• Tidak ada hasil yang ditemukan

Topology on the space of weak equivalence classes

TOPOLOGY AND CONVEXITY IN THE SPACE OF ACTIONS MODULO WEAK EQUIVALENCE

2.3 Topology on the space of weak equivalence classes

Let Γ be a countable group and A(Γ,X, µ) be its space of actions modulo weak equivalence. We consider a metric on A(Γ,X, µ)which is implicit in [1].

Fix an enumeration (γi)

i=0 of Γ. If A = {A1, . . . ,Ak} is a partition of X into k pieces, a ∈ A(Γ,X, µ) and n ∈ N, let Mn,kA(a) ∈ [0,1]n×k×k be the point whose p,q,r coordinate is µ(γpaAq ∩ Ar), where p ≤ n and q,r ≤ k. Let Cn,k(a) = {Mn,kA(a):Ais a partition ofX intok pieces.} Then we can define a pseudometricdon A(Γ,X, µ)by the formula

d(a,b)=

Õ

n,k=1

1

2n+kdH(Cn,k(a),Cn,k(b)),

where dH is the Hausdorff distance in the hyperspace of compact subsets of [0,1]n×k×k. It is easy to see thata∼ bif and only ifd(a,b)= 0, soddescends to a metric on A(Γ,X, µ), which we also denote by d. Letτ1 be the topology induced by d. We note that this definition extends to actions on countable spaces. We will write A(Γ)for the space of all actions ofΓon probability spaces.

We now describe a different construction of the topology on A(Γ,X, µ) due to Tucker-Drob [74] in order to show it agrees with the one we have just introduced.

(Tucker-Drob shows in [74] that his formulation agrees with the one from [1]).

Let S be a compact Polish space, and consider SΓ, which is also a compact Pol-

ish space. Γ acts on SΓ by the shift action s given by (γsf)(δ) = f(γ−1δ). Let Ms(SΓ) be the compact Polish space of shift-invariant probability measures on SΓ and letKS =K(Ms(SΓ))be the hyperspace of compact subsets of Ms(SΓ)equipped with the Hausdorff topology. Then KS is again compact and Polish. Now con- sider anS-valued random variable φ ∈ L(X, µ,S)onX, that is to say a measurable mapφ : X → S. For each measure-preserving actiona ∈ A(Γ,X, µ)we get a map Φφ,aS : X → SΓby lettingΦφ,aS (x)(γ)= φ((γ1)ax)and consequently a shift-invariant measure(Φφ,a

S )µonSΓ. Then define a subsetE(a,S)ofMs(SΓ)by E(a,S)= {(Φφ,a

S )µ:φ: X → Sis measurable}.

LetΦS : A(Γ,X, µ) → KSbe given byΦS(a)= E(a,S). WhenS =K is the Cantor set, we omit the subscript S on the notations just introduced. By Proposition 3.5 in [74], we have a ∼ bif and only if Φ(a) = Φ(b) so we can consider the initial topology on A(Γ,X, µ)induced byΦ. Call thisτ2. We now work towards showing τ1agrees withτ2. There will be a series of preliminary steps. This entire argument can be regarded as a ‘perturbed’ version of Proposition 3.5 in [74].

We first fix a compatible metric on Ms(KΓ). Let AK be the collection of clopen subsets ofKΓ of the formπF−1

Îγ∈F Aγ

whereAγ ⊆ K an element of some fixed countable clopen basis for K, F ⊆ Γ is finite and π : KΓ → KF is the projection onto the F-coordinates. Since the elements ofAK generate the Borelσ-algebra of KΓ, for(νn)n=

1 ⊆ Ms(KΓ)we haveνn → νin Ms(KΓ)if and only ifνn(A) → ν(A) for every A∈ AK. So, enumerating the elements ofAK as(AiK)i=1K given by

δK(ν, ρ)=

Õ

i=1

1

2i|ν(AiK) − ρ(AiK)|

is a compatible metric onMs(KΓ).

Lemma 2.3.1. For any > 0 there exists k ∈ N such that every a and every φ ∈ L(X, µ,K) there is ψ ∈ L(X, µ,K) with δK((Φφ,a)µ,(Φψ,a)µ) < such that the range ofψhas size≤ k. Note that kdepends only on, not onaorφ.

Proof. Fix . Choose N large enough that Í i=N 1

2i < . For each i ≤ N, write Ai = πF1

i

Îγ∈Fi Aiγ

for Aiγ ⊆ K clopen and Fi ⊆ Γ finite. We have for all

a ∈A(Γ,X, µ)andφ, ψ ∈ L(X, µ,K),

φ,a(Ai) −Φψ,a(Ai)| =

Φφ,a π−1Fi Ö

γ∈Fi

Aiγ

! !

−Φψ,a πF−1i Ö

γ∈Fi

Aiγ

! !

= |µ({x:Φφ,a(x)(γ) ∈ Aiγ for allγ ∈ Fi})

− µ({x:Φψ,a(x)(γ) ∈ Aiγ for allγ ∈ Fi})|

= |µ({x: φ((γ1)ax) ∈ Aiγfor allγ ∈ Fi})

− µ({x:ψ((γ−1)ax) ∈ Aiγ for allγ ∈Fi})|

=

µ Ù

γ∈Fi

γaφ−1(Aiγ)

!

− Ù

γ∈Fi

γaψ−1(Aiγ)

!

. (2.1)

Now, fixφ∈ L(X, µ,K). Let(Bj)kj=

1be the finite partition ofK given by the atoms of the Boolean algebra generated by (Aiγ)i≤N,γ∈Fi. Note that k depends only on . For each j ≤ k, let yj be any point in Bj. Define a mapψ : X → K by letting ψ(x)= yj for the unique jsuch thatx ∈ φ1(Bj). Thenψ1(Bj)= φ1(Bj)for each j, and hence φ1(Aiγ)=ψ1(Aiγ)for eachi ≤ N andγ ∈Fi. Therefore the value of the expression(1)is 0 andδK((Φφ,a)µ,(Φψ,a)µ)< . Lemma 2.3.2. If E(an,L) → E(a,L) in K(Ms(LΓ)) for every finite set L then E(an,K) → E(a,K)inK(Ms(KΓ)).

Proof. Fix > 0 in order to show that eventuallydK

E(an,K),E(a,K)

< , where dK is the Hausdorff distance in K(Ms(KΓ)) constructed from δK. For k ∈ N and b ∈A(Γ,X, µ)let

Ek(b,K)= {(Φφ,a)µ: φ:X →K is measurable and the range ofφhas size ≤ k}.

By Lemma 2.3.1 we can choosek ∈ Nsuch that E(b,K) ⊆ B

4(Ek(b,K))for every b ∈A(Γ,X, µ)whereBr(A)={ν ∈ Ms(KΓ):δK(ν, ρ)< rfor some ρ∈ A}. Notice thatEk(b,K)=Ð

L⊆K,

|L|=k

E(b,L). Fix a setLof sizekand chooseNlarge enough such that ifn≥ N thendKL

E(an,L),E(a,L)

< 4 wheredKL is the Hausdorff distance inK(Ms(LΓ)). Since the construction is independent of the set chosen to realize L, we have in fact dKL

E(an,L),E(a,L)

< 4 for every finite set L of size k. For a fixed finite L ⊆ K letEL(b,K) = {(Φb)µ : φ : X → K measurable,φ(X) ⊆ L}. Then for anyb,c∈A(Γ,X, µ)we have

dK

EL(b,K),EL(c,K)

= dKL

E(b,L),E(c,L) ,

so that whenn ≥ N,

dK

Ek(an,K),Ek(a,K)

=dK

©

­

­

­

« Ø

L⊆K

|L|=k

E(an,L), Ø

L⊆K

|L|=k

E(a,L) ª

®

®

®

¬

≤ sup

L⊆K

|L|=k

dKL

E(an,L),E(a,L)

<

4. Therefore whenn≥ N,

dK

E(an,K),E(a,K)

≤ dK

E(an,K),Ek(an,K) +dK

Ek(an,K),Ek(a,K) +dK

Ek(a,K),E(a,K)

< 3 4 .

Lemma 2.3.3. LetLbe a finite set of sizek. Then for each finite set(Ap)q

p=1of basic clopen setsAp⊆ LΓ and > 0there isδ >0such that ifd(a,b)< δthen for allφ∈ L(X, µ,L)there existsψ ∈ L(X, µ,L)such that |(Φa,φL )µ(Ap) − (ΦbL)µ(Ap)| <

for allp ≤ q.

Proof. Write Ap = Ñ

γ∈Fpπγ1(p(γ))for some Fp ⊆ Γ finite,  : Fp → k and fix > 0. Choose a finite F ⊆ Γ with(Fp)2 ⊆ F for all p ≤ q. We may assume the identitye∈ F. Supposed(a,b) < δ

2|F|+k|F|; we will specify a value forδ later. Now fixφ : X → k and letBi = φ−1(i). Givenη : F → k, letBη = Ñ

γ∈FγaBη(γ). We can then find a partition{Dη}η∈kF such that

|µ(γaBη1 ∩Bη2) −µ(γbDη1∩Dη2)| < δ

for all η1, η2 ∈ kF and γ ∈ F. Define ψ : X → k, by ψ(y) = l if y ∈ Dη for someη with η(e) = l. Furthermore, for eachl ≤ k let Dl = Ã{Dη : η ∈ kF and η(e) = l} = ψ−1(l). For each J ⊆ F and σ ∈ kJ let Dσ = Ã{Dη : η ∈ kF and σ v η}, whereσ v ηmeansηextendsσand let ˜Dσ

γ∈JγbDσ(γ). Furthermore ifγ ∈ Γ, J ⊆ Γandσ ∈ kJ letγ ·σ ∈ kγJ be given by(γ ·σ)(δ)= σ(γ1δ). For σ ∈ KFp andγ ∈Fpwe have

|µ(γbDσ∩Dγ·σ) −µ(γaBσ∩Bγ·σ)|

≤ Õ

(η∈kF:σvη)

Õ

0∈kF:γ·σvη0)

|µ(γbDη∩Dη0) −µ(γaBη∩Bη0)|

≤ δ(k|F|)2.

In particular, settingγ =ewe see|µ(Bσ) −µ(Dσ)| < δk2|F| for everyσ : Fp→ k. SinceγaBσ = Bγ·σ = γaBσ∩Bγ·σ we have

|µ(Dσ) −µ(γbDσ∩Dγ·σ)| ≤ |µ(Dσ) − µ(γaBσ)|

+|µ(γaBσ∩Bγ·σ) − µ(γbDσ∩Dγ·σ)|

= |µ(Dσ) − µ(Bσ)|

+|µ(γaBσ∩Bγ·σ) − µ(γbDσ∩Dγ·σ)|

<2δk2|F|

and also

|µ(Dγ·σ) − µ(γbDσ∩Dγ·σ)| ≤ |µ(Dγ·σ) − µ(Bγ·σ)|

+|µ(γaBσ ∩Bγ·σ) − µ(γbDσ∩Dγ·σ)|

< 2δk2|F|. Therefore

µ((γbDσ)4(Dγ·σ))= µ(γbDσ)+ µ(Dγ·σ) −2µ(γbDσ∩Dγ·σ)

≤ |µ(Dγ·σ) −µ(γbDσ∩Dγ·σ)|+|µ(Dγ·σ) − µ(γbDσ∩Dγ·σ)|

< 4δk2|F|. (2.2)

Since(Dη)η∈kF is a partition ofX and(Fp)2 ⊆ F, we have

Dp = Ä

η∈kF

p

Dη = Ù

γ∈Fp

Ä

σ∈kγFp σ(γ)=p(γ)

Dσ = Ù

γ∈Fp

Ä

σ∈kFp σ(e)=p(γ)

Dγ·σ.

Now, by(2),

µ

©

­

­

­

­

«

©

­

­

­

« Ù

γ∈Fp

Ä

σ∈kFp σ(e)=(γ)

Dγ·σ

ª

®

®

®

¬ 4

©

­

­

­

« Ù

γ∈Fp

Ä

σ∈kFp σ(e)=p(γ)

γbDσ

ª

®

®

®

®

¬ ª

®

®

®

®

¬

< (|Fp|k|Fp|)(4δk2|F|). (2.3)

Note that

Ù

γ∈Fp

Ä

σ∈kFp σ(e)=p(γ)

γbDσ = Ù

γ∈Fp

γbDp(γ) = D˜p,

so(3)reads

|µ(Dp) − µ(D˜p)| < (|Fp|k|Fp|)(4δk2|F|).

Moreover,

b,ψL )µ(Ap)= µ({x:ΦbL(x) ∈ Ap})

= µ({x:ΦbL(x)(γ)= p(γ)for allγ ∈Fp})

= µ({x:ψ((γ1)bx)= p(γ)for allγ ∈Fp})

= µ({x: x ∈γbψ−1(p(γ))for allγ ∈Fp})

= µ©

­

« Ù

γ∈Fp

γbDp(γ)ª

®

¬

= µ(D˜p). Similarly,(Φa,φ

L )µ(Ap)= µ(Bp). So we finally have

|(Φb,ψL )µ(Ap) − (Φa,φL )µ(Ap)| = |µ(D˜p) −µ(Bp)|

≤ |µ(D˜p) −µ(Dp)|+|µ(Dp) − µ(Bp)|

<(|Fp|k|Fp|)(4δk2|F|)+2δk2|F|. Since k is fixed in advance, |Fp| ≤ |F| and F depends only on (Ap)qp=

1, it is clear thatδcan be chosen so(|Fp|k|Fp|)(4δk2|F|)+2δk2|F| < for allp ≤ q.

We can now prove the main result of this section.

Theorem 2.3.1. τ12.

Proof. Suppose thatan→ ainτ1. We need to proveΦ(an) →Φ(a)inK(Ms(KΓ)).

By Lemma 2.3.2 it suffices to fix a finite set L and show E(an,L) → E(a,L) in K(Ms(LΓ)). Letk = |L|. WriteEn= E(an,L)andE = E(a,L). As before, if we let AL = (AiL)

i=1 be the collection of clopen subsets of LΓ of the formÑ

γ∈Fπγ1(jγ) for a finiteF ⊆ Γand jγ ≤ k, then

δL(ν, ρ)=

Õ

i=1

1

2i|ν(AiL) − ρ(ALi)|

is a compatible metric on Ms(LΓ). Fix > 0 in order to show that eventually dL(En,E) < , wheredL is the Hausdorff distance inK(Ms(LΓ))constructed from δL. ChooseN sufficiently large thatÍ

i=N 1

2i < 2. By Lemma 2.3.3 there isδ > 0 such that if d(a,b) < δ then for each i ≤ N and all φ ∈ L(X, µ,L) there exists ψ ∈ L(X, µ,L) such that |(Φa,φ

L )µ(AiL) − (Φb,ψ

L )µ(AiL)| < 2. Thus if M is large

enough thatd(an,a)< δforn ≥ M, we havedL(En,E)< .

Now suppose Φ(an) → Φ(a) inK(Ms(KΓ)). Fixr,q and > 0 in order to show that eventuallydH(Cr,q(an),Cr,q(a)) < . Chooseqdistinct points(xp)qp=

1 ∈ K and let(Dp)qp=

1 be a family of disjoint clopen subsets of K with xp ∈ Dp. Now let M be large enough that all sets of the form πγ−1s(Dp) ∩πe−1(Dt)for s ≤ r and p,t ≤ q appear as some AKi for i ≤ M in our previously chosen clopen basis AK. Then choose N large enough that when n ≥ N, dK(Φ(an),Φ(a)) < 2M. Then for each φ ∈ L(X, µ,K)we haveψ ∈ L(X, µ,K)such thatδK((Φan)µ,(Φa,ψ)µ)< 2M. So in particular, ifn≥ Nthen for eachφ ∈L(X, µ,K)there existsψ ∈ L(X, µ,K)such that

|(Φan)µ(πγ−1s(Dp) ∩π−1e (Dt)) − (Φa,ψ)µ(π−1γs(Dp) ∩πe−1(Dt))| <

for allp,t ≤ qands ≤r.

Now suppose n ≥ N and let (Bp)qp=1 be a partition of X. Define φ : X → K by takingφ(x)= xpfor the uniquep ≤ qwith x ∈Bpso by the previous paragraph we have a correspondingψ. Observe that for allγ ∈Γwe have

µ(γanBp∩Bt)= µ(γanφ1(Dp) ∩φ1(Dt))

= µ({x: φ((γan)−1x) ∈ Dpandφ(x) ∈ Dt})

= µ({x:Φφ,an(x)(γ) ∈ DpandΦφ,an(x)(e) ∈ Dt})

= µ({x:Φφ,an(x) ∈πγ1(Dp)andΦφ,an(x) ∈πe1(Dt)})

= µ({x:Φφ,an(x) ∈π−1γ (Dp) ∩π1−1(Dt)})

= (Φφ,an)µ(π−1γ (Dp) ∩π1−1(Dt)). Similarly lettingHp−1(Dp)we have

µ(γaHp∩Ht)= (Φψ,an)µ(π−1γ (Dp) ∩π1−1(Dt)). Thus for allp,t ≤ qands ≤ r,

|µ(γasnBp∩Bt) − µ(γsaHp∩Ht)|

= |(Φφ,an)µ(π−1γ+s(Dp) ∩πe−1(Dt)) − (Φψ,an)µ(π−1γs(Dp) ∩πe−1(Dt))|

< .

We have shown that when n ≥ N, Cr.q(an) ⊆ B(Cr,q(a)). The argument that eventuallyCr,q(a) ⊆ B(Cr,q(an))is identical.

Topology on the space of stable weak equivalence classes

Let As(Γ,X, µ) be the space of stable weak equivalence classes and let ι be the trivial action of Γ on an standard probability space. By Lemma 3.7 in [74], we have a ≺s b if and only if a ≺ ι× b. Moreover, Theorem 1.1 in [74] says that E(a×ι,K) = cch(E(a,K)), where Ms(KΓ) carries its natural topological convex structure as a compact convex subset of a Banach space. LettingΨ : A(Γ,X, µ) → K(Ms(KΓ)) be the map a 7→ cch(E(a,K)) we have Ψ(a) = Ψ(b) if and only if a∼s b. Tucker-Drob gives As(Γ,X, µ)the initial topology induced byΨ, in which it is a compact Polish space. Thus we havean →ain the topology of As(Γ,X, µ)if and only ifan×ι→ a×ιin the topology of A(Γ,X, µ). Therefore we can introduce a metricdson As(Γ,X, µ)by settingds(a,b)= d(a×ι,b×ι).