• Tidak ada hasil yang ditemukan

Applying Cluster Analysis on Oil and Gas Production Data

N/A
N/A
Protected

Academic year: 2023

Membagikan "Applying Cluster Analysis on Oil and Gas Production Data"

Copied!
3
0
0

Teks penuh

(1)

APPLYING CLUSTER ANALYSIS ON SOT OIL AND GAS

PRODUCTION DATA Page 71 of 84

Uma Bala Devarakonda REFERENCES

Ackoff, R.L., 1989. From Data to Wisdom. In Journal of Applied Systems Analysis., 1989.

Aulia, A. et al., 2010. Smart Oilfield Data Mining for Reservoir Analysis.

International Journal of Engineering & Technology IJET-IJENS, 10(06).

Bradley, P.S. & Fayyad, U.M., 1998. Refining Initial Points for K-Means Clustering.

pp.91-99.

Chapman, P., Clinton, J. & Wirth, R., 2000. CRISP-DM 1.0 Step-by-step data mining guide. [Online] Available at: "http://www.crisp-dm.org/"

COENEN, F., 2004. Data Mining: Past, Present and Future. The Knowledge Engineering Review, Vol. 00:0, 1-24.

Ester, M., Kriegel, H.-P., Sander, J. & Xu, X., 1996. DBSCAN. In 2nd International Conference on Knowledge Discovery and Data Mining., 1996.

Fayyad, U., Piatetsky-Shapiro, G. & P, a.S., 1996. From Data Mining to Knowledge Discovery in Databases. AI Magazine,American Association for Artificial Intelligence.

Han, J. & Kamber, M., 2006. Data Mining: Concepts and Techniques. 2nd ed. San Francisco: Morgan Kaufmann.

Hipp, J. & Lindner, G., 1999. Analysing Warranty Claims of Automobiles - An Application Description Following the CRISP-DM Data Mining Process., 1999.

Proceedings of 5th International Computer Science Conference (ICSC '99).

Huang, S.-C. & Wu, C.-F., 2011. Customer credit quality assessments using data mining methods for banking industries. African Journal of Business Management, Vol.5 (11).

Ilango, V., Subramanian, R. & Vasudevan, V., 2011. Cluster Analysis Research Design model, problems, issues, challenges, trends and tools. International Journal on Computer Science and Engineering, III(ISSN : 0975-3397), pp.3064-70.

Jackson, J., 2002. Conceptual Overview of CRISP-DM. Communications of the Association for Information Systems, 8, pp.267-96.

(2)

APPLYING CLUSTER ANALYSIS ON SOT OIL AND GAS

PRODUCTION DATA Page 72 of 84

Uma Bala Devarakonda Kotsiantis, S. & Kanellopoulos, D., 2006. Association Rules Mining: A Recent Overview. GESTS International Transactions on Computer Science and Engineering, 32 (1), pp.71-82.

Lanzi, P.P.L., 2009. [Online] Available at: "http://www.pierlucalanzi.net/wp- content/teaching/dmtm/DMTM0809-07-ClusteringPartitioning.pdf" [Accessed 11 August 2013].

Leung, K.M., 2008. [Online] POLYTECHNIC UNIVERSITY Available at:

"http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf" [Accessed 06 january 2013].

Maimon, O. & Rokach, L., 2010. Data Mining and Knowledge Discovery Handbook.

2nd ed. New York: Springer.

Mohaghegh, S.D., 2002. Essential Components of an Integrated Data Mining Tool for the Oil & Gas Industry. In SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 2002. Society of Petroleum Engineers Inc.

Ogwueleka & Nonyelum, F., 2009. Potential Value of Data Mining for Customer Relationship Marketing in the Banking. Advances in Natural and Applied Sciences, 3(1): 73-78, 2009, ISSN 1995-0772.

Padhy, N., Mishra, D.P. & Panigrahi, R., 2012. The Survey of Data Mining Applications and Feature Scope. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT, 2(3).

Pelleg, D. & Moore, A., 2000. pelleg-xmeans.pdf. [Online] Available at:

"http://www.autonlab.org/autonweb/14661/version/3/part/5/data/pelleg- xmeans.pdf?branch=main&language=en" [Accessed 03 december 2013].

R.O, D. & P.E., H., 1973. Pattern Classification and Scene Analysis. John Wiley and Sons.

Ramageri, B.M., 2010. DATA MINING TECHNIQUES AND APPLICATIONS.

Indian Journal of Computer Science and Engineering, I No.4(ISSN : 0976-5166), pp.301-05.

Rapid-I, n.d. Rapid Miner online tutorial that can be accessed from Help menu.

[Online] Available at: "http://rapid-i.com/content/view/181/196/" .

Rapidminer & Help, R.M.o.t.t.c.b.a.f., 2013. http://rapid-i.com/content/view/181/196/.

[Online] Available at: "rapid-i.com"

(3)

APPLYING CLUSTER ANALYSIS ON SOT OIL AND GAS

PRODUCTION DATA Page 73 of 84

Uma Bala Devarakonda Republik Indonesia, 2013. Upstream Oil & Gas Activity. In Peraturan Presiden (PERPRES). Jakarta, 2013.

Rubiandini, R., 2013. 2012 Performance & 2013 Work Program. In Luncheon Talk IPA 2013., 2013. SKK Migas RI.

Seyyed Soroush Rohanizadeha, *.M.B.M., 2009. A Proposed Data Mining Methodology and its Application to Industrial. Journal of Industrial Engineering 4 (2009) , pp.37-50.

SKK Migas RI, 2013. SKK Migas Profile. [Online] Available at:

"http://www.skkmigas.go.id/en/tentang-kami/profil"

SKK Migas, 2013. PEDOMAN TATA KERJA SISTEM OPERASI TERPADU. [SOT documentation] Skk Migas Available at: http://www.skkmigas.go.id/wp- content/uploads/2013/02/KEP-PTK-0009-SOT.pdf" [Accessed 05 august 2013].

Solomatine, D., See, L.M. & Abrahart, R.J., 2008. Data-Driven Modelling:

Concepts,Approaches and Experiences. Berlin Heidelberg: Springer-Verlag.

Suryajaya, B., Aryani, F.P. & Devarakonda, U.B., 2013. Research on E&P Efficiency Metrics to support SKMIGAS Mission utilizing CRISP-DM Methodology. Advanced Intelligent System.

Tan, P.-N., Steinbach, M. & Kumar, V., 2006. Introduction to Data Mining. Pearson International.

Tordo, S., Tracy, B.S. & Arfaa, N., n.d. The Petroleum Sector Value Chain. In National Oil Companies and Value Creation. The World Bank.

Tucker, R., 2009. BENCHMARKING OPERATING EFFICIENCY TO ENHANCE PRODUCTION FROM MATURE FIELDS. Ziff energy White paper, May.

V.Ilango, D.R.S.D.V.V..p., 2011. Cluster Analysis Research Design model, problems, issues, challenges, trends and tools. International Journal on Computer Science and Engineering, III(ISSN : 0975-3397), p.6.

Wang, T., Gao, X.-w. & Li, K., 2012. Application of Data Mining to Production Operation and Control System in Oil Field. 24th Chinese Control and Decision Conference (CCDC).

Wirth, R. & Hipp, J., 2000. CRISP-DM: Towards a Standard Process Model for Data.

In Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining., 2000.

Referensi

Dokumen terkait

Inversi Impedansi akustik merupakan suatu proses konversi dari data seismik menjadi data impedansi akustik yang merupakan sifat dasar dari suatu batuan,

Based on the comparison of forecasting results with actual data ,it can be said that at the beginning of the COVID-19 pandemic, Indonesia experienced a slump in export performance,

Vietnam Academy of Science and Technology Vietnam Journal of Marine Science and Technology journal homepage: vjs.ac.vn/index.php/jmst Forecasting zonation of oil-gas prospects in the

ANALYSIS OF EFFECT OF PROBABILITY AND FIRM SIZE ON INTRINSIC VALUE WITH FINANCIAL DISTRESS AS AN INTERVENING VARIABLE IN OIL AND GAS COMPANIES ON THE INDONESIAN STOCK EXCHANGE By