute pore air pressure ๐‘ƒ๐‘Ž +๐‘ƒ, where๐‘ƒis the atmospheric air pressure.

๐œŒ= ๐‘€๐‘Ž ๐‘‰๐‘Ž

= ๐‘š๐‘Ž(๐‘ƒ๐‘Ž+๐‘ƒ)

๐‘…๐‘”๐‘‡ (3.33)

where ๐‘…๐‘” is the ideal gas constant,๐‘‡ is the temperature, and ๐‘š๐‘Ž is the molecular weight of the air phase. The pore air mass ๐‘€๐‘Ž in element soil ๐‘‰ can also be represented by the density of air๐œŒ, the degree of saturation๐‘†๐‘Ÿ, and the porosity๐œ™:

๐‘€๐‘Ž= ๐œŒ๐‘‰๐‘Ž = (1โˆ’๐‘†๐‘Ÿ)๐œ™ ๐œŒ๐‘‰ . (3.34) With Eqs. (3.31), (3.33), and (3.34), Eq(3.32) can be rewritten as:

๐œ•

๐œ• ๐‘ก (๐‘‰๐‘Ž

๐‘‰ )= ๐œ•

๐œ• ๐‘ก {๐›ฝ๐‘Ž

1(๐œŽ0โˆ’๐‘ƒ๐‘Ž) +๐›ฝ๐‘Ž

2(๐‘ƒ๐‘Žโˆ’๐‘ƒ๐‘ค)}

=โˆ’

๐ท ๐‘…๐‘”๐‘‡ ๐‘š๐‘Ž(๐‘ƒ๐‘Ž+๐‘ƒ)

๐œ•2๐‘ƒ๐‘Ž

๐œ• ๐‘ฆ2

+ (1โˆ’๐‘†๐‘Ÿ)๐œ™ ๐‘ƒ๐‘Ž+๐‘ƒ

๐œ• ๐‘ƒ๐‘Ž

๐œ• ๐‘ก

. (3.35)

The partial differential form of Eq. (3.35) can then be written as follow:

๐œ• ๐‘ƒ๐‘Ž

๐œ• ๐‘ก

=โˆ’๐ถ๐‘Ž

๐œ• ๐‘ƒ๐‘ค

๐œ• ๐‘ก +๐‘๐‘Ž

๐‘ฃ

๐œ•2๐‘ƒ๐‘Ž

๐œ• ๐‘ฆ2

(3.36) ๐ถ๐‘Ž = (๐‘ƒ๐‘Ž+๐‘ƒ)๐›ฝ๐‘Ž

2

(๐‘ƒ๐‘Ž+๐‘ƒ) (๐›ฝ๐‘Ž

1โˆ’ ๐›ฝ๐‘Ž

2) + (1โˆ’๐‘†๐‘Ÿ)๐œ™ ๐‘๐‘Ž

๐‘ฃ =

๐ท ๐‘…๐‘”๐‘‡ ๐‘š๐‘Ž{(๐‘ƒ๐‘Ž+๐‘ƒ) (๐›ฝ๐‘Ž

1โˆ’ ๐›ฝ๐‘Ž

2) + (1โˆ’๐‘†๐‘Ÿ)๐œ™} where ๐ถ๐‘Ž is the interactive constant of the air phase, and ๐‘๐‘Ž

๐‘ฃ is the coefficient of consolidation of the air phase. The excess pore water pressure and excess pore air pressure can be calculated by numerically solving the two PDEs Eqs. (3.30) and (3.36) simultaneously.

Dalam dokumen unsaturated granular systems (Halaman 64-78)

Dokumen terkait