• Tidak ada hasil yang ditemukan

Francis J. Zucker is affiliated with the Max-Planck-Institut in Starnberg, West Germany, and is now with the Center for the Philosophy and History of Science at Boston University.

Reductionism and its Counter-Strategies

I will briefly describe three research programs in this essay that are motivated by opposition to physical reductionism.

All scientific analysis seeks to isolate elements which, in suitable

combination, account for the appearances and events in some domain of nature; and this enterprise, carried to completion, necessarily lands one with the basic entities of physics. Thus physical reductionism is rightly called the methodological ‘superparadigm’ of modern science, and it seems odd indeed to look for research programs in opposition to it.

To be sure, the physical reductionism I have in mind is ontological, not methodological: it is the position that the universe ‘consists of’ the basic entities disclosed by physics, which are, in their diverse arrangements, all there ‘really is’ in the world -- all else, including the subject himself and his perceptions, being reduced to the derivative status of

‘epiphenomena,’ which H. Jonas defines as the powerless byplays of physical happenings that follow their own rules entirely (Jonas 1966, p.

88). But can methodological reductionism be so easily separated from this ontology? Do we not, as scientists, insist on passing beyond method to existence? If we acknowledge scientific truth to be the most certain we possess, then surely its objective correlatives can be no mere

‘thought economies’ (Mach) or ‘tools for manipulating nature’

(instrumentalism), but they must in some sense be ‘real.’ Once the physical constituents are granted an independent existence, though, they appear to usurp the whole: gathered together in systems of arbitrary complexity, but all conforming to their inherent laws of combination, they now become coextensive with the universe they so fully explain -- including, therefore, the reflecting subject, which is capable of

juxtaposing itself to the rest of the world, and of enunciating the theory of the very entities that constitute both. Though this feat demands a greater faith in the miraculous than we may wish to muster -- and prompts some of us to dismiss such an ontology at the instant -- it yet appears no mere trivial matter to disentangle the two phases of

reductionism and thus avoid pouring out the baby with the bath.

The task would perhaps be simpler were it not bedeviled by the heritage of Cartesian dualism, which I think still serves most of us in the West as the point of departure in our ontological deliberations. When in the seventeenth century a reality split into an ‘extended’ and a ‘thinking’

substance (res extrensa and res cogitans) replaced the hierarchically structured, divinely governed universe of Antiquity and the Middle Ages, it did provide modern science with an ontological frame more congenial to its rise. But this frame, which had to encompass so

radically fragmented a universe, struck some minds almost immediately, and ever since, as being unequal to its task. Ontological unity was

thereupon sought by opting for a monist solution: for idealism (the monism of the res cogitans), or materialism (that of the res extensa), or for the hoped-for middle ground of phenomenalism. Materialism, which pictured the basic entities in mechanical terms (with billiard ball-like atoms), represents physical reductionism in its classic form.1 Today’s physics, having turned progressively more abstract and rejecting thing-

like models for its elementary particles, may puzzle the old-style materialist in its apparent break with the res extensa, but does not in itself challenge his monist claim.

If we reject the idealist and phenomenalist monisms for the reason cited (the reality claim of scientific analysis), we can only hope for an escape from ontological reductionism by outflanking dualism itself. Both Whitehead and his contemporary, Husserl, held that dualism could indeed be overcome philosophically, by seeking the fundamental unity in a domain of reality that lies anterior, in some sense, to the sharp subject-object split, justified though that split be in certain contexts.

‘Process’ is Whitehead’s label for that domain, the ‘pre-predicative’ and the ‘life world’ are Husserl’s. In their attempts at clarifying the two- faced reductionism issue, there seem to me to be important differences between the two philosophers,2 but these need not concern us here so long as we have license to believe that disentanglement is

philosophically possible at all, that anti-reductionism can mean opposition to the misplacement of ontological unity, and not to the scientific enterprise as such.3

Philosophical consideration may thus help clear the air, but I believe that only in conjunction with the development of science itself can it lead to the construction of an ontology of nature, i.e., of a ‘body-social of scientific knowledge’ that is neither a hangover from the old

hierarchical order nor captive to a monist pseudo-unity. If you have no clear vision of the perfect society, Marcuse says, register your protest against what hurts most in the old; the new will supposedly emerge in the sequel. While this attempt at emancipation through negation may not lead far with respect to the body-social, I will try it here in describing the three research programs in terms of the ‘No’ each of them says to one of the basic strands of the reductionism syndrome: to the dualism that spawned it, to the ‘nothing-but’ of its monism, and to the

fragmenting sort of mathematical conceptualization it one-sidedly encourages.

The first strategy tries to explode the ontological claim of physical reductionism from within, so to speak. It takes a leaf from the tremendous changes within physics between the nineteenth and the twentieth century, and decides to continue riding the tiger. ‘Think physics to the end’ is C. F. von Weizsaecker’s way of putting it: since physics itself, as the development of quantum mechanics shows

overcame the fragmentation of physical reality into building stone-like

basic entities, so it might also, as it approaches its final, ‘unitary’ form (von Weizsaecker’s term for the still unknown theory that subsumes the currently known theories plus the long searched-for elementary theory in one system), overcome the fragmentation of the whole of reality into distinct domains of the physical and the mental. Indeed, von

Weizsaecker’s researches suggest that the axioms of unitary physics are precisely the formal expression of the preconditions of

(conceptualizable) experience; that the subject as knower, in other words, is encountered at the very base of physics, as Kant had (in a slightly different manner) already surmised. Thus physics itself, for whose sake Descartes had so radically separated the ‘extended substance’ from total reality, may be able to subvert the ontological reductionism which was an offspring of that separation.

To explain the second strategy, let us recall the display of the

reductionist order of the sciences along the ‘Comtean ladder,’ which arranges the forms of life and the corresponding specialized disciplines in an ascending series of rungs starting with physics at the base,

followed by chemistry, biology, psychology, sociology and, depending on one’s inclination, history and religion. The ‘simples’ of each rung, i.e., the basic conceptions of that discipline, are ‘nothing but’ a

complicated structure composed of the simples of the rung beneath it. If human behavior, for example, is conceived as made up of a network of pre-programmed responses (psychology), these can be reduced, say, to conditional reflexes (biology), which are in turn nothing but

complicated physical chemistry. Anti-reductionism, in the common understanding, here argues for the irreducibility, in some sense, of the higher forms of reality to the lower -- of biology to physics, or of religion to sociology -- and this the second strategy attempts to do. To this end, it accents the relative autonomy of each rung by formulating the simples appropriate to it, i.e., by conceptually ‘assimilating’ (to use Bohm’s term [Bohm, 1974, p. 58]) each type of fact into its own sort of order. I therefore term this strategy, ‘Cultivate the simples appropriate to each order,’ and cite Waddington’s ‘epigenetic landscape’ along with his ‘chreods’ as an outstanding example of its fruits. This strategy tries to meet Whitehead’s demand for a natural philosophy that regards "the red glow of the sunset. . . as much part of nature as the molecules and electric waves by which men of science would explain the

phenomenon" (Whitehead, 1970, p. 29). That the ontologically

unprejudiced exhibition of the domains of ‘sunset colors’ and of electric waves, each in its own terms, does indeed allow us to account for the

"coherence of things" (ibid.) without succumbing to the nothing-but of

the waves, is one of the points I shall try to make below. The problem is to discover in what sense this coherence, which of course includes the methodologically reductionist relation, is nevertheless richer than it. I suggest that language is sufficiently powerful to express this

enrichment, and that it is a form of knowledge which is being thus expressed, albeit not of scientific knowledge in the sense of

Weizsaecker ("testable predictions on precisely formulated

alternatives"); from this point of view, the first and second strategy appear to be complementary. It must be admitted, however, that the second is weaker than the first: opposition to physicalist monism dictates its employment, but it cannot by itself overthrow it. For the reductionist can always argue that, while it may be good heuristics to develop concepts peculiarly fitted to each of the rungs (if they are not already available in ordinary language), these will be necessarily

anthropomorphic and their sole function in the scientific enterprise is to invite reduction.

The third strategy is rather speculative. Like the second, it seeks the simples in structuring any domain of knowledge, but tries to give this search a sharper edge by applying a lesson learned from physics. So far, simples have been taken as concepts that seem elementary in an

intuitive way: a leaf, for example, is an intuitively obvious constituent in plant morphology. As one learns one’s way about in any field of

inquiry, one gradually becomes aware of the ‘chreods’ that lie close to the level of immediate perception through the senses or the intellect. But perhaps our ordinary perceptive powers are not sufficiently acute to discover the deeper-lying chreods. Indeed we know from physics that, as we dig deeper, the basic notions become very abstract, i.e., non- intuitive. The first strategy is satisfied with pointing out that, in the end, at least the axioms of unitary physics become transparent. It is possible, however, that progress on the higher rungs, for example in biology, depends on an enrichment of our perceptive faculties, and since it is structures we wish to recognize in science, this means an enrichment of our mathematical imagination. This is precisely what David Bohm has been after in his work with ‘implicate’ (or ‘enfolded’) orders, which so far he has discussed only in relation to physics, but clearly means to apply in other fields as well, such as in perception theory and in

cognitive psychology (Bohm 1973 and 1974). Bohm believes that if we learn to think in ‘non-local’ orders, i.e., in orders quite other than those based on the Cartesian res extensa, we will be able to understand the aspect of wholeness in quantum mechanics, which in a formal sense we already know to be there, intuitively as well. Implicate orders express

"the intimate interconnection of different systems that are not in spatial contact" (Bohm and Hiley 1975), and will be needed wherever spatial (or temporal) wholeness is to be given a mathematical form. The example presented below under the title, ‘Is there a mathematics for wholes?’, is an attempt to apply a primitive instance of implicate order to plant morphology. The germ of this idea was already known to

Whitehead, and to the mathematician F. Klein, both of whom speculated about its use in classical mechanics (Whitehead 1898). In adapting it to biology, George Adams (d.1963) introduced the notion of ‘formative forces,’ which correspond to the ‘formative causes’ mentioned by Bohm (Bohm 1973, p. 22). The true testing ground for the implicate-order strategy, it seems to me, may indeed be biology rather than physics, where abstract methods are so powerful as to perhaps make it

dispensable: just as the old style building-block materialist was refuted not by philosophical polemic, but by the one authority in which he trusted, i.e., by physics itself, so the nothing-but reductionist in

contemporary biology will modify his views should it be possible some day to provide him with a mathematical language that fills the currently existing gap between our formal knowledge of gene structure and

combinations, and our intuitive apprehension of growth and shape. This language, both Adams and Bohm agree, will have to be that of an

implicate topological or projective order, not the explicate metrical order of classical physics. What the precise relationship between the novel morphology and traditional biochemistry might be is a question I have not been able to resolve; Bohm’s and Adams’ expectations diverge on this point.

Think Physics to the End

Why should one expect physics to develop toward a unitary theory, and what could be the meaning of such a theory?

Physics develops in a sequence of ‘closed’ theories, to use Heisenberg’s term for a mathematical structure with associated physical semantic that cannot be improved upon by means of ‘small’ changes (as, for example, Newton’s law of gravitation cannot be improved by modifying the number two in the exponent of the distance term). When a ‘deeper’

closed theory is found (as, in the case of gravitation, general relativity), the older theory is not simply discredited, but its predictions are upheld within certain parameter ranges specified by the newer theory, which adds correct predictions of its own outside those ranges. Classical mechanics united terrestrial and celestial kinematics in a unified

dynamics. During the past century, electromagnetic theory united electrostatics, magnetostatics, and network theory with optics in one stroke; special relativity combined classical mechanics with

electromagnetic theory; general relativity combined the theory of gravitation with physical geometry and special relativity; and quantum mechanics united much of physics with, at least in principle, all of chemistry. It is at least as puzzling to think of an infinite progression of ever more general theories in physics as it is to postulate a final, unitary theory. (What is still missing is chiefly a theory of elementary particles, which Weizsaecker believes to be implicit in quantum mechanics itself, to become explicit once the correct symmetry group is applied.)

Weizsaecker conceives the unitary theory, which encompasses all other as special cases, to be the formal expression of the preconditions of experience (Weizsaecker 1971a and 1971b). This thesis was inspired by Kant, but goes well beyond Kant: only the regulatives of science, e.g., the principle of causality, were in Kant’s opinion a priori; the special laws would have to be formulated on the basis of special experience. If unitary physics spans all special laws, however, then all physics

dispenses with special experience and depends solely on its

preconditions. In principle, then, unitary physics ought to be deducible from a sufficiently detailed analysis of terms such as time, logic,

observation, number. So long as this task appears too formidable, we must try to construct the theory by working from both ends: by

axiomatizing the existing most general theory, i.e., quantum mechanics, in a manner that invites interpretation in terms of plausible

preconditions, and by logically analyzing the preconditions that occur to one upon reflection so as to reconstruct the theory. In trying to close the gap, one finds additional preconditions of which one had previously been unaware, and, looking in the other direction, one tries out new axioms, for example concerning symmetry conditions suggested by the local analyses. The most cursory analysis of experience shows it to presuppose the structure of time: we learn from facts of the past to predict future events, and we test these when they are no longer future but present or past. Weizsaecker tries to develop a logic of temporal propositions that incorporates these features. The logic would be a probability theory based on a time-dependent axiomatics, which somehow must include the axiom of indeterminism (or its equivalent, the ‘superposition’ axiom).

Granted this much, Weizsaecker can reconstruct the Hilbert space structure of quantum mechanics for the case of the most elementary

objects conceivable. An object of this sort is not a smallest something in physical space; it is, rather, the smallest unit of information, i.e., a single yes-no decision, termed an ‘ur,’ or a ‘simple alternative.’ Its Hilbert space is a two-dimensional complex vector space, and a simple

mathematical development shows that complex bodies constituted by urs admit of a natural description in a three-dimensional real space.

Thus Weizsaecker explains the structure of space from quantum mechanics, and quantum mechanics from the structure of time.

Although the details of his project are far from being carried out, the basic scheme stands: the unity of physics, and therefore (since

knowledge and the known are not to be separated) the unity of physical nature, reflect the unity of time. ‘Physical’ nature, to Weizsaecker, means nature objectified -- any part of nature, including, for example, a living cell, or even the human mind which, insofar as it is analyzable in terms of yes-no questions, is fully subject to the laws of unitary physics.

Therein lies Weizsaecker’s ‘reductionism.’ It does not reduce mind to palpable 19th-century matter, nor even to a something situated in physical space; and it leaves open the possibility of other, non-

objectivating modes of encountering mind, in which another ‘Thou’ is met. If matter is what obeys the laws of physics, then it is an aspect of all that exists in the universe, and rather than juxtaposing it to life or mind, it is but a mode of experiencing these. A reductionism that claims no more than this is a reductionism with all the poison drawn from it.

Cultivate the Simples Appropriate to Each Order

Ordinary language provides us with elementary concepts on all levels of nature. Deliberate scientific work begins with a search for elementary terms -- the ‘primitives’ or ‘simples’ -- even more peculiarly fitted to the analysis of the subject at hand, in one with the search for patterns in which to view their interrelations. It has been a principle of good

craftsmanship with all empiricists from Occam to Bridgeman to tailor their terms and theories as closely to the phenomenally given as possible. Occam’s razor, Bridgeman’s admonition to make the least down payment on future conceptualizations (Bridgeman 1959, p. 10), are born of the same spirit of faithfulness unto the phenomena. (Mach, too, was of this persuasion.) Tackling color theory in this spirit, as I will now show, one immediately obtains the simples appropriate (in a clearly specifiable sense) to that field; these simples are not the electromagnetic frequencies high school physics tells us colors ‘really’ are. Examples of this sort, taken from well-established sciences, may serve as practicing