• Tidak ada hasil yang ditemukan

Applied Mathematics and Computation A modification to the first integral method and its applications

N/A
N/A
Arif Maulana

Academic year: 2023

Membagikan "Applied Mathematics and Computation A modification to the first integral method and its applications"

Copied!
13
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Applied Mathematics and Computation

journalhomepage:www.elsevier.com/locate/amc

A modification to the first integral method and its applications

Hong-Zhun Liu

Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, PR China

a rt i c l e i nf o

Article history:

Received 30 January 2019 Revised 3 December 2020 Accepted 3 December 2021 Available online 18 December 2021 Keywords:

First integral method

Conformable fractional diffusion-reaction equation

Duffing-van der Pol oscillator Complex cubic-quintic Ginzburg–Landau equation

Equation for surface waves KdV–Burgers–Fisher equation

a b s t ra c t

In thisarticle,we modifyFeng’s firstintegral method(FIM)for the purposeof enlarg- ingitsapplications.ComparedwithoriginalFIM,ourmodifiedFIMismorestraightand canalsobeemployedtofindfirstintegralofhigher-orderordinarydifferentialequations (ODEs).WeemployourmodifiedFIMintofivedifferentialequations,namely,thedensity- dependentconformablefractionaldiffusion-reactionequation,theDuffing-vanderPolos- cillator,the complexcubic-quintic Ginzburg–Landauequation,thewell-knownnonlinear evolutionequationfordescriptionofsurfacewavesinaconvectingliquid,andtheKdV–

Burgers–Fisherequation.Consequently, wegetthesamefirstintegralobtainedbyFeng’s FIM forthe firstequation; for the secondequation,we reobtaincertainimportantfirst integral reportedpreviously;forthe thirdequation, weconstructanewfirstintegralof complexcubic-quinticGinzburg–Landauequation;andforthefourthandfifthequations, weshowtheeffectivenessofourapproachtothird-orderODEsandreobtainthesamefirst integralrecentlypresentedbyKudryashovforthefourthequation,andforthefifthequa- tion, twonewfirstintegralsarepresented.Alltheabovefullyrevealtheeffectivenessof ourmodification.

© 2021ElsevierInc.Allrightsreserved.

1. Introduction

In2002,forconstructingtravelingwavesolutionsofBurgers–KdVequation,Feng[1,2]proposedapopularmethodcalled firstintegralmethod(FIM)whichmakesuseofthealgebraictheoryofcommutativeringandhasattractedmuchattention fromresearcherstoinvestigatefirstintegralandthereaftertravelingwavesolutionsofpartialdifferentialequations(PDE)in nonlinearscience,seereferences[3–31]andthereferencestherein.Forconvenience,we firstintroduceFeng’sfirstintegral methodinbrief.

1.1. OutlineofFIM

SupposethatweinvestigateanonlinearPDEwhichreads

E

(

u,ux,ut,uxx,...

)

=0, (1)

whereu=u(x,t)isadependentvariabletobedetermined,E isapolynomial ofuandits partialderivativesinwhichthe highestorderderivativesandnonlineartermsareinvolved.

E-mail addresses: [email protected] , [email protected] https://doi.org/10.1016/j.amc.2021.126855

0 096-30 03/© 2021 Elsevier Inc. All rights reserved.

(2)

Step1

Carryingoutthefollowingtravelingwavetransformation

u

(

x,t

)

=u

( ξ )

,

ξ

=kx+ct, (2)

wegetanonlinearordinarydifferentialequation(ODE)

Q

(

u,u,u,· · ·

)

=0, (3)

wheretheprimemeansthederivativewithrespecttoindependentvariable

ξ

.

Step2

Wesupposethat(3)admitsthefollowingparticularsolution

u

( ξ )

=X

( ξ )

, (4)

then(3)canbechangedtoanonlinearplaneautonomousequationsas

X

( ξ )

=Y

( ξ )

,

Y

( ξ )

=H

(

X

( ξ )

,Y

( ξ ))

, (5)

Step3

AccordingtothequalitativetheoryofODEs[32],wecandirectlyconstructthegeneralsolutionsto(3)bymakinguseof its twoindependentfirstintegrals.Nevertheless,thereisneitheralogicalwaynorsystematictheoriestoconstructitsfirst integralsforagivenplaneautonomoussystem,soitisnoteasyforustogetevenonefirstintegral.Inreference[1],Feng employedtheDivisionTheoremtosearchforonefirstintegralfor(3)whichreduces(3)toafirst-orderODE.Subsequently, exacttravelingwavesolutionsto(1)wereconstructedbysolvingthefirst-orderODEdirectly.Forthesakeofcompleteness, wepresentthefamousDivisionTheoreminwhatfollows.

DivisionTheorem. SupposethatM(

ω

,z)isanirreduciblepolynomialinC[

ω

,z],andN(

ω

,z)isalsoapolynomialinC[

ω

,z]; IfthepolynomialN(

ω

,z)vanishesatallzeropointofM(

ω

,z),thenthereexistsapolynomialG(

ω

,z)inC[

ω

,z]suchthat

N

( ω

,z

)

=G

( ω

,z

)

·M

( ω

,z

)

.

Indetail,wesupposethat p(X(

ξ

),Y(

ξ

))=0isthefirstintegralfor(5)andp(X(

ξ

),Y(

ξ

))isalsoanirreduciblepolyno- mialinC[X,Y]suchthat

p

(

X,Y

)

= m

i=0

ai

(

X

)

Yi. (6)

Accordingtothedivisiontheorem,theremustexistW(X,Y)=h(X)Y+g(X)inC[X,Y],suchthat

dp

(

X,Y

)

d

ξ

=

(

h

(

X

)

Y+g

(

X

))

·

m

i=0

ai

(

X

)

Yi, (7)

from which we determine each ai(X),i=1...m. Subsequently, we obtain the desired first integral p(X(

ξ

),Y(

ξ

))=0 for plane autonomous system (5). As a result, exact traveling wave solutions to (1) can be constructed by solving p(X(

ξ

),Y(

ξ

))=0directly.

1.2. AnobservationofFIM

Wenoticethefollowingfact,namely

Observation1. Becauseofthedivisiontheorem,thesupposedirreduciblefunction p(X,Y)isabinarypolynomial.Thus,the finalemployedODE(3)isexactlyasecond-orderODE,namelyQ(u,u,u)=0.Asaresult,wecannotapplyFIMtoamore higher-orderODE,sayathird-orderODE.

So, howtomodify FIMto letit beapplied tothe higher-orderODEisstill an open problem.In thisarticle,wetry to answerthisquestion.

Rest ofthe articleisarranged asfollow:inSection2,we givethedescriptionofourmodificationto FIM.In Section3, the firstintegrals ofdensity-dependentconformable fractional diffusion-reaction(cfDR) equation, the Duffing-vander Pol (DVDP) oscillator,the(1+1)dimensionalcomplexcubic-quinticGinzburg–Landau(cqGL)equation,thenonlinearequation forsurfacewavesarisingina convectingfluid,andtheKdV–Burgers–Fisherequation areillustrated asapplications ofour modifiedFIM,respectively.Section4concludesourarticle.

(3)

2. AmodificationtoFIM

ThefirststepisthesameasoriginalFIM.Werewrite(3)intheform

Q

(

u,u,u,...,u(n)

)

=0, (8)

wherethehighestorderofderivativesncanbegreaterthan2.

Withoutlossofgenerality,inwhatfollows,weonlyconsiderthecaseofn=3,namely

Q

(

u,u,u,u

)

=0, (9)

Step2

Wesupposethat(9)admitsthefollowingparticularsolution

u

( ξ )

=X

( ξ )

, (10)

then(9)canbechangedtoasystemofnonlinearODEsas X

( ξ )

=Y

( ξ )

,

Y

( ξ )

=Z

( ξ )

,

Z

( ξ )

=H

(

X

( ξ )

,Y

( ξ )

,Z

( ξ ))

, (11)

whichisnotaplaneautonomousinthiscase.

Step3

Wesupposethat(9)admitsafirstintegralintheform p=0, where p

( ξ

,X,Y,Z

)

de f=

m

i=0

ai

( ξ

,X,Y

)

Zi, (12)

whereai(

ξ

,X,Y)(i=1,...,m−1)arearbitraryfunctionstobedetermined.

Thenbymakinguseof(11),wehave dp

( ξ

,X,Y,Z

)

d

ξ

=R

( ξ

,X,Y,Z

)

, (13)

whichmustbeequalto0sincep(

ξ

,X,Y,Z)=0isthefirstintegralfor(11). Inordertospecifyai(

ξ

,X,Y)(i=1,...,m),wesuppose

R

( ξ

,X,Y,Z

)

=f

(

p

( ξ

,X,Y,Z

))

, (14)

where f(·)isafunctionadmittingthefollowingconditionf(0)=0,andhereby f(p(

ξ

,X,Y,Z))isexactlyequalto0.

In order to eliminate termsof Z,we can take f(p(

ξ

,X,Y,Z))such that both ofR(

ξ

,X,Y,Z) and f(p(

ξ

,X,Y,Z))have termswhichinvolveZincommon.

Thusfrom(14),wecangetanODE

G

( ξ

,X,Y

)

=0. (15)

From(15),wedetermineai(

ξ

,X,Y)(i=1,...,m).

Finally,wegettherequiredfirstintegral p(

ξ

,X,Y,Z)=0withdeterminedai(

ξ

,X,Y)(i=1,...,m). 3. Applications

3.1. Thedensity-dependentcfDRequation

Thedensity-dependentcfDRequationreads

αu

(

t,x

)

tα +ku

(

t,x

)

u

(

t,x

)

x =D

2u

(

t,x

)

x2 +au

(

t,x

)

bu2

(

t,x

)

, (16)

where0<

α

≤1,t>0anda,b,kandDarepositiveparameters[24].Weshouldmentionthat(16)canbeservedasamodel arisinginthenonlinearscienceandhasattractedmuchgreatefforts[24,33,34].

Assumingthat fisacontinuousfunction f:(0,)>,thentheconformablefractionalderivativeoforder

α

isintro-

ducedas[35]

Dαf

(

t

)

=lim 0

f

(

t+

t1α

)

f

(

t

)

, (17)

whichbearsfollowingproperties[24,35]

(4)

(1) Dα(a f+bg)=aDα(f)+bDα(g),

a,b∈. (2) Dα(tμ)=

μ

tμα,

μ

∈.

(3) Dα(f g)= f Dα(g)+gDα(f). (4) Dα(gf)= gDαfg2fDαg.

Furthermore,ifgisaarbitrarydifferentialfunctiondefinedintherangeof f,and fisdifferentiableand

α

-differentiable, thenwehave

Dαf

(

t

)

=t1αdf

dt, (18)

Dα

(

fg

)(

t

)

=t1αg

(

t

)

f

(

g

(

t

))

. (19)

Nowlet

u

(

x,t

)

=U

( ξ )

,

ξ

=mxc

α

tα, (20)

wecanchange(16)tothefollowingODE[24]

Dm2U+cUkmUU+aUbU2=0. (21)

Wesupposethat(21)admitsaparticularsolutionintheform

U

( ξ )

=X

( ξ )

, (22)

then(21)canbechangedtoaplaneautonomoussystemofnonlinearODEsas X

( ξ )

=Y

( ξ )

,

Y

( ξ )

= 1 m2D

cY+kmXYaX+bX2

, (23)

In2018,Rezazadeetal.[24]investigated(23)byusingFIMandobtainedthefollowingfirstintegral Y=− ak

2mbDX+ k

2mDX2, (24)

alongwiththefollowingcondition c=

(

4b2D+ak2

)

m

2kb . (25)

Inwhatfollows,weemployourmodificationmethodto(21).Forthesake ofsimplicity,wesupposethat(23)admitsa firstintegralintheform

p=0, where pde f=A

(

X

)

+Y, (26)

whereA(X)isafunctiontobedetermined.

Thenwehave dp

d

ξ

=AY+Y=AY+

1 m2D

cY+kmXYaX+bX2

=

Ac m2D+ k

mDX

Ya

m2DX+ b

m2DX2. (27) Accordingtoourmodification,wetake

Ac m2D+ k

mDX

Ya

m2DX+ b

m2DX2= f

(

p

)

=

Ac m2D+ k

mDX

p=

Ac m2D+ k

mDX

(

A

(

X

)

+Y

)

, (28) whichcanbereducedto

AA+ k

mDXAc

m2DA+ a

m2DXb

m2DX2=0. (29)

Byobservation,wetake

A=k0+k1X+k2X2, (30)

wherekisarearbitraryconstantstobespecified.

Substituting theansatz (30)into (29)andequating thecoefficientsofpowers X withzero,we canobtain anonlinear over-determined systemof algebraicequations. Then by solving the over-determinedsystem, we get the followingthree cases

(a) k0=−mka ,k1= mkb ,k2=0,underconditionofc=mbDk .

(5)

(b) k0=k2=0,k1=mkb ,underconditionofc= (b2D+bkak2)m.

(c)k0=0,k1=2mbDak ,k2=−2mDk ,underconditionofc= (4b2D2+bkak2)m. Inaword,wehaveconstructedthreefirstintegralsto(21),namely

U+ b mkUa

km=0, (31)

U+ b

mkU=0, (32)

U+ ak

2mbDUk

2mdU2=0. (33)

Remark 1. The third first integral (33)is the same as (24)obtained by Rezazade etal, butthe formertwo along with correspondingconstraintconditionshavenotbeenpresentedbyresearcherstothebestofourknowledge.

3.2. TheDVDPoscillator

TheDVDPoscillatorbeingconsideredreads

x+

( α

+

β

x2

)

x

γ

x+x3=0, (34)

wherethe primedenotesderivative withrespecttotimet and

α

,

β

and

γ

arerealparameters.In2010, bymeans ofthe Prelle–Singermethod[36],Fengetal.[37]obtainedthefollowingfirstintegral

x+

α

β

3

x+

β

3x3=Iexp

−3t

β

, (35)

whereIisaconstant,alongwiththefollowingcondition

α

= 3

β

βγ

3 . (36)

Inwhatfollows,weemployourmodificationmethodto(34). Atthebeginning,wesupposethat(34)hasasolutionintheform

x

(

t

)

=X

(

t

)

. (37)

Then(34)ischangedtoanonlinearplaneautonomoussystemas X=Y,

Y=−

( α

+

β

X2

)

Y+

γ

XX3, (38)

Forthesakeofsimplicity,wesupposethat(38)admitsafirstintegralintheform

p=0, where pde f=G

(

t

)

+A

(

X

)

+Y. (39)

Sowehave dp

dt =G+AY+Y=G+AY

( α

+

β

X2

)

Y+

γ

XX3=G+

γ

XX3+

(

A

α

β

X2

)

Y. (40) Accordingtoourmodification,wetake

G+

γ

XX3+

(

A

α

β

X2

)

Y=

(

A

α

β

X2

)

p=

(

A

α

β

X2

)(

G

(

t

)

+A

(

X

)

+Y

)

, (41) whichcanbereducedto

G

(

A

α

β

X2

)

G+

γ

XX3+

( α

+

β

X2

)

AAA=0. (42) Tosolve(42),wetake

γ

XX3+

( α

+

β

X2

)

AAA=0, (43)

G

(

A

α

β

X2

)

G=0. (44)

Tosolve(43),forthesakeofsimplicity,wetake

A=aX+bX3. (45)

(6)

Substituting(45)into(43),wehave

γ

XX3+

( α

+

β

X2

)

AAA=

(

b

β

3b2

)

X5+

(

a

β

+b

α

14ab

)

X3+

( γ

+a

α

a2

)

X=0. (46) Equating the coefficientsof powers X with zero,we obtain thefollowing nonlinear over-determined systemof algebraic equations

b

β

−3b2=0,

a

β

+b

α

14ab=0,

γ

+a

α

a2=0. (47)

Bysolving(47),weobtainthefollowingnontrivialcase a=−

γ β

3 ,b=

β

3, (48)

alongwiththefollowingcondition

α

=9−

γ β

2

3

β

, (49)

whichisthesameas(36).

Inthiscase,(44)issimplifiedas G+

α

+

βγ

3

G=0. (50)

Solving(50),weobtain G=Cexp

α

+

βγ

3

t

, (51)

whereCisanintegrationconstant.

Inaword,wegetafirstintegralto(34)intheform x

γ β

3 x+

β

3x3+Cexp

α

+

βγ

3

t

=0. (52)

Remark2. Thefirstintegral(52)isexactlythesameas(35).ComparedwiththePrelle–Singermethod,ourmethodismore straightforwardandeffective.

3.3. The(1+1)dimensionalcomplexcqGLequation The(1+1)dimensionalcomplexcqGLequationreads

iux+D

2utt+

|

u

|

2u=i

δ

u+i

|

u

|

2u+i

β

utt+i

α|

u

|

4u

γ |

u

|

4u, (53) where,inoptics,u(x,t)iscomplexamplitude,tistheretardedtime,xisthepropagationdistance,theparameter

δ

islinear

lossorgain,

β

describesdiffusioncoefficient,D=±1isthedispersioncoefficientandparameters

α

,

γ

and

determineits

shapeofnonlinear[23].

Introducingthefollowingtravelingwavetransformation

u=

v ( ψ )

exp

(

i

η )

,

η

=px+st,

ψ

=kx+ct, (54)

wherek,c,pandsarearbitraryconstantstobespecified,alongwithconstraintconditions[23]

r=−4

β

s

Dc =k+Dsc

β

c2 ,l=

2p+Ds2

Dc2 =−

β

s2

δ

β

c2 , (55)

m=− 2

Dc2 =−

β

c2,n=

2

γ

Dc2 =−

α

β

c2, (56)

wecanreduce(53)intothefollowingODE

v

r

v

l

v

m

v

3n

v

5=0. (57)

Inreference[23],G.Akrametal.constructed(57)’sexactsolutions byFeng’sfirstintegralmethod[1].Inwhatfollows,we employourmethodtoobtainitsfirstintegral.

Atthebeginning,wesupposethat(57)hasasolutionintheform

v ( ψ )

=X

( ψ )

. (58)

(7)

Then(57)canbechangedtoaplaneautonomoussystemofnonlinearODEsintheformof X=Y,

Y=

γ

Y+lX+mX3+nX5, (59)

Wesupposethat(59)admitsafirstintegralintheform

p=0, where pde f=G

( ψ )

+A

(

X

)

+Y. (60)

Sowehave dp

d

ψ

=G+AY+Y=G+AY+

γ

Y+lX+mX3+nX5=G+lX+mX3+nX5+

(

A+

γ )

Y. (61) Accordingtoourmodification,wetake

G+lX+mX3+nX5+

(

A+

γ )

Y=

(

A+

γ )

p=

(

A+

γ )(

G

(

t

)

+A

(

X

)

+Y

)

, (62) whichcanbesimplifiedas

G

(

A+

γ )

G+lX+mX3+nX5

γ

AAA=0. (63)

Tosolve(63),wetake

lX+mX3+nX5

γ

AAA=0, (64)

G

(

A+

γ )

G=0. (65)

From(64),AisacubicpolynomialofX,soweassume

A=aX+bX3, (66)

whereaandbarearbitraryconstantstobespecified.

Nowsubstituting(66)into(64),weobtain

(

n−3b2

)

X5+

(

mrb−4ab

)

X3+

(

la2ra

)

X=0. (67)

Thus,equatingthecoefficientsofpowersXwithzero,weobtain n−3b2=0,

mrb−4ab=0,

la2ra=0. (68)

Solving(68),wehave a=−r

m 4

3

n,bn

3, (69)

alongwiththefollowingconstraintcondition l=3m2

16n ±mr 8

3 n−3r2

16. (70)

ThusweobtainthevalueofAas A=

rm

4 3 n

X± n

3X3. (71)

Substituting(71)into(65),andsolvingG(

ψ

),weget G

( ψ )

=Cexp

(

34r

ψ )

exp

±√ 3n

(

X2+ m 4n

)

d

ψ

. (72)

Inaword,undertheconstraintcondition(70),wefindthefirstintegralof(57)intheform

v

+

rm

4 3 n

v

± n

3

v

3+Cexp

3r

4

ψ

±3n

( v

2+ m 4n

)

d

ψ

=0. (73)

IfwetakeC=0,(73)isreducedtothefollowingBernoulliequation

v

r 4∓m

4 3 n

v

=∓ n

3

v

3, (74)

(8)

whosegeneralsolutioncanbeobtainedintheform

v

2= 1

C1exp

(

12

(

rm

3

n

) ψ )

±r4mn33 n

, (75)

whereC1isanarbitraryintegrationconstant.

Remark3. Tothebestofourknowledge,firstintegral(73)isnew.

Remark4. Weshouldpointoutthat(57)admitsgeneralsolution(75),whichisalsonovel.

3.4. Theequationforsurfacewavesinaconvectingfluid

In this subsection,we will considera higher-orderdifferential equation, namely,the equation forsurface wavesin a convectingfluidwhichreads[38]

ut+

μ

uxx+

σ

uxxx+

δ

uxxxx+

α (

u2

)

x+

χ (

u2

)

xx=0. (76) Inaconvectingfluid,theaboveequationdepictsalongshallowwaveevolutionasandwhentheRayleighnumberfraction- allysurpassitscriticalvalueandhasbeeninvestigatedmanytimes,seereference[38]andthereferencestherein.At

χ

=0, (76)isreducedtotheknownKuramoto–Sivashinskyequation.

Takingintoaccounttravelingwave solutionu=μχy(z),z=

μ

δxC0δμ2t alongwithtworedefinedparameters

σ

and

α

,

wehavethenonlinearODEintheform[38]

yzzz+9

σ

yzz+yz+2yyz+

α

y2C0y+C1=0. (77) In orderto constructthe auxiliaryequation, Kudryashov [38] usedthe Fuchsindex which exists inthe Painlevé test and foundthat(77)admitsafirstintegralintheform

yzz+

(

9

σ

α )

yz+y2+

(

1+

α

29

ασ )

y+C

α

1 +4C2exp

(

α

z

)

=0. (78)

Inwhatfollows,weuseourapproachtoreobtainthisfirstintegral.

Wesupposethat(77)hasasolutionintheform

y

(

z

)

=X

(

z

)

. (79)

Then(77)canbechangedtoasystemofnonlinearODEsas X=Y,

Y=Z,

Z=−9

σ

ZY+2XY

α

X2+C0XC1, (80)

Forthesakeofsimplicity,wesupposethat(80)admitsafirstintegralintheform

p=0, where pde f=G

(

z

)

+A

(

X,Y

)

+Z. (81)

Sowehave dp

dz =G+A1Y+A2Z+Z=G+A1Y+A2Z−9

σ

ZY+2XY

α

X2+C0XC1=G+A1YY

+2XY

α

X2+C0XC1+

(

A2−9

σ )

Z. (82) Accordingtoourmodification,wetake

G+A1YY+2XY

α

X2+C0XC1+

(

A2−9

σ )

Z=

(

A2−9

σ )

p=

(

A2−9

σ )(

G

(

z

)

+A

(

X,Y

)

+Z

)

, (83) whichcanbesimplifiedas

G

(

A2−9

σ )

G+A1YY−2XY

α

X2+C0XC1AA2+9

σ

A=0. (84)

Tosolve(84),wetake

A1YY−2XY

α

X2+C0XC1AA2+9

σ

A=0, (85)

G

(

A2−9

σ )

G=0. (86)

ByobservingthedegreeofY inthelefthandsideof(85),weassume

A

(

X,Y

)

=M

(

X

)

+kY, (87)

(9)

whereM(X)isafunctionofX tobedetermined,andkisaconstant.

Substituting(87)into(85),wehave

[M−1−2X+9

σ

kk2]Y

α

X2+C0XC1kM+9

σ

M=0 (88)

Therefore,wetake

M−1−2X+9

σ

kk2=0 (89)

α

X2+C0XC1kM+9

σ

M=0. (90)

Solving(90),wehave M=

α

9

σ

kX2

C0

9

σ

kX+

C1

9

σ

k, (91)

and

M= 2

α

9

σ

kX

C0

9

σ

k. (92)

Substituting(92)into(89),wehave

2

α

9

σ

k2

X+9

σ

kk29

σ

C0k1=0. (93)

Sowehave 2

α

9

σ

k−2=0, (94)

σ

kk29

σ

C0k1=0. (95)

Solving(94)and(95)comesto

k=9

σ

α

, C0=

α (

9

σα

α

2−1

)

. (96)

SubstitutingvaluesofkandC0 into(91),wehave M=X2+

(

1+

α

2−9

σα )

X+C1

α

, (97)

andthusweobtain

A=X2+

(

1+

α

2−9

σα )

X+C1

α

+

(

9

σ

α )

Y. (98)

Andinthiscase,(86)turnstobethefollowingODE

G+

α

G=0. (99)

Solving(99)gives

G

(

z

)

=C2exp

(

α

z

)

. (100)

Asaresult,weobtainthefollowingfirstintegral Z+

(

9

σ

α )

Y+X2+

(

1+

α

2−9

ασ )

X+C1

α

+C2exp

(

α

z

)

=0, (101)

i.e.,

yzz+

(

9

σ

α )

yz+y2+

(

1+

α

2−9

ασ )

y+C1

α

+C2exp

(

α

z

)

=0. (102)

Remark5. Thefirstintegral(102)isinaccordwith(78)whichhasbeennewlypresentedbyKudryashov[38]. 3.5. TheKdV–Burgers–Fisherequation

Recently, Kocak proposed a third-order dispersion-dissipation-reaction model called the KdV–Burgers–Fisher equa- tion[39],namely

ut+

ε

uux

ν

uxx+

μ

uxxx=ru

(

1u

)

, (103)

where

ε

,

ν

,

μ

,andrarerealparametersforconvection,diffusion,dispersion,andreactionterms,respectively.

(10)

TheKdV–Burgers–FisherequationcanbereducedtotheKdVequationwhen

ν

=r=0,Burgersequationwhen

μ

=r=0, Fisherequationwhen

ε

=

μ

=0,Burgers–Fisherequationwhen

μ

=0,anddispersive-Fisherequationwhen

ε

=

ν

=0.

Applyingthefollowingtravelingwavetransformation

u=u

( ξ )

,

ξ

=kx+

ω

t+

ξ

0 (104)

to(103),wehave

ω

u+

ε

kuu

ν

k2u+

μ

k3u=ru

(

1u

)

. (105)

Kocakusedthe tanhmethodtoinvestigateexactsolutionsof(105).Inwhatfollows,we employourmethodtoobtainits firstintegral.

Wesupposethat(105)hasasolutionintheform

u

( ξ )

=X

( ξ )

. (106)

Then(105)canbechangedtoasystemofnonlinearODEsas X=Y,

Y=Z,

Z=rX

(

1X

)

ω

Y

ε

kXY+

ν

k2Z

μ

k3 , (107)

Wesupposethat(107)admitsafirstintegralintheform

p=0, where pde f=Z+f

(

X,Y

)

. (108)

Sowehave dp

d

ξ

=f1Y+f2Z+Z=f1Y+f2Z+

rX

(

1X

)

ω

Y

ε

kXY+

ν

k2Z

μ

k3 =f1Y+

rX

(

1X

)

ω

Y

ε

kXY

μ

k3 +

f2+

ν μ

k

Z.

(109) Accordingtoourmodification,wetake

f1Y+rX

(

1X

)

ω

Y

ε

kXY

μ

k3 +

(

f2+

ν

μ

k

)

Z=

(

f2+

ν

μ

k

)

·p=

(

f2+

ν

μ

k

)

·

(

Z+f

(

X,Y

))

, (110)

whichcanbesimplifiedas

f1Y+rX

(

1X

)

ω

Y

ε

kXY

μ

k3 =

(

f2+

ν

μ

k

)

·f. (111)

Byobservation,weconsiderthefollowingtwocases:

CaseI: f= f(X)

Inthiscase,(111)becomes rX

(

1X

)

μ

k3 +

(

f

ω

+

ε

kX

μ

k3

)

Y=

ν

μ

k·f. (112)

Therefore,wetake f

ω

+

ε

kX

μ

k3 =0. (113)

Solving(113),weobtain f=2

ω

X+

ε

kX2

2

μ

k3 (114)

Substituting(114)to(112),weobtain rX

(

1X

)

=

ν

μ ( ω

kX+

ε

2X2

)

. (115)

Thus,weobtainthefollowingconstraintconditions

ω

k =−

ε

2 =r

μ

ν

. (116)

Inoneword,underconstraintconditions(116),wehaveobtainedthefollowingfirstintegralof(105). u+

ω

μ

k3

(

uu2

)

=0. (117)

(11)

Multiplying2uandintegrating(117)once,wehave

(

u

)

2= 2

ω

3

μ

k3u3

ω

μ

k3u2+C, (118)

whereCisintegrationconstant.Thenwehave u=6k3

μ

ω

+1, (119)

where=℘(

ξ

;g2,g3)isWeierstrassellipticfunction,whichadmitsthefollowingequation:

˙2=43g2g3. (120)

Theinvariantsg2 andg3aredeterminedby g2=

ω

2

12

μ

2k6,g3=

ω

3−6C

μω

2k3

216

μ

3k9 . (121)

CaseII: f=a(X)+b(X)Y Inthiscase,(111)becomes

bY2+

a

b2+

ν

b

μ

k+

ω

+

ε

kX

μ

k3

Y+rX

(

1X

)

μ

k3

(

b+

ν

μ

k

)

a=0. (122)

Sowehave

b=0 (123)

a=b2+

ν

b

μ

k+

ω

+

ε

kX

μ

k3 (124)

rX

(

1X

)

μ

k3 =

(

b+

ν

μ

k

)

a. (125)

From(123),weobtainthatbisaconstanttobedetermined.From(124),wetake a

(

X

)

=

(

b2+

ν

b

μ

k+

ω

μ

k3

)

X+

ε

2

μ

k2X2. (126)

Substituting(126)into(125),weobtain rX

(

1X

)

μ

k3 =

(

b+

ν μ

k

)

·

b2+

ν

b

μ

k+

ω

μ

k3

X+

ε

2

μ

k2X2

(127)

From(127),weobtain r

μ

k3 =

(

b+

ν μ

k

)

·

ε

2

μ

k2 (128)

b2+

ν

b

μ

k+

ω

μ

k3 =

ε

2

μ

k2. (129)

From(128),weobtain b=−2r

ε

k

ν

μ

k. (130)

Substituting(130)into(129),weobtainthefollowingconstraintcondition

8k

μ

r2+4kr

εν

+2

ωε

2+k

ε

3=0. (131)

Inoneword,undertheconstraintcondition(131),wehaveobtainedthefollowingfirstintegralof(105). u

2r

ε

k+

ν μ

k

u

ε

2

μ

k2

(

uu2

)

=0. (132)

Remark 6. Weshouldpointout thatexcepttheveryfirst,therelationsofparameters inthe restsixsolutionsof(105)in Kocak[39]alsomeetourconstraintcondition(131).

Remark7. Tothebestofourknowledge,bothoffirstintegrals(117)and(132)arenew.

Referensi

Dokumen terkait