• Tidak ada hasil yang ditemukan

Chemistry Department,

N/A
N/A
Protected

Academic year: 2023

Membagikan "Chemistry Department, "

Copied!
39
0
0

Teks penuh

(1)

Pengembangan Material Fungsional Ramah Lingkungan

dalam Mendukung Ekonomi Melingkar

Is Fatimah

Chemistry Department,

Universitas Islam Indonesia

Materials for Energy and Environment Laboratory

Chemistry Department

(2)

Outline

Green Chemistry

Skema Riset

Pengelolaan Air

Material Fungsional

Conclusion

(3)

Waste prevention

Atom Economy

Less hazardous

chemicals

Design for safe

Design for

degradation

Less solvent

Efficient energy

Renewable resource

Less Derivative Catalysis

Real time analysis

Design for Accident Prevention

12 Principles of Green Chemistry

(4)

Benign Process for Water Treatment

• Advanced oxidation process

• Photocatalysis

• Penggunaan Teknologi Berkelanjutan

• Material hemat (Low-Cost Material)

• Penggunaan Material terbarukan (The use of renewable resource)

• Functional Materials

(5)

Silica and Biogenic Silica Based Material Clay Based Material

Nanoparticles and Nanomaterials

Pillared Clays Organoclays

Clay-based composite Biogenic silica

Silica-based composite

Green synthesis

Energy and Environmental

Application

Adsorption Catalysis Solar cell Chemical sensor

Antibacterial/

Antifungi Green synthesis Reduced

Graphene oxide

• UII: Values-Innovation-Perfection

Research scheme in our lab

(6)
(7)

Pengembangan Material Fungsional yang dilakukan

Pemanfaatan limbah industri

Biochar dan biochar magnetic Pengembangan

Material Berbasis

Clay

(8)

0 O2/HO2-

O

2

/O

2

-

-0.20

(-0.33eV)

3.05

H

2

O/HO•

(2.38eV)

2.85 eV

Potential (eV) Vs NHE

h+h+

H

2

O HO•

O2 +H2O

HO

2

+e

-

+H

+

H

2

O

2

+OH

-

H

2

O

+O

2

-

2HO•

CO

2

+H

2

O +SO

3-

VB CB

e

-

e

-

h

+

h

+

Mekanisme Fotokatalis

(9)

Band gap energy modification

• Creating certain phase

• Designing particle size

(10)

• Band gap energy modification

• Supporting metal oxide photocatalyst into solid support

• The use of supportive adsorbent

Functional materials: Modification for Enhancement

• Clay-based materials

(11)

CB

h

+

VB e

-

O

2

O•

2

O

2

O•

2

Oxidation

Supporting metal oxide photocatalyst into solid support

High specific surface area High pore distribution Example:

Biochar-based material

Clay-based material

(12)

http://www.tekmira.esdm.go.id

(13)
(14)
(15)

UII: Values-Innovation-Perfection

Structure of Smectite Clay

1.18 nm

Exchangeable sites Possible to exchange:

-Metal Polyoxocations

-Organic Compounds/surfactant - Metal Ions

Metal Oxide Pillared Clay Mixed Metal/Metal Oxide Pillared Clay

Organoclay

Ion Exchanged- Clay

(16)

UII: Values-Innovation-Perfection

Modification- Metal Oxide Pilarization

Silica sheet

Silica sheet

Metal Polyoxocations Intercalation

Dehydroxylation - Calcination

Homogeneous distribution with increased

surfaced area

Can be applied as support

increasing

d

001

(17)
(18)

Preparation of metal oxide precursor

Intensification on intercalation

Metal oxide formation- dihydroxylation Intensification on

intercalation

Physico-Chemical Characterization

XRD, SEM, FTIR, XRF

(19)

+ + + +

ZnO precursor + TEOS

ZnO-PCH intercalation

Calcination

(20)

UII: Values-Innovation-Perfection

Zr

4

--- Zr/Ba = 20

Al

13

--- Al

3+

/

-

OH = 2

Zn --- Zn

2+

/

-

OH=2

Polioksokation-Kondisi sintesis Bentuk

(21)

XRD characterization SnO2/Mt

10 20 30 40 50 60

Intensity (a.u)

2-theta

Mt Sn2.5/Mt

Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt

Sn12.5/Mt

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Sn2.5/Mt

Sn1.0/Mt

Intensity (a.u.)

2-theta

Mt

17.26Å

Å 15.86 Å

15.11

(22)

Scanning Electron Microscope

1.2-1.4

nm 1.4-1.6 nm 1.6-1.8

nm

1.5-1.6 nm

0.00 0.25 0.50 0.75 1.00

0 25 50 75 100 125 150 175

Volume (cc/g)

P/Po

Mt Sn1.0/Mt Sn2.5/Mt

0 25 50 75 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0

dV/dr

Pore radius Mt Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt

(Å)

a. Adsorption-desorption isotherm of SnO2/Mt at varied Sn/molar ratio

b. Pore distribution of SnO2/Mt at varied Sn/molar ratio

(a).Mt (b) Sn1.0/Mt ( c) Sn2.5/Mt (d). Sn5.0/Mt (e ).

Sn7.5/Mt

(23)

DRUV-Vis

1.5 2.0 2.5 3.0 3.5 4.0

2.92 3.18 2.58

Energy (eV) Sn1.0/Mt

Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt

2.49

(αhν)2(a.u)

200 250 300 350 400 450 500 550 600

0.0 0.5 1.0 1.5 2.0 2.5

Absorbance

Wavelength (nm)

Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt

(a) (b)

-30 -15 0 15 30 45 60 75 90 105 120 135

0.00 0.25 0.50 0.75 1.00

C/Co

Time (min) Mt Sn1.0/Mt Sn2.5/Mt Sn5.0/Mt Sn7.5/Mt Sn10.0/Mt

Sn1.0/MMT Sn2.5/MMT Sn5.0/MMT Sn7.5/MMTSn10.0/MMT SnO2 0

5 10 15

TON

Photocatalyst

b

(24)

Aktivitas Fotokatalitik

-30 -15 0 15 30 45 60 75 90 105 120 135 0.00

0.25 0.50 0.75 1.00

Photocatalysis Photooxidation UV ilumination Adsorption UV-oxidation C/Co

Time (min)

Adsorption UV-illumination UV-oxidation photocatalysis photooxidation 0

100 200 300 400 500

Relative initial rate

Treatment

a b

200 250 300 350 400 450 500 550 600 650 0.00

0.05 0.10 0.15 0.20

Absorbance

Wavelength (nm) 0 min

15 min 30 min 60 min 120 min 180 min c

(25)

Photocatalytic degradation

O N+

CH3 CH3 H N

CH3 C H3

O N+

CH3 CH3 H N

H2

OH O

O N+

H N

H2

OH O

H H O

O O O

CH3 CH3

O

O NH

O H

OH

O O

O

H OH

O

O O H m/z = 443

m/z = 359

m/z = 331

m/z = 314 m/z = 147

m/z = 146

m/z = 90

(26)

2 3 4 5 6 7 8 9 10 11 30

60 90 120

Initial rate (mgL-1 min-1 )

pH

Sn1.0/Mt Sn7.5/Mt Sn10.0/Mt

2 4 6 8 10 12

-40 -30 -20 -10 0 10

Zeta potential )mV)

pH

(a) (b)

Photocatalytic degradation

(27)

Reusability

1 2 3 4 5 6 7 8 9 10

0 20 40 60 80 100 120

DE (%)

Cycle k

DE

0.000 0.015 0.030 0.045

k (min-1 )

0.00 0.25

0.50 0.75

1.00

Binding energy (eV)

Intensity (a.u) O1s Sn3d

Fe 2p Sn 3p3/2 Al 2pSi 2pSi 2s

Sn 3p1/2

Na 1sNa 1s O1s Sn3d Si 2s Si 2p Al 2p

(a)

before

after

485 490

495 500

486.9106

495.4646

Binding energy (eV) before

after

3d5/2 3d3/2

Intensity (a.u.)

485 486

487 488

489

Binding energy (eV)

Sn2+-O Sn4+-O

Intensity (a.u.)

a. Kinetics constant and degradation efficiency at reusability b. Survey scan of sample at fresh and recycled c. 3d spectra before and after usage d. Deconvolution of Sn 3d after usage

(28)

Pemanfaatan Limbah Tailing Bauxit

sebagai Katalis AOP

(29)
(30)

BTW

MNC

(31)

1000 800 600 400 200 0

Al 2s Al 2p

Si 2pSi 2s

C 1s

Fe 2p O 1s

Fe LLMaFe LLMb

Fe LLMc

Intensit y

Energy (eV)

O KLL

a b

700 710 720 730

718.4

722.3

Intensity

Energy (eV)

709.4

(32)

15 30 45 60 75 90 105 120 -1.5

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9

ln C t

Time (min)

0 30 60 90 120

0 20 40 60 80

Removal eficiency (%)

Time (min)

CWPO

Adsorption(95oC) Adsorption (RT)

250 300 350 400 450 500 550 600 Initial solution Treated solution

Absorbance

Wavelength (nm)

280 nm 359 nm

a b

c d

(33)

4 6 8 10 12 20

40 60 80

Removal efficiency (%)

pH CWPO

Adsorption

0.0 0.4 0.8 1.2 1.6 2.0

0 25 50 75 100

Removal efficiency (%)

Catalyst dosage (g/L)

0.2 0.4 0.6 0.8 1.0 1.2

0 25 50 75 100

Removal efficiency (%)

H2O2 (%)

a b

c

(34)
(35)

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000 -10

-5 0 5 10

Moment ma ss ( em u/g )

Field (G)

(36)

Boehmite Bauxite

Fe3O4(220) --Fe2O3(311) Fe3O4(400)

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Intensi ty (a .u.) BTW

2-theta (

o

)

MNC

-Fe2O3(012) Fe3O4(311)

(37)
(38)

0.36 nm

-

Fe

2

O

3

(102)

0.26 nm

Fe

3

O

4

(311)

(a) (b)

(c) (d)

c

d

100 nm

10 nm

2 nm 2 nm

(39)

Acknowledgement

• World Class Research 2020

• Chemistry Department, Universitas Islam Indonesia

Referensi

Dokumen terkait

17 We aimed to explore major potential challenges (i.e. disciplinary boundaries set by subject speciali- 18 zation, especially in secondary education) and success factors (i.e.