Pengembangan Material Fungsional Ramah Lingkungan
dalam Mendukung Ekonomi Melingkar
Is Fatimah
Chemistry Department,
Universitas Islam Indonesia
Materials for Energy and Environment Laboratory
Chemistry Department
Outline
• Green Chemistry
• Skema Riset
• Pengelolaan Air
• Material Fungsional
• Conclusion
Waste prevention
Atom Economy
Less hazardous
chemicals
Design for safe
Design for
degradation
Less solvent
Efficient energy
Renewable resource
Less Derivative Catalysis
Real time analysis
Design for Accident Prevention
12 Principles of Green Chemistry
Benign Process for Water Treatment
• Advanced oxidation process
• Photocatalysis
• Penggunaan Teknologi Berkelanjutan
• Material hemat (Low-Cost Material)
• Penggunaan Material terbarukan (The use of renewable resource)
• Functional Materials
Silica and Biogenic Silica Based Material Clay Based Material
Nanoparticles and Nanomaterials
Pillared Clays Organoclays
Clay-based composite Biogenic silica
Silica-based composite
Green synthesis
Energy and Environmental
Application
Adsorption Catalysis Solar cell Chemical sensor
Antibacterial/
Antifungi Green synthesis Reduced
Graphene oxide
• UII: Values-Innovation-Perfection
Research scheme in our lab
Pengembangan Material Fungsional yang dilakukan
Pemanfaatan limbah industri
Biochar dan biochar magnetic Pengembangan
Material Berbasis
Clay
0 O2/HO2•-
O
2/O
2•
--0.20
(-0.33eV)
3.05
H
2O/HO•
(2.38eV)
2.85 eV
Potential (eV) Vs NHE
h+h+
H
2O HO•
O2 +H2O
HO
2•
+e
-+H
+H
2O
2+OH
-H
2O
+O
2•
-2HO•
CO
2+H
2O +SO
3-VB CB
e
-e
-h
+h
+Mekanisme Fotokatalis
Band gap energy modification
• Creating certain phase
• Designing particle size
• Band gap energy modification
• Supporting metal oxide photocatalyst into solid support
• The use of supportive adsorbent
Functional materials: Modification for Enhancement
• Clay-based materials
CB
h
+VB e
-O
2O•
2O
2O•
2Oxidation
Supporting metal oxide photocatalyst into solid support
High specific surface area High pore distribution Example:
Biochar-based material
Clay-based material
http://www.tekmira.esdm.go.id
UII: Values-Innovation-Perfection
Structure of Smectite Clay
1.18 nm
Exchangeable sites Possible to exchange:
-Metal Polyoxocations
-Organic Compounds/surfactant - Metal Ions
Metal Oxide Pillared Clay Mixed Metal/Metal Oxide Pillared Clay
Organoclay
Ion Exchanged- Clay
UII: Values-Innovation-Perfection
Modification- Metal Oxide Pilarization
Silica sheet
Silica sheet
Metal Polyoxocations Intercalation
Dehydroxylation - Calcination
❑ Homogeneous distribution with increased
surfaced area
❑ Can be applied as support
increasing
d
001Preparation of metal oxide precursor
Intensification on intercalation
Metal oxide formation- dihydroxylation Intensification on
intercalation
Physico-Chemical Characterization
XRD, SEM, FTIR, XRF
+ + + +
ZnO precursor + TEOS
ZnO-PCH intercalation
Calcination
UII: Values-Innovation-Perfection
• Zr
4--- Zr/Ba = 20
• Al
13--- Al
3+/
-OH = 2
• Zn --- Zn
2+/
-OH=2
Polioksokation-Kondisi sintesis Bentuk
XRD characterization SnO2/Mt
10 20 30 40 50 60
Intensity (a.u)
2-theta
Mt Sn2.5/Mt
Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt
Sn12.5/Mt
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Sn2.5/Mt
Sn1.0/Mt
Intensity (a.u.)
2-theta
Mt
17.26Å
Å 15.86 Å
15.11
Scanning Electron Microscope
1.2-1.4
nm 1.4-1.6 nm 1.6-1.8
nm
1.5-1.6 nm
0.00 0.25 0.50 0.75 1.00
0 25 50 75 100 125 150 175
Volume (cc/g)
P/Po
Mt Sn1.0/Mt Sn2.5/Mt
0 25 50 75 100
0.0 0.5 1.0 1.5 2.0 2.5 3.0
dV/dr
Pore radius Mt Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt
(Å)
a. Adsorption-desorption isotherm of SnO2/Mt at varied Sn/molar ratio
b. Pore distribution of SnO2/Mt at varied Sn/molar ratio
(a).Mt (b) Sn1.0/Mt ( c) Sn2.5/Mt (d). Sn5.0/Mt (e ).
Sn7.5/Mt
DRUV-Vis
1.5 2.0 2.5 3.0 3.5 4.0
2.92 3.18 2.58
Energy (eV) Sn1.0/Mt
Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt
2.49
(αhν)2(a.u)
200 250 300 350 400 450 500 550 600
0.0 0.5 1.0 1.5 2.0 2.5
Absorbance
Wavelength (nm)
Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt
(a) (b)
-30 -15 0 15 30 45 60 75 90 105 120 135
0.00 0.25 0.50 0.75 1.00
C/Co
Time (min) Mt Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt
Sn1.0/MMT Sn2.5/MMT Sn5.0/MMT Sn7.5/MMTSn10.0/MMT SnO2 0
5 10 15
TON
Photocatalyst
b
Aktivitas Fotokatalitik
-30 -15 0 15 30 45 60 75 90 105 120 135 0.00
0.25 0.50 0.75 1.00
Photocatalysis Photooxidation UV ilumination Adsorption UV-oxidation C/Co
Time (min)
Adsorption UV-illumination UV-oxidation photocatalysis photooxidation 0
100 200 300 400 500
Relative initial rate
Treatment
a b
200 250 300 350 400 450 500 550 600 650 0.00
0.05 0.10 0.15 0.20
Absorbance
Wavelength (nm) 0 min
15 min 30 min 60 min 120 min 180 min c
Photocatalytic degradation
O N+
CH3 CH3 H N
CH3 C H3
O N+
CH3 CH3 H N
H2
OH O
O N+
H N
H2
OH O
H H O
O O O
CH3 CH3
O
O NH
O H
OH
O O
O
H OH
O
O O H m/z = 443
m/z = 359
m/z = 331
m/z = 314 m/z = 147
m/z = 146
m/z = 90
2 3 4 5 6 7 8 9 10 11 30
60 90 120
Initial rate (mgL-1 min-1 )
pH
Sn1.0/Mt Sn7.5/Mt Sn10.0/Mt
2 4 6 8 10 12
-40 -30 -20 -10 0 10
Zeta potential )mV)
pH
(a) (b)
Photocatalytic degradation
Reusability
1 2 3 4 5 6 7 8 9 10
0 20 40 60 80 100 120
DE (%)
Cycle k
DE
0.000 0.015 0.030 0.045
k (min-1 )
0.00 0.25
0.50 0.75
1.00
Binding energy (eV)
Intensity (a.u) O1s Sn3d
Fe 2p Sn 3p3/2 Al 2pSi 2pSi 2s
Sn 3p1/2
Na 1sNa 1s O1s Sn3d Si 2s Si 2p Al 2p
(a)
before
after
485 490
495 500
486.9106
495.4646
Binding energy (eV) before
after
3d5/2 3d3/2
Intensity (a.u.)
485 486
487 488
489
Binding energy (eV)
Sn2+-O Sn4+-O
Intensity (a.u.)
a. Kinetics constant and degradation efficiency at reusability b. Survey scan of sample at fresh and recycled c. 3d spectra before and after usage d. Deconvolution of Sn 3d after usage
Pemanfaatan Limbah Tailing Bauxit
sebagai Katalis AOP
BTW
MNC
1000 800 600 400 200 0
Al 2s Al 2p
Si 2pSi 2s
C 1s
Fe 2p O 1s
Fe LLMaFe LLMb
Fe LLMc
Intensit y
Energy (eV)
O KLL
a b
700 710 720 730
718.4
722.3
Intensity
Energy (eV)
709.4
15 30 45 60 75 90 105 120 -1.5
-1.4 -1.3 -1.2 -1.1 -1.0 -0.9
ln C t
Time (min)
0 30 60 90 120
0 20 40 60 80
Removal eficiency (%)
Time (min)
CWPO
Adsorption(95oC) Adsorption (RT)
250 300 350 400 450 500 550 600 Initial solution Treated solution
Absorbance
Wavelength (nm)
280 nm 359 nm
a b
c d
4 6 8 10 12 20
40 60 80
Removal efficiency (%)
pH CWPO
Adsorption
0.0 0.4 0.8 1.2 1.6 2.0
0 25 50 75 100
Removal efficiency (%)
Catalyst dosage (g/L)
0.2 0.4 0.6 0.8 1.0 1.2
0 25 50 75 100
Removal efficiency (%)
H2O2 (%)
a b
c
-8000 -6000 -4000 -2000 0 2000 4000 6000 8000 -10
-5 0 5 10
Moment ma ss ( em u/g )
Field (G)
Boehmite Bauxite
Fe3O4(220) --Fe2O3(311) Fe3O4(400)
5 10 15 20 25 30 35 40 45 50 55 60 65 70
Intensi ty (a .u.) BTW
2-theta (
o)
MNC
-Fe2O3(012) Fe3O4(311)