• Tidak ada hasil yang ditemukan

WINDOW CORRECTIONS: OPTICAL AND IMPEDANCE MISMATCH

A p p e n d i x B

WINDOW CORRECTIONS: OPTICAL AND IMPEDANCE

where

𝑑 𝑋1 𝑑 𝑑

=π‘ˆπ‘ βˆ’π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ 𝑑 𝑋2

𝑑 𝑑

=βˆ’π‘ˆπ‘  𝑑 𝑋3

𝑑 𝑑

=0

π‘’π‘œ 𝑏 𝑠 =βˆ’πœ‚(π‘ˆπ‘  βˆ’π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) +πœ‚0π‘ˆπ‘  π‘ˆπ‘  =𝐢0+π‘†π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

πœ‚ = 𝐴+𝐡 𝜌1 𝜌1= 𝜌0

1βˆ’ π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

𝐢0+π‘†π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

In the above equations, 𝑋1, 𝑋2, 𝑋3 are the distances shown in Fig. B.1. π‘ˆπ‘  is the shock-velocity in the window in material frame. Since the material ahead of the shock is considered to be under ambient conditions, the material frame and spatial frame shock-velocity are identical for this problem. π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ is the actual target-window interface velocity, andπ‘’π‘œ 𝑏 𝑠 is the measured target-window interface velocity. πœ‚0is the refractive index of window under ambient conditions, andπœ‚is the refractive index of the window material behind the shock-wave. Similarly, 𝜌0is the density of the window material under ambient conditions, and𝜌1is the density of the window material behind the shock-wave. 𝐢0and𝑆 are material parameters used to relate the shock-wave speed in the window to the particle velocity difference across the shock-wave. Using the above equations,π‘’π‘œ 𝑏 𝑠can be expressed as a function of π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™[1] as:

π‘’π‘œ 𝑏 𝑠 =βˆ’(𝐴+𝐡 𝜌1(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)) (π‘ˆπ‘ βˆ’π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) +πœ‚0π‘ˆπ‘ (π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™). Optical correction for release fan in window

Figure B.2 depicts the release-fan in the LiF window, which is formed when the shock wave is reflected off the free surface of the LiF window. The density, and hence the refractive index of LiF, varies continuously across the release fan. This variation in the refractive index will have to be accounted for in computing the optical path length for a light signal travelling to and from the PDV probe. The procedure adopted to obtain an optical correction for this problem is similar to that used in [2], where optical corrections were determined for a compression-fan in a window. Similar to the case of optical correction due to shock-wave in window, the

PDV Probe η , ρ1

up = uactual

η0 , ρ0

up β‰ˆ 2uactual

SLG LiF [100]

Lfull

X1 X2 X3

Release fan

Figure B.2: Schematic of window-correction for release fan in window.

observed velocity at the interface is related to the actual velocity as:

π‘’π‘œ 𝑏 𝑠 =πœ‚π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ βˆ’ 2(πœ‚0βˆ’1)π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™βˆ’

∫ π‘₯𝑏(𝑑) π‘₯π‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑

𝑑π‘₯ (B.1)

It remains to evaluate: ∫π‘₯𝑏(𝑑) π‘₯π‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑 𝑑π‘₯.

Consider recasting this integral in material coordinateh, whereh = 0 at LiF-SLG interface, β„Ž = β„Žπ‘Ž(𝑑) at π‘₯ = π‘₯π‘Ž(𝑑), and β„Ž = β„Žπ‘(𝑑) at π‘₯ = π‘₯𝑏(𝑑). For β„Ž β‰₯ β„Žπ‘Ž(𝑑), the transformation from h to x can be expressed as follows, for π‘₯𝑖(𝑑) denoting the spatial-coordinate of the SLG-LiF interface:

π‘₯(β„Ž, 𝑑) =π‘₯𝑖(𝑑) + 𝜌0 β„Žπ‘Ž(𝑑) 𝜌1

+

∫ β„Ž

β„Žπ‘Ž(𝑑)

𝜌0

𝜌(β„Ž0)𝑑 β„Ž0 (B.2) For evaluating∫π‘₯𝑏(𝑑)

π‘₯π‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑

𝑑π‘₯, we need𝑑π‘₯for a constant𝑑. By evaluating this differen- tial using Eq. B.2, we get : 𝑑π‘₯ =πœ• π‘₯(β„Ž, 𝑑) |𝑑 = 𝜌(β„Ž)𝜌0 𝑑 β„Ž. This can be used to evaluate

∫π‘₯𝑏(𝑑) π‘₯π‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑 𝑑π‘₯as follows:

∫ π‘₯𝑏(𝑑) π‘₯π‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑

πœ• π‘₯|𝑑 =

∫ β„Žπ‘(𝑑) β„Žπ‘Ž(𝑑)

πœ• πœ‚

πœ• 𝑑 π‘₯

(β„Ž(π‘₯ , 𝑑), 𝑑) 𝜌0 𝜌(β„Ž)𝑑 β„Ž

=

∫ β„Žπ‘(𝑑) β„Žπ‘Ž(𝑑)

πœ• πœ‚

πœ• 𝜌

πœ• 𝜌

πœ• 𝑑 π‘₯

(β„Ž(π‘₯ , 𝑑), 𝑑) 𝜌0

𝜌(β„Ž)𝑑 β„Ž (B.3)

Further,

πœ• 𝜌

πœ• 𝑑 π‘₯

(β„Ž(π‘₯ , 𝑑), 𝑑) = πœ• 𝜌

πœ• β„Ž 𝑑

πœ• β„Ž

πœ• 𝑑 π‘₯

+ πœ• 𝜌

πœ• 𝑑 β„Ž

(B.4) The individual components of Eq. B.4 are evaluated next. To evaluate πœ• β„Žπœ• 𝑑

π‘₯

, differentiate Eq. B.2 with respect to𝑑keepingπ‘₯constant.

>

0

πœ• π‘₯(β„Ž, 𝑑)

πœ• 𝑑 π‘₯

= πœ• π‘₯𝑖(𝑑)

πœ• 𝑑

+ 𝜌0 𝜌1

πœ• β„Žπ‘Ž(𝑑)

πœ• 𝑑

+ 𝜌0 𝜌(β„Ž)

πœ• β„Ž

πœ• 𝑑 π‘₯

βˆ’ 𝜌0 𝜌(β„Žπ‘Ž)

πœ• β„Žπ‘Ž(𝑑)

πœ• 𝑑

(B.5) Using continuity in the releaseβˆ’fan,

𝜌(β„Žπ‘Ž) = 𝜌1 0=

>

π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

πœ• π‘₯𝑖(𝑑)

πœ• 𝑑

+ 𝜌0 𝜌(β„Ž)

πœ• β„Ž

πœ• 𝑑 π‘₯

=β‡’ πœ• β„Ž

πœ• 𝑑 π‘₯

=βˆ’π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ 𝜌(β„Ž)

𝜌0

(B.6)

To evaluate πœ• πœŒπœ• β„Ž 𝑑

, consider𝜌= 𝜌(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™, 𝑒), where𝑒 is particle velocity:

πœ• 𝜌

πœ• β„Ž 𝑑

= πœ• 𝜌

πœ• 𝑒

πœ• 𝑒

πœ• β„Ž 𝑑

(B.7) Consider Fig. B.3 to evaluate Eq. B.7 . Note that although material properties like πΆβ„Ž and πœ•πΆπœ• π‘’β„Ž are expressed as functions of particle velocity (𝑒), they are ac- tually functions of both 𝑒 and actual-velocityπ‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™, i.e, πΆβ„Ž = πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™, 𝑒) and

πœ•πΆβ„Ž

πœ• 𝑒 = πœ•πΆβ„Ž(π‘’πœ• π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™,𝑒). The dependence on both variables ensures the material-frame indifference of these material properties. For sake of brevity, henceforth πΆβ„Ž and its derivative will be expressed only as functions of𝑒, although where required, its dependence onπ‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ will be utilized.

(πΏβˆ’ β„Ž) =πΆβ„Ž(𝑒) (π‘‘βˆ’π‘‘0)

=β‡’ πΆβ„Ž(𝑒) = (πΏβˆ’β„Ž) π‘‘βˆ’π‘‘0

=β‡’ πœ•πΆβ„Ž(𝑒)

πœ• 𝑒

πœ• 𝑒

πœ• β„Ž 𝑑

= βˆ’1 π‘‘βˆ’π‘‘0

πœ• 𝑒

πœ• β„Ž 𝑑

= βˆ’1

πœ•πΆβ„Ž(𝑒)

πœ• 𝑒 (π‘‘βˆ’π‘‘0)

(B.8)

t

L-h Free Surface of

LiF window L

h

L

Shock-wave Release fan

1 Us(uactual) 1

Ch(uactual) 1

Ch(2uactual)

t0

LiF Window

(Length of LiF window) (Material coordinate)

Us(u) - Shock-wave speed Ch(u) - Release wave speed

u - Particle velocity

Figure B.3: t-X diagram for release fan.

For conditions of uniaxial strain prevalent in plate-impact experiments, the volu- metric strain,πœ€ =1βˆ’ 𝜌0

𝜌. Further,

π‘‘πœ€= βˆ’π‘‘ 𝑒 πΆβ„Ž(𝑒)

=β‡’ 𝜌0 𝜌2

π‘‘πœŒ= βˆ’π‘‘ 𝑒 πΆβ„Ž(𝑒)

=β‡’ π‘‘πœŒ 𝑑 𝑒

= βˆ’πœŒ2

𝜌0πΆβ„Ž(𝑒) (B.9)

Thus, Eq. B.7 becomes:

πœ• 𝜌

πœ• β„Ž 𝑑

= 𝜌2

𝜌0πΆβ„Ž(𝑒)πœ•πΆβ„Ž(𝑒)

πœ• 𝑒 (π‘‘βˆ’π‘‘0) (B.10)

Finally, to evaluate B.4, it remains to evaluate πœ• πœŒπœ• 𝑑 β„Ž

= πœ• 𝜌

πœ• 𝑒

πœ• 𝑒

πœ• 𝑑

β„Ž

. Next, differentiate the

following equation with respect to𝑑

πΏβˆ’β„Ž=πΆβ„Ž(𝑒) (π‘‘βˆ’π‘‘0)

=β‡’ 0= πœ•πΆβ„Ž

πœ• 𝑒

πœ• 𝑒

πœ• 𝑑 β„Ž

(π‘‘βˆ’π‘‘0) +πΆβ„Ž(𝑒)

=β‡’ πœ• 𝑒

πœ• 𝑑 β„Ž

= βˆ’πΆβ„Ž(𝑒)

πœ•πΆβ„Ž

πœ• 𝑒 (π‘‘βˆ’π‘‘0) (B.11)

Using equations B.9 and B.11,

=β‡’ πœ• 𝜌

πœ• 𝑑 β„Ž

= 𝜌2 𝜌0πœ•πΆβ„Ž

πœ• 𝑒 (π‘‘βˆ’π‘‘0) (B.12) Thus using Eqs. B.10, B.6, and B.12, Eq. B.4 can now be written as:

πœ• 𝜌

πœ• 𝑑 π‘₯

(β„Ž(π‘₯ , 𝑑), 𝑑) = 𝜌2 𝜌0πΆβ„Ž(𝑒)πœ•πΆβ„Ž(𝑒)

πœ• 𝑒 (π‘‘βˆ’π‘‘0)

βˆ’π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ 𝜌(β„Ž)

𝜌0

+ 𝜌2

𝜌0πœ•πΆβ„Ž

πœ• 𝑒 (π‘‘βˆ’π‘‘0) The integral (I) given in Eq. B.3 becomes

𝐼𝐼 𝐼 =

∫ β„Žπ‘(𝑑) β„Žπ‘Ž(𝑑)

πœ• πœ‚

πœ• 𝜌

𝜌

πœ•πΆβ„Ž(𝑒)

πœ• 𝑒 (π‘‘βˆ’π‘‘0)

1βˆ’ π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ πΆβ„Ž(𝑒)

𝜌 𝜌0

𝑑 β„Ž

Thus, the apparent particle velocity (π‘’π‘œ 𝑏 𝑠) given in Eq. B.1 becomes π‘’π‘œ 𝑏 𝑠=π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™(πœ‚βˆ’2πœ‚0+2) βˆ’I

Further, differentiating both sides withπ‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ and using Leibniz rule for differenti- ating integrals, we get:

𝑑 π‘’π‘œ 𝑏 𝑠 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

=(πœ‚βˆ’2πœ‚0+2) + 𝑑 πœ‚ 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ +

πœ• πœ‚(β„Žπ‘Ž(𝑑))

πœ• 𝜌

𝜌(β„Žπ‘Ž(𝑑))

πœ•πΆβ„Ž(π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™)

πœ• 𝑒 (π‘‘βˆ’π‘‘0)

1βˆ’ π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)

𝜌(β„Žπ‘Ž(𝑑)) 𝜌0

𝑑 β„Žπ‘Ž(𝑑) 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

βˆ’

πœ• πœ‚(β„Žπ‘(𝑑))

πœ• 𝜌

𝜌(β„Žπ‘(𝑑))

πœ•πΆβ„Ž(2π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™)

πœ• 𝑒 (π‘‘βˆ’π‘‘0)

1βˆ’ π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ πΆβ„Ž(2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)

𝜌(β„Žπ‘(𝑑)) 𝜌0

𝑑 β„Žπ‘(𝑑) 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

(B.13) It can be noted that, similarly to what was stated before Eq. B.8, hereπΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)= πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™, π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) and πΆβ„Ž(2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) = πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™,2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) which, is obtained by setting𝑒 =π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ and𝑒 =2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™, respectively.

Equation B.13 can be simplified as described next. The refractive index (πœ‚) is given by the linear relation πœ‚ = 𝐴+ 𝐡 𝜌 [2, 3]. For LiF[100] windows used with

1550 nm wavelength light, the material properties A = 1.2669 and B = 0.037 are taken from [3]. Further, by continuity at start and end of the release fan, 𝜌(β„Žπ‘Ž(𝑑)) = 𝜌1 and 𝜌(β„Žπ‘(𝑑)) = 𝜌0. 𝑑 𝑒𝑑 β„Žπ‘Ž

π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

can be evaluated by differentiating πΏβˆ’β„Žπ‘Ž(𝑑)=πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) (π‘‘βˆ’π‘‘0)on both sides w.r.tπ‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™.

=β‡’ 𝑑 β„Žπ‘Ž 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

= πœ•πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)

πœ• 𝑒

(π‘‘βˆ’π‘‘0) 𝑆𝑖 π‘šπ‘–π‘™ π‘Žπ‘Ÿ 𝑙 𝑦,

=β‡’ 𝑑 β„Žπ‘ 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

=2πœ•πΆβ„Ž(2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)

πœ• 𝑒

(π‘‘βˆ’π‘‘0) The derivative of refractive index can be expressed as:

𝑑 πœ‚ 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

= 𝑑 πœ‚ π‘‘πœŒ1

π‘‘πœŒ1 𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

The density 𝜌1 is evaluated using the shock jump conditions andπ‘ˆπ‘  βˆ’π‘’π‘ relation for LiF,π‘ˆπ‘  =𝐢0+𝑆𝑒𝑝, as:

𝜌1= 𝜌0

1βˆ’ π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

𝐢0+π‘†π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

The material wave speeds πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)(at peak-strain) and πΆβ„Ž(2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)(at zero- strain) for LiF are evaluated as follows:

𝜎 =𝜌0 𝐢0

1βˆ’π‘†πœ€ 2

πœ€

πΆβ„Ž(𝑒) = s

1 𝜌0

π‘‘πœŽ π‘‘πœ€

=β‡’ πΆβ„Ž(π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) =(𝐢0+π‘†π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) s

1+ 2π‘†π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ 𝐢0

=β‡’ πΆβ„Ž(2π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) =𝐢0

Thus, Eq. B.13 can now be simplified to : 𝑑 π‘’π‘œ 𝑏 𝑠

𝑑 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

=(π΄βˆ’2πœ‚0+2) +𝐡 𝜌2

1

𝜌0 π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™

𝐢0

(𝐢0+π‘†π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™)2 + 1

(𝐢0+π‘†π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™) q

1+ 2π‘†π‘’π‘Ž 𝑐 𝑑 𝑒 π‘Žπ‘™

𝐢0

+2

𝜌0βˆ’ π‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™πœŒ0

𝐢0 (B.14)

Thus Eq. B.14 can be used to plotπ‘’π‘œ 𝑏 𝑠as a function ofπ‘’π‘Ž 𝑐𝑑 𝑒 π‘Žπ‘™ by integration.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 uactual(km/s)

(km/s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

uobs

Estimate from release fan correction Jones and Gupta, 2000

Figure B.4: Comparison of z-cut quartz data from [4] and release fan correction (Eq. B.14) for 532 nm wavelength light.

0.2 0.4 0.6 0.8 1

uactual 0

0.2 0.4 0.6 0.8 1 1.2

u obs

Shock-wave correction Release fan correction

(km/s)

(km/s)

Figure B.5: Observed particle velocity vs. actual particle velocity for shock-waves and release fan in LiF[100] for 1550 nm light.

An experimental validation of Eq. B.14 is performed for z-cut quartz release data provided in [4]. This comparison is provided in Fig. B.4. The parameters for z-cut quartz needed in Eq. B.14 was taken from [3].

The optical corrections due to shock-wave and release fan in LiF[100] window is thus plotted in Fig. B.5.

Corrections due to impedance mismatch between LiF and SLG

As seen in Figure B.6, the particle velocity observed at the SLG-LiF interface, after optical corrections (𝑒𝑖𝑛𝑑 π‘’π‘Ÿ 𝑓 π‘Ž 𝑐 𝑒), is lesser than the particle velocity prevalent in the SLG material (π‘’π‘–π‘›βˆ’π‘š π‘Žπ‘‘ π‘’π‘Ÿ 𝑖 π‘Žπ‘™) before the shock-wave reaches the interface. In order to

LiF [100]

SLG

Stress

Particle velocity

uinterface uin-material (u)

(Οƒ)

Οƒinterface Οƒin-material

u'

Figure B.6: Stress-particle velocity of LiF and SLG used to obtain the in-material particle velocity in SLG.

Figure B.7: Impedance mismatch correction for optically corrected data from Expt.

SSL-2 of this work.

construct a stress-strain loading history of the SLG material, the observed velocity profile (𝑒𝑖𝑛𝑑 π‘’π‘Ÿ 𝑓 π‘Ž 𝑐𝑒(𝑑)) is converted to in-material velocities (π‘’π‘–π‘›βˆ’π‘š π‘Žπ‘‘ π‘’π‘Ÿ 𝑖 π‘Žπ‘™(𝑑)) using the following formula:

π‘’π‘–π‘›βˆ’π‘š π‘Žπ‘‘ π‘’π‘Ÿ 𝑖 π‘Žπ‘™(𝑑) =

𝑒𝑖𝑛𝑑 π‘’π‘Ÿ 𝑓 π‘Ž 𝑐 𝑒(𝑑) +𝑒0

2 (B.15)

where u0 is shown in Fig. B.6. The π‘ˆπ‘  βˆ’π‘’π‘ parameters taken from [5] were used to construct LiF [100] stress Hugoniot. The SLG hugoniot was constructed using parameters taken from [6]. An example of impedance mismatch correction is provided in Fig. B.7, for data from Experiment 2 in the main work. The blue curve shown in Fig. B.7, is the in-material particle velocity of SLG.