• Tidak ada hasil yang ditemukan

COMPETENCY EXAM 1 - 2024-2025

N/A
N/A
dira

Academic year: 2024

Membagikan "COMPETENCY EXAM 1 - 2024-2025"

Copied!
2
0
0

Teks penuh

(1)

STATISTICS STUDY PROGRAM

Assignment Sheet

Version/Revision 1/0 Page 1/2

1.Course Identity

Course Name

(Nama Mata Kuliah) Linear Algebra for Statistics Faculty

(Fakultas) Mathematics and Natural

Sciences Study Program

(Program Studi) Statistics Code

(Kode) SST-103 Credit Point

(Bobot SKS) 3 Group

(Kelompok)

Study Program Enrollment

Obligatory

(Sifat Pengambilan)

Mandatory

Semester(s) in which course is taught (Semester)

1 Availbility

(Ketersediaan)

Only available on Statistics Study Program

Learning Method (Bentuk

Pembelajaran)

Blended learning/Online learning Media

(Media) Class, google classroom, Zoom Course Category

(Rumpun Mata Kuliah)

University compulsory course/SSP compulsory

course/practicum/compulsory of scientific interest/elective course

Requirements

(Prasyarat) -

Lecturer

(Dosen Pengampu) Dina Tri Utari, M.Sc. Semester/Academic Year

(Semester/

Tahun Akademik)

Semester 1 A.Y. 2023/2024

COMPETENCY EXAM-1

1. Solve the following system using Gauss-Jordan elimination:

10𝑦 − 4𝑧 + 𝑤 = 1 𝑥 + 4𝑦 − 𝑧 + 𝑤 = 2 3x + 2y + z + 2w = 5

−2𝑥 − 8𝑦 + 2𝑧 − 2𝑤 = −4 𝑥 − 6𝑦 + 3𝑧 = 1

2. Express the matrix equation as a system of linear equations:

4 3 −1 2

4 3 7

−2 1 5

6 4 𝑥

!

𝑥

"

𝑥

#

6 = 4 2

−1 4 6 3. A square matrix 𝐴 is symmetric if 𝐴 = 𝐴

$

.

Determine all values of 𝑎, 𝑏, 𝑐 such that 𝐴 is symmetric.

𝐴 = 4 2 𝑎 − 2𝑏 + 2𝑐 2𝑎 + 𝑏 + 𝑐

3 5 𝑎 + 𝑐

0 −2 7

6

(2)

PROGRAM STUDI STATISTIKA

Lembar Penugasan

Versi/Revisi 1/0 Halaman 2/2

4. By inspection, explain why 𝑑𝑒𝑡(𝐴) = 0?

𝐴 = A

−2 8 1 4

3 2 5 1

1 4 10

−6 6 4 5

−3 B

5. For what values of 𝑘 is 𝐴 invertible?

𝐴 = D𝑘 − 3 −1

−2 𝑘 − 2 E

Date: Date: Date:

Validated by (Disyahkan oleh)

Examined by (Diperiksa oleh)

Prepared by (Disiapkan oleh)

Head of SSP-UII Scientific Interest Coordinator Dina Tri Utari, M.Sc.

Referensi

Dokumen terkait