• Tidak ada hasil yang ditemukan

Analysis of Machine Learning Techniques Used in Behavior-Based Malware Detection

N/A
N/A
Protected

Academic year: 2023

Membagikan "Analysis of Machine Learning Techniques Used in Behavior-Based Malware Detection"

Copied!
3
0
0

Teks penuh

(1)

ANALYSIS OF MACHINE LEARNING TECHNIQUES USED IN

BEHAVIOR-BASED MALWARE DETECTION Page 99 of 120

Ivan Firdausi

REFERENCES

Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., & Nazario, J. 2007.

Automated Classification and Analysis of Internet Malware.

Bayer, U. 2009. Anubis: A Platform for the Analysis of Malicious Code. Secure Systems Lab Technical University Vienna. [Presentation slides.]

Bayer, U., Kruegel, C., & Kirda, E. 2006. TTAnalyze: A Tool for Analyzing Malware. 15th Annual Conference of the European Institute for Computer Antivirus Research, Hamburg, Germany, pp. 180–192.

Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P., Song, D., & Yin, H. 2007. BitScope Automatically Dissecting Malicious Binaries.

Christodorescu, M., Jha, S., & Kruegel, C. 2007. Mining Specifications of Malicious Behavior. Proceedings of the 6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE) 2007, September 3–7, Dubrovnik, Croatia.

ACM.

Dai, J., Guha, R., & Lee, J. 2009. Feature Set Selection in Data Mining Techniques for Unknown Virus Detection – A Comparison Study. CSIIRW, April 13-15, Oak Ridge, Tennessee, USA. ACM.

Ding, J., Jin, J., Bouvry, P., Hu, Y., & Guan, H. 2009. Behavior-based Proactive Detection of Unknown Malicious Codes. Fourth International Conference on Internet Monitoring and Protection 2009. IEEE.

Distler, D., & Hornat, C. 2007. Malware Analysis: An Introduction. SANS Institute.

(2)

ANALYSIS OF MACHINE LEARNING TECHNIQUES USED IN

BEHAVIOR-BASED MALWARE DETECTION Page 100 of 120

Ivan Firdausi

Fawcett, T. 2006. An Introduction to ROC Analysis. Pattern Recognition Letters, 27, pp. 861–874.

Filiol, E., Jacob, G., & Liard, M.L. 2006. Evaluation methodology and theoretical model for antiviral behavioral detection strategies. Third Journal of Computer Virology 2007, pp. 23–37. France: Springer-Verlag.

Guizani, W., Marion, J., & Reynaud-Plantey, D. 2009. Server-Side Dynamic Code Analysis. 4th International Conference on Malicious and Unwanted Software - Malware 2009, pp. 55-62. France: HAL.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I.H. 2009.

The WEKA Data Mining Software: An Update, SIGKDD Explorations, Volume 11, Issue 1.

Hall, M.A. 2000. Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. Proceeding of the 17th International Conference Data Mining, Morgan Kaufmann Publishers Inc, pp. 359–366.

Ichinose, S. 2009. Advanced Malware Analysis and Coordination. Jakarta: JPCERT Coordination Center. [Course notes.]

Ichinose, S. 2009. Malware Analysis Basics. Jakarta: JPCERT Coordination Center.

[Course notes.]

Jacob, G., Debar, H., & Filiol, E. 2008. Behavioral detection of malware from a survey towards an established taxonomy. Fourth Journal of Computer Virology 2008, pp. 251–266. France: Springer-Verlag.

Liu, H., & Motoda, H. 1998. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Norwell, MA.

(3)

ANALYSIS OF MACHINE LEARNING TECHNIQUES USED IN

BEHAVIOR-BASED MALWARE DETECTION Page 101 of 120

Ivan Firdausi

Rieck, K., Holz, T., Willems, C., Duessel, P., & Laskov, P. 2008. Learning and Classification of Malware Behavior. DIMVA 2008, LNCS 5137, pp. 108–125.

Berlin Heidelberg: Springer-Verlag.

Rieck, K., Trinius, P., Willems, C., & Holz, T. Automatic Analysis of Malware Behavior using Machine Learning.

Russell, S., & Norwig, P. 2003. Artificial Intelligence: A Modern Approach. Prentice Hall.

Skoudis, E., & Zeltser, L. 2003. Malware: Fighting Malicious Code. Upper Saddle River, NJ: Prentice Hall PTR.

Tan, P., Steinbach, M., & Kumar, V. 2006. Introduction to Data Mining. Pearson Addison-Wesley.

Trinius, P., Willems, C., Holz, T., & Rieck, K. 2009. A Malware Instruction Set for Behavior-Based Analysis.

Wagener, G., State, R., & Dulaunoy, A. 2007. Malware behaviour analysis. Third Journal of Computer Virology 2007. France: Springer-Verlag.

Willems, C., Holz, T., & Freiling, F. 2007. Toward Automated Dynamic Malware Analysis Using CWSandbox. IEEE Security and Privacy, 5(2):32-39, March/April 2007.

Zhao, H., Zheng, N., Li, J., Yao, J., & Hou, Q. 2009. Unknown Malware Detection Based on the Full Virtualization and SVM. International Conference on Management of e-Commerce and e-Government 2009. IEEE.

Referensi

Dokumen terkait

The discussion is carried out on every method used by previous researchers in achieving high forecasting accuracy, including the selection of machine learning

The proposed new myoelectric pattern recognition (M-PR) employed radial basis function extreme learning machine with a rejection mechanism named RBF-ELM-R.. The

So to overcome the production problem in this study an analysis of the performance of the machine by determining the identification of data needs based on the

Prediction of Pneumonia Disease of Newborn Baby Based on Statistical Analysis of Maternal Condition Using Machine Learning Approach Md.. Mehedi Hasan,

MRI Imaging, Comparison of MRI with other Modalities, Noise in MRI Images and Machine Learning Techniques for Noise Removal: A Review Sajid Ullah Khana, Najeeb Ullah2a, Imran

Algorithm 1 Ensemble Learning based malicious node detection in SDN based VANETs function plausibility and consistency check get each vehicle Vm € V where m= 1,2,3…, n for each

Three different classifiers decision tree J48, random forest, radial basis function RBF network available in Waikato Environment for Knowledge Analysis WEKA based machine learning tool

This article presents a method to estimate the higher heating value of coal based on its ultimate analysis using machine learning techniques, including multivariate adaptive regression splines, multivariate linear regression, and multilayer