• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
49
0
0

Teks penuh

(1)

129 AASHTO. (2014). AASHTO: LFRD Bridge Design Spesification (7th ed.). American Association

of State Highway and Transportation Officials.

ACI. (1971). ACI 318-71: Building Code Requirements for Reinforced Concrete. American Concrete Institute.

ACI. (1988). ACI 226.3R-87: Use of Fly Ash in Concrete. ACI Material Journal, 85, 385–408.

ACI. (2008). ACI PRC-209.2R-08: Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete.

ACI. (2014). ACI 318-14: Building Code Requirements for Structural Concrete and Commentary.

Ajay, A., Ramaswamy, K. P., dan Thomas, A. V. (2020). A Critical Review on The Durability of Geopolymer Composites in Acidic Environment. IOP Conference Series: Earth and Environmental Science, 491, 12044. https://doi.org/10.1088/1755-1315/491/1/012044 Akbar, J., Ahmad, N., dan Alam, B. (2019). Seismic Strengthening of Deficient Reinforced

Concrete Frames Using Reinforced Concrete Haunch. ACI Structural Journal, 116-S21, 225–

235.

Akbar, J., Ahmad, N., dan Alam, B. (2020). Response Modification Factor of Haunch Retrofitted Reinforced Concrete Frames. Journal of Performance of Constructed Facilities, 34(6), 04020115. https://doi.org/10.1061/(asce)cf.1943-5509.0001525

Akbar, J., Ahmad, N., Alam, B., dan Ashraf, M. (2018). Seismic Performance of RC Frames Retrofitted with Haunch Technique. Structural Engineering and Mechanics, 67(1).

https://doi.org/10.12989/sem.2018.67.1.001

Akbar, J., Ahmad, N., Rizwan, M., Javed, S., dan Alam, B. (2020). Response Modification Factor of RC Frames Strengthened with RC Haunches. Shock and Vibration, 2020, 3835015.

https://doi.org/10.1155/2020/3835015

Al Jawahery, M. S., Gulsan, M. E., Albegmprli, H. M., Mansoori, I. A. H., dan Cevik, A. (2019).

Experimental Investigation of Rehabilitated RC Haunched Beams via CFRP with 3D-FE Modeling Analysis. Engineering Structures, 196, 109301.

https://doi.org/10.1016/j.engstruct.2019.109301

Albegmprli, H. M., Çevik, A., Gülsan, M. E., dan Kurtoglu, A. E. (2015). Reliability Analysis of Reinforced Concrete Haunched Beams Shear Capacity based on Stochastic Non-Linear FE

Analysis. Computers and Concrete, 15(2), 259–277.

https://doi.org/10.12989/cac.2015.15.2.259

Albegmprli, H. M., Gülşan, M. E., dan Cevik, A. (2019a). Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam.

Advances in Concrete Construction, 7(1), 39–50. https://doi.org/10.12989/acc.2019.7.1.039 Albegmprli, H. M., Gülşan, M. E., dan Cevik, A. (2019b). Comprehensive Experimental

Investigation on Mechanical Behavior for Types of Reinforced Concrete Haunched beam.

(2)

130 Geopolymer and Conventional Concretes. Construction and Building Materials, 136, 374–

385. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.01.056

Amin, M., dan Nasier, S. (2018). Geopolymer Concrete - A Solution for Cementitious Concrete Pollution: A Review. International Research Journal of Engineering and Technology (IRJET), 5(1).

Andalib, R., Hussin, M. W., Majid, M. Z. A., Azrin, M., dan Ismail, H. H. (2014). Structural Performance of Sustainable Waste Palm Oil Fuel AshFly Ash Geo-polymer Concrete Beams.

Journal of Environmental Treatment Techniques (JETT), 2(3), 115–119.

http://jett.dormaj.com/docs/Volume2/Issue 3/Structural Performance of Sustainable Waste Palm Oil Fuel Ash-Fly Ash Geo-polymer Concrete Beams.pdf

Ardiansyah, R. (2016). Analisis Pengaruh Haunch terhadap Kekakuan Struktur Balok Beton Bertulang. Universitas Negeri Malang.

Arfiadi, Y. (2014). Pengaruh Penetapan SNI Gempa 2012 pada Desain Struktur Rangka Momen Beton Bertulang di Beberapa Kota di Indonesia. Seminar HAKI Indonesia Siaga Gempa.

ASTM. (2003). ASTM C307-03: Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings. ASTM International.

ASTM. (2009). ASTM A615 / A615M-09: Standard Specification for Deformed and Plain Carbon- Steel Bars for Concrete Reinforcement. ASTM International.

ASTM. (2020). ASTM C1583/C1583M-20: Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method). ASTM International.

Aziz, I. H., Abdullah, M. M. A. B., Yong, H., Ming, L., Kamarudin, H., Abdul Kadir, K., dan Azimi, E. A. (2016). Manufacturing of Fire Resistance Geopolymer: A Review. MATEC Web of Conferences, 78, 1023. https://doi.org/10.1051/matecconf/20167801023

Barbosa, V. F. F., MacKenzie, K. J. D., dan Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309–317.

https://doi.org/10.1016/S1466-6049(00)00041-6

Basset, J. (1994). Kimia Analisis Kuantitatif Anorganik (4th ed.). EGC.

Bondar, D. (2013). Geopolymer Concrete as a New Type of Sustainable Construction Materials.

Sustainable Construction Materials and Technologies.

Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., dan Ramezanianpour, A. (2011).

Engineering Properties of Alkali-Activated Natural Pozzolan Concrete. ACI Materials Journal, 108(1), 64–72.

BSN. (2000). SNI 03-2834-2000: Tata Cara Pembuatan Rencana Campuran Beton Normal.

Badan Standardisasi Nasional.

(3)

131 BSN. (2019a). SNI 1726:2019, Tata Cara Perencanaan Ketahanan Gempa untuk Struktur

Bangunan Gedung dan Non-Gedung.

BSN. (2019b). SNI 2847:2019, Persyaratan Beton Struktural untuk Bangunan Gedung. In Bandung: Badan Standardisasi Indonesia. Badan Standardisasi Nasional.

Budiono, B., Dewi, N. T. H., Kristalya, M., Manik, S. L. C., dan Ong, E. H. K. (2017). Contoh Desain Bangunan Tahan Gempa dengan SRPMK dan Sistem Dinding Struktur Khusus di Jakarta. ITB Press.

CSA. (2004). CSA A23.3-04: Design of Concrete Structures. In Design of concrete structures.

Dang, C.-T., dan Dinh, N.-H. (2017). Experimental Study on Structural Performance of RC Exterior Beam-Column Joints Retrofitted by Steel Jacketing and Haunch Element under Cyclic Loading Simulating Earthquake Excitation. Advances in Civil Engineering, 2017, 9263460. https://doi.org/10.1155/2017/9263460

Dattatreya, J. K., Rajamane, N. P., Sabitha, D., Ambily, P. S., dan Nataraja, M. C. (2011). Flexural Behaviour of Reinforced Geopolymer Concrete Beams. International Journal of Civil and Structural Engineering, 2(1), 138–159.

Davidovits, J. (1988). Geopolymers of The First Generation: Siliface-Process, Geopolymer. The First European Conference on Soft Mineralurgy, 88, 49–67.

Demie, S., Nuruddin, M. F., Ahmed, M. F., dan Shafiq, N. (2011). Effects of Curing Temperature and Superplasticizer on Workability and Compressive Strength of Self-Compacting Geopolymer Concrete. 2011 National Postgraduate Conference - Energy and Sustainability:

Exploring the Innovative Minds, NPC 2011. https://doi.org/10.1109/NatPC.2011.6136362 Devika, C. P., dan Nath, D. R. (2015). Study of Flexural Behavior of Hybrid Fibre Reinforced

Geopolymer Concrete Beam. International Journal of Science and Research (IJSR), 4(7), 130–135. https://www.ijsr.net/archive/v4i8/SUB157167.pdf

DPU. (2005). Pd T-07-2005-B: Pelaksanaan Pekerjaan Beton untuk Jalan dan Jembatan.

Departemen Pekerjaan Umum.

EFNARC. (2005). The European Guidelines for Self-Compacting Concrete. The European Guidelines for Self Compacting Concrete.

Ekaputri, J. J., Triwulan, dan Damayanti, O. (2007). Sifat Mekanik Beton Geopolimer Berbahan Dasar Fly Ash Jawa Power Paiton sebagai Material Alternatif. Jurnal Pondasi, 13(2), 124–

134.

Ekaputri, J. J., dan Triwulan, T. (2013). Sodium sebagai Aktivator Fly Ash, Trass dan Lumpur Sidoarjo dalam Beton Geopolimer. Jurnal Teknik Sipil, 20(1), 1–10.

https://doi.org/10.5614/jts.2013.20.1.1

El-Amoury, T., dan Ghobarah, A. (2005). Retrofit of RC Frames using FRP Jacketing or Steel Bracing. Journal of Seismology and Earthquake Engineering, 7(2), 83–94.

(4)

132 https://doi.org/10.1177/1369433220922493

Eurocode. (2004). European Standard: EN 1992-1-1.

Gülşan, M. E., Al-Sammarraie, K. T. F., dan Darraji, S. Y. H. Al. (2018). Steel Fiber Reinforced Concrete Haunched Beams. The International Journal of Energy and Engineering Sciences, 3(1), 1–15.

Gülsan, M. E., Alzeebaree, R., Rasheed, A. A., Niş, A., dan Kurtoğlu, A. E. (2019). Development of Fly Ash/Slag based Self-Compacting Geopolymer Concrete using Nano-Silica and Steel Fiber. Construction and Building Materials, 211, 271–283.

https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.228

Gumalang, S., Wallah, S. ., dan Sumajouw, M. D. . (2016). Pengaruh Kadar Air dan Superplasticizer pada Kekuatan dan Kelecakan Beton Geopolimer Memadat Sendiri Berbasis Abu Terbang. Jurnal Ilmiah Media Engineering, 6(3), 574–582.

https://doi.org/10.7498/aps/62.010302

Gupta, N., Gupta, A., Saxena, K. K., Shukla, A., dan Goyal, S. K. (2021). Mechanical and Durability Properties of Geopolymer Concrete Composite at Varying Superplasticizer

Dosage. Materials Today: Proceedings, 44, 12–16.

https://doi.org/10.1016/j.matpr.2020.05.646

Habert, G., D’Espinose De Lacaillerie, J. B., dan Roussel, N. (2011). An Environmental Evaluation of Geopolymer based Concrete Production: Reviewing Current Research Trends.

Journal of Cleaner Production, 19(11), 1229–1238.

https://doi.org/10.1016/j.jclepro.2011.03.012

Hardjito, D. (2005). Studies on Fly Ash-Based Geopolymer Concrete. Curtin University of Technology.

Hardjito, D., dan Rangan, B. V. (2005). Development and Properties of Low-Calcium Fly Ash- Based Geopolymer Concrete.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., dan Rangan, B. V. (2004a). Factors Influencing The Compressive Strength of Fly Ash-based Geopolymer Concrete. Civil Engineering Dimension, 6(2), 88–93.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., dan Rangan, B. V. (2004b). On the Development of Fly Ash-Based Geopolymer Concrete. ACI Materials Journal, 101(6), 467–472.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., dan Rangan, B. V. (2004c). Properties of Geopolymer Concrete with Fly Ash as Source Material: Effect of Mixture Composition. ACI Symposium Publication, 222, 109–118.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., dan Rangan, B. V. (2005a). Introducing Fly Ash- Based Geopolymer Concrete Manufacture and Engineering Properties. 30th Conference on Our World In Concrete dan Structures, 271–278.

(5)

133 Heong, N. Y. (2004). Design of Composite Haunch Beams and Connections for Long Span

Applications. National University of Singapore.

Hernowo, S., dan Lisantono, A. (2016a). Retrofitting Sambungan Kolom-Balok Beton Bertulang Ekspansi Planar Segitiga dengan Variasi Ukuran. Forum Teknik, 37(1).

Hernowo, S., dan Lisantono, A. (2016b). Retrofitting Sambungan Kolom-Balok Beton Bertulang Ekspansi Planar Segitiga dengan Variasi Ukuran. Forum Teknik, 37(1), 1–13.

Imran, I., dan Hendrik, F. (2010). Perencanaan Struktur Gedung Beton Bertulang Tahan Gempa.

ITB Press.

Imran, I., dan Hendrik, F. (2016). Perencanaan Lanjut Struktur Gedung Beton Bertulang. ITB Press.

Jaafer, A. A., dan Abdulghani, A. W. (2018). Non-Linear Finite Element Analysis for Reinforced Concrete Haunched Beams with Opening. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/454/1/012152

Jeyaseela, J., dan Vishnuram, B. G. (2015). Study on Workability and Durability Characteristics of Self-Compacting Geopolymer Concrete Composites. International Journal of Advanced Technology in Engineering and Science, 03(01), 1246–1256.

Jolly, A., dan Vijayan, V. (2016a). Structural Behaviour of Reinforced Concrete Haunched Beam.

International Journal of Scientific and Engineering Research, 7(10), 93–97.

Jolly, A., dan Vijayan, V. (2016b). Structural Behaviour of Reinforced Concrete Haunched Beam A Study on ANSYS and ETABS. IJISET - International Journal of Innovative Science, Engineering and Technology, 3(8), 495--500.

Karthiyaini, S. (2016). Physicochemical Properties of Alkali Activated Fly Ash based Geopolymer Concrete: A Review. International Journal of Earth Sciences and Engineering, 9(6), 2419–

2426.

Kishanrao, M. P. (2013). Design of Geopolymer Concrete. International Journal of Innovative Research in Science, Engineering and Technology, 2(5).

Kumaravel, S., dan Girija, K. (2013). Acid and Salt Resistance of Geopolymer Concrete with Varying Concentration of NaOH. Journal of Engineering Research and Studies, IV(IV).

Lawson, R. M., dan Rackham, J. W. (1989). Design of Haunched Composite Beams in Buildings (1st ed.). The Steel Construction Institute.

Lawson, R. M., dan Rackman, J. W. (1989). Design of Haunched Composite Beams in Buildings.

The Steel Construction Institute.

Li, P., Zhang, T., An, X., dan Zhang, J. (2020). An Enhanced Mix Design Method of Self- Compacting Concrete with Fly Ash Content based on Paste Rheological Threshold Theory and Material Packing Characteristics. Construction and Building Materials, 234, 117380.

https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117380

(6)

134 Lloyd, N. A., dan Rangan, B. (2010). Geopolymer Concrete with Fly Ash. Second International

Conference on Sustainable Construction Materials and Technologies, 3.

MacGregor, J. G., dan Wight, J. K. (2009). Reinforced Concrete: Mechanics and Design (4th ed.).

Prentice Hall.

Manuahe, R., Sumajouw, M. D. J., dan Windah, R. S. (2014). Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash). Jurnal Sipil Statik, 2(6), 277–282.

Marchisella, A., Muciaccia, G., Sharma, A., dan Eligehausen, R. (2021). Experimental Investigation of 3D RC Exterior Joint Retrofitted with Fully-Fastened-Haunch-Retrofit-

Solution. Engineering Structures, 239, 112206.

https://doi.org/https://doi.org/10.1016/j.engstruct.2021.112206

Memon, F. A., Nuruddin, M. F., dan Shafiq, N. (2013). Effect of Silica Fume on The Fresh and Hardened Properties of Fly Ash-based Self-Compacting Geopolymer Concrete. International Journal of Minerals, Metallurgy and Materials, 20(2), 1–9. https://doi.org/10.1007/s12613- 013-0714-7

Moehle, J. P., Hooper, J. D., dan Lubke, C. D. (2008). Seismic Design of Reinforced Concrete Special Moment Frames A Guide for Practicing Engineers (2nd ed.).

Mörsch, E. (1909). Concrete-Steel Construction (3rd ed.). The Engineering News Publishing Company.

Mufti, F. (2008). Pengaruh Voute pada Seismic Performance Level dari Portal Beton Bertulang.

Universitas Indonesia.

Muttashar, H. L., Hussin, M. W., Ariffin, M. A. M., Mirza, J., Hasanah, N., dan Shettima, A. U.

(2017). Mechanical Properties of Self-Compacting Geopolymer Concrete Containing Spent Garnet as Replacement for Fine Aggregate. Jurnal Teknologi.

https://doi.org/10.11113/jt.v79.9957

Naganur, I. K., Ramesh, B. M., Babu, V., Nagaraj, V. K., dan Arikeri, V. (2017). A Study on Self- Compacting Geopolymer Concrete with an Alkaline Activator Ratio and Different Alkaline Activator to Cementitious Binder Ratios. International Research Journal of Engineering and Technology(IRJET), 4(6).

Naik, P. K., dan Manjunath, M. (2017). Pushover Analysis of Multi-Storey Frame Structure with Haunched Beam. International Journal of Trend in Research and Development, 4(3).

Ng, T. S., Amin, A., dan Foster, S. J. (2013). The Behaviour of Steel-Fibre-Reinforced Geopolymer Concrete Beams in Shear. Magazine of Concrete Research, 65(5), 308–318.

https://doi.org/https://doi.org/10.1680/macr.12.00081

Ng, Y. H., Shanmugam, N. E., dan Liew, J. Y. R. (2012). Experimental Studies on Composite Haunch Beams. Journal of Constructional Steel Research, 75, 160–168.

https://doi.org/10.1016/j.jcsr.2012.03.016

(7)

135 Nuruddin, M. F., Demie, S., Ahmed, M. F., dan Shafiq, N. (2011). Effect of Superplasticizer and NaOH Molarity on Workability, Compressive Strength and Microstructure Properties of Self- Compacting Geopolymer Concrete. International Journal of Geological and Environmental Engineering, 5(3), 187–194.

Pampanin, S., Christopoulos, C., dan Chen, T.-H. (2006). Development and Validation of A Metallic Haunch Seismic Retrofit Solution for Existing Under-Designed RC Frame Buildings. Earthquake Engineering and Structural Dynamics, 35(14), 1739–1766.

https://doi.org/https://doi.org/10.1002/eqe.600

Park, R., dan Paulay, T. (1975). Reinforced Concrete Structures. Bulletin of the New Zealand Society for Earthquake Engineering, 769. https://doi.org/10.5459/bnzsee.8.4.291

Patel, Y. J., dan Shah, N. (2018a). Development of Self-Compacting Geopolymer Concrete as a Sustainable Construction Material. Sustainable Environment Research, 28(6), 412–421.

https://doi.org/10.1016/j.serj.2018.08.004

Patel, Y. J., dan Shah, N. (2018b). Development of Self-Compacting Geopolymer Concrete as a Sustainable Construction Material. Sustainable Environment Research, 28(6), 412–421.

https://doi.org/10.1016/j.serj.2018.08.004

Paulay, T., dan Priestly, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. In Seismic Design of Reinforced Concrete and Masonry Buildings.

https://doi.org/10.1002/9780470172841

Paultre, P., dan Légeron, F. (2008). Confinement Reinforcement Design for Reinforced Concrete Columns. Journal of Structural Engineering, 134(5), 738–749.

https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(738)

Paultre, P., Legeron, F., dan Savard, C. (2000). Use of High-Yield Strength Materials in Seismic Zones : A Strategic Approach. 12th World Conference on Earthquake Engineering.

Perceka, W., Supriatna, D., Imran, I., dan Anthony, Y. (2013). Comparison of Structural Performance of Dual Reinforced Concrete Building System Designed by Using Indonesian Seismic Code of 2002 (SNI 03-1726-2002) and Indonesian Earthquake Resistance for Buildings and Other Structures. Proceeding the 6th Civil Engineering Conference in Asia Region: Embracing the Future through Sustainability.

Prabhu, R. S., Anuradha, R., dan S.Vivek. (2016). Experimental Research on Triple Blended Self- Compacting Geo Polymer Concrete. Asian Journal of Engineering and Applied Technology (AJEAT), 5(6).

Priyanka, V. M., Kumar, M. P., Kumar, G. V. S. R., dan Vishalakshi, D. (2017). Effect of Haunched Beams in Moment Resisting RC Frames. International Journal of Civil Engineering and Technology, 8(9).

Purwanto, Han, A. L., Nuroji, dan Jaya Ekaputri, J. (2018). The Influence of Molarity Variations to The Mechanical Behavior of Geopolymer Concrete. MATEC Web of Conferences.

https://doi.org/10.1051/matecconf/201819501010

(8)

136 International Research Journal of Engineering and Technology, 4(6).

Rahman, S. K., dan Al-Ameri, R. (2021). A Newly Developed Self-Compacting Geopolymer Concrete Under Ambient Condition. Construction and Building Materials, 267, 121822.

https://doi.org/10.1016/j.conbuildmat.2020.121822

Ramujee, K., dan Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945.

https://doi.org/10.1016/j.matpr.2017.02.175

Reddy, C. J., dan Elavenil, S. (2017). Geopolymer Concrete with Self-Compacting: A Review.

International Journal of Civil Engineering and Technology, 8(2), 163–172.

Reddy, C. J., dan Elavenil, S. (2019). Role of Superplasticizer on GGBS based Geopolymer Concrete under Ambient Curing. International Conference on Advances in Materials and Manufacturing Engineering, 148–154.

Reddy, K. M., dan Kumar, G. N. (2017a). Experimental Study on Self- Compacting Geopolymer Concrete. International Research Journal of Engineering and Technology(IRJET), 4(1).

Reddy, K. M., dan Kumar, G. N. (2017b). Study on Strength and Durability Properties of Self Compacting Geopolymer Concrete. International Journal of Trend in Research and Development, Special Is, 366–370.

Sanni, S. H., dan Khadiranaikar, R. B. (2014). Non Destructive Tests with Rebound Hammer and Ultrasonic Pulse Velocity Measurements on Geopolymer Concrete. International Journal of Earth Sciences and Engineering, 7(1), 331–335.

Santos, P. M. D. dos, dan Júlio, E. N. B. S. (2011). Factors Affecting Bond between New and Old Concrete. ACI Materials Journal, 108-M48, 449–456.

Sarker, P. K. (2011). Bond Strength of Reinforcing Steel Embedded in Fly Ash-Based Geopolymer Concrete. Materials and Structures/Materiaux et Constructions, 44, 1021–1030.

https://doi.org/10.1617/s11527-010-9683-8

Sarker, P. K., Kelly, S., dan Yao, Z. (2014). Effect of Fire Exposure on Cracking, Spalling and Residual Strength of Fly Ash Geopolymer Concrete. Materials and Design, 63, 584–592.

https://doi.org/https://doi.org/10.1016/j.matdes.2014.06.059

Sawant, R., dan Saudagar, A. A. (2019). Review on Structural Performance of Haunch Reinforced Concrete Beams. Journal of Civil and Construction Engineering, 5(3), 41–47.

Sharma, Ajay, dan Ahmad, J. (2017). Factors Affecting Compressive Strength of Geopolymer Concrete - A Review. International Research Journal of Engineering and Technology (IRJET), 4(4), 2026–2031.

Sharma, Akanshu. (2013). Seismic Behavior and Retrofitting of RC Frame Structures with Emphasis on Beam-Column Joints: Experiments and Numerical Modeling [University of Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-498

(9)

137 Sharma, Akanshu, Genesio, G., Reddy, G. R., Eligehausen, R., Pampanin, S., dan Vaze, K. K.

(2010). Experimental Investigations on Seismic Retrofitting of Reinforced Concrete Beam- Column Joints. 14th Symposium on Earthquake Engineering Indian Institute of Technology.

Sharma, U. K., Bhargava, P., Singh, S. P., dan Kaushik, S. K. (2007). Confinement Reinforcement Design for Plain and Fibre Reinforced High Strength Concrete Columns. Journal of Advanced Concrete Technology, 5(1), 113–127.

Shivaranjan, N. S., Shiva Kumar, K. S., Venkatesh Babu, D. D. ., dan Nagaraj, V. K. (2016). A Study on Self Compacting Geopolymer Concrete With Various Water To Gepolymer Solids Ratios. International Research Journal of Engineering and Technology, 3(7), 2064–2069.

Shriner, R., Hermann, C. K. F., Morill, T. C., Curtin, D. Y., dan Fuson, R. C. (2004). The Systematic Identification of Organic Compounds (Deborah Brennan, C. Donovan, R. Smith, dan N. M. Pigliucci (eds.); 8th ed.). John Wiley and Sons, Inc.

Sofi, M., van Deventer, J. S. J., Mendis, P., dan Lukey, G. C. (2007). Engineering Properties of Inorganic Polymer Concretes (IPCs). Cement and Concrete Research, 37(2), 251–257.

https://doi.org/https://doi.org/10.1016/j.cemconres.2006.10.008

Srinivasan, S., Karthik, A., dan Nagan, S. (2014). An Investigation on Flexural Behaviour of Glass Fibre Reinforced Geopolymer Concrete Beams. International Journal of Engineering Sciences and Research Technology, 3(4), 1963–1968.

Srinvas, V. L. S., Anees Ahamed, U., Somaraju, V. Y. S. V., dan Himath Kumar, Y. (2019). Study on Properties of Geopolymer Self-Compacting Concrete. International Journal of Recent Technology and Engineering, 7(6C2).

Standards New Zealand. (2006). NZS 3101.1dan2:2006: Concrete Structures Standards.

Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., dan Rangan, B. V. (2005). Behaviour and Strength of Reinforced Fly Ash-Based Geopolymer Concrete Beams. American Concrete Institute’s Seventh International Symposium on Utilization of High-Strength/High-Performance Concrete, 577–594.

Sumajouw, D. M. J., dan Rangan, B. V. (2006). Low-Calcium Fly Ash-based Geopolymer Concrete: Reinforced Beams and Columns.

Tena-Colunga, A. (1994). Concerns Regarding The Seismic Design of Reinforced Concrete Haunched Beams. ACI Structural Journal, 91(3).

Tena-Colunga, A., Archundia-Aranda, H. I., dan González-Cuevas, Ó. M. (2008). Behavior of Reinforced Concrete Haunched Beams Subjected to Static Shear Loading. Engineering Structures, 30, 478–492. https://doi.org/10.1016/j.engstruct.2007.04.017

Tena-Colunga, A., Hernández-Márquez, O., dan Archundia-Aranda, H. I. (2020). Strengthening of Reinforced Concrete Prismatic and Haunched Beams using Light Jacketing. Journal of Building Engineering, 32, 1–15. https://doi.org/10.1016/j.jobe.2020.101757

(10)

138 Tena-Colunga, A., Urbina-Californias, L. A., dan Archundia-Aranda, H. I. (2017b). Cyclic behavior of continuous reinforced concrete haunched beams with transverse reinforcement designed to fail in shear. Construction and Building Materials, 151, 546–562.

https://doi.org/10.1016/j.conbuildmat.2017.05.123

Thurston, S. J. (1982). Cyclic Load Testing of Three Haunched Reinforced Concrete Beam- Column Assemblies. Bulletin of the New Zealand National Society for Earthquake Engineering, 15(3). https://doi.org/10.5459/bnzsee.15.3.141-153

Usha, S., Nair, D. G., dan Vishnudas, S. (2014). Geopolymer Binder From Industrial Wastes: A Review. International Journal of Civil Engineering and Technology (IJCIET), 5(12), 219–

225.

Wallah, S. E., dan Rangan, B. V. (2006). Low-Calcium Fly Ash-Based Geopolymer Concrete:

Long-Term Properties.

Watson, S., dan Park, R. (1994). Simulated Seismic Load Tests on Reinforced Concrete Columns.

Journal of Structural Engineering, 120(6).

https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1825)

Watson, Soesianawati. (1989). Design of Reinforced Concrete Frames of Limited Ductility.

University of Canterbury.

Yost, J. R., Radlińska, A., Ernst, S., Salera, M., dan Martignetti, N. J. (2013). Structural Behavior of Alkali Activated Fly Ash Concrete. Part 2: Structural Testing and Experimental Findings.

Materials and Structures, 46, 449–462. https://doi.org/https://doi.org/10.1617/s11527-012- 9985-0

Yussof, M. M., Silalahi, J. H., Kamarudin, M. K., Chen, P.-S., dan Parke, G. A. R. (2020).

Numerical Evaluation of Dynamic Responses of Steel Frame Structures with Different Types of Haunch Connection Under Blast Load. Applied Sciences, 10(1815), 1–20.

Zabihi, A., Tsang, H.-H., Gad, E., dan Wilson, J. L. (2016). Retrofitting RC Beam-Column Joint in Australia using Single Diagonal Haunch. Australian Earthquake Engineering Society 2016.

Zabihi, A., Tsang, H. H., Gad, E. F., dan Wilson, J. L. (2018). Seismic Retrofit of Exterior RC Beam-Column Joint using Diagonal Haunch. Engineering Structures, 174, 753–767.

https://doi.org/10.1016/j.engstruct.2018.07.100

(11)

139 Lampiran A State of the art

Tabel A State of the Art penelitian yang terkait dan kebaruan (novelty) disertasi

Peneliti

Self Compacting Geopolymer Concrete

(SCGC)

Haunch Beton Konvensional

Balok Prismatis Beton Geopolimer

Haunch Beton Geopolimer

Sendi Plastis/Pola

Retak

Daktilitas Kurvatur/Daktilitas

Displacement Mörsch (1909)

-

Pertama kali melakukan penelitian balok haunch beton tanpa sengkang dengan sudut haunch: α

=18.40o.

- - - -

Thurston (1982)

-

Balok beton bertulang haunch meningkatkan kekakuan, kekuatan dan ketahanan struktur sehingga gejala debonding di HBK dapat dihindari.

- - Pola retak

diamati -

Sumajouw et al. (2005)

- -

Perilaku dan kekuatan balok beton bertulang prismatis dari beton geopolimer

- Pola retak

diamati

Daktilitas displacement dianalisis

Sumajouw dan Rangan (2006)

- -

Beton geopolimer berbasis fly ash rendah kalsium untuk balok dan kolom beton bertulang.

- - -

(12)

140

Tena-Colunga et al., (2008)

-

Balok haunch dengan berbagai sudut α mendukung aksi haunch dan panjang haunch sebagai mekanisme kegagalan penahan utama. Studi ini membahas kapasitas deformasi dan mekanisme kuat geser balok haunch beton bertulang.

- -

Pola retak diamati pada penelitian ini

-

Mufti (2008)

-

Kapasitas haunch beam beton bertulang lebih besar, sehingga struktur menjadi lebih kuat dalam menahan beban.

- - - -

Nuruddin et al. (2011) Pengaruh

superplasticizer dan molaritas NaOH terhadap workability, kuat tekan dan sifat mikrostruktur SCGC.

- - - - -

Nghiep (2011)

-

Meneliti tentang desain geser balok beton prismatis dan balok haunch tanpa sengkang.

- - - -

(13)

141

Demie et al. (2011) Pengaruh suhu curing dan penambahan superplasticizer terhadap workability dan kuat tekan SCGC.

- - - - -

Dattatreya et al. (2011)

- -

Perilaku lentur balok prismatis beton bertulang dari beton geopolimer.

- Pola retak

diamati Kurva P-Δ didapat.

Ng et al. (2012)

-

Penelitian tentang perilaku balok haunch komposit baja-beton. Eksperimen

dilakukan untuk

menyelidiki perilaku beban ultimit balok komposit haunch.

- - Pola retak

diamati -

Demie et al. (2011) Pengaruh

superplasticizer dan extra water terhadap workability dan kuat tekan SCGC.

- - - - -

Memon et al., (2013) Pengaruh silika-fume pada sifat beton segar dan mengeras dari beton geopolimer self-

- - - - -

(14)

142

compacting berbasis abu terbang (FA).

T. S. Ng et al., (2013)

- -

Penelitian tentang balok beton geopolimer bertulang serat (fiber) baja dalam perilaku geser balok.

- - -

Yost et al. (2013)

- -

Perilaku struktur beton geopolimer berbahan dasar fly ash alkali aktivator: pengujian struktural dan temuan eksperimental.

- - -

Sanni dan Khadiranaikar (2014)

Larutan alkali kombinasi dari larutan natrium silikat dan natrium hidroksida dengan perbandingan 2,50 dan 12 M. Benda uji 150×150×150 mm kubus dan balok bertulang

150×150×2000 mm

Pola keruntuhan benda uji balok mirip balok SCC konvensional.

Andalib et al. (2014)

- -

Kinerja struktural balok beton geopolimer berbahan dasar fly ash

- - -

(15)

143

dan abu bahan bakar minyak kelapa sawit berkelanjutan.

Srinivasan et al. (2014)

- -

Investigasi perilaku lentur balok beton geopolimer bertulang fiber glass.

- - -

Devika dan Nath, (2015)

- -

Kajian perilaku lentur balok beton geopolimer bertulang fiber hybrid.

- - -

Ardiansyah (2016)

-

Analisis pengaruh haunch terhadap kekakuan struktur balok beton bertulang dengan sudut haunch: 3.07o, 6.12o, 9.13o, 12.10o.

- -

Pola retak diamati pada penelitian ini dengan variasi sudut haunch 3.07o, 6.12o, 9.13o, 12.10o.

-

Y. H. Ng et al. (2012)

-

Perilaku koneksi balok haunch komposit baja- beton

- - - -

Gumalang et al. (2016) Pengaruh kadar air dan superplasticizer pada

kekuatan dan

kelecakan beton SCGC berbasis fly ash.

- - - - -

(16)

144

Hernowo dan Lisantono (2016)

-

Retrofitting sambungan kolom-balok beton bertulang ekspansi planar segitiga dengan variasi ukuran.

- -

Pola retak diamati pada penelitian ini

-

Shivaranjan et al. (2016) Studi tentang self compacting

geopolymer concrete (SCGC) dengan berbagai rasio air terhadap padatan geopolimer.

- - - - -

Prabhu et al. (2016) Penelitian

eksperimental pada beton geopolimer pemadatan mandiri tiga campuran.

- - - - -

Tena-Colunga et al.

(2017b)

-

Penilaian kekuatan geser balok haunch beton bertulang kontinu berdasarkan pengujian siklik dengan sudut haunch:

0o s/d 10o

- -

Pola retak diamati pada penelitian ini

-

Dang dan Dinh (2017)

-

Studi eksperimental kinerja struktur sambungan balok- kolom eksterior RC yang

- - Sendi plastis dan

pola retak diamati -

(17)

145

diperkuat dengan jaket baja dan elemen haunch di bawah pembebanan siklik yang menyimulasikan eksitasi gempa.

pada penelitian ini.

Reddy dan Elavenil (2017)

SCGC berbasis fly ash memiliki kuat tekan yang tinggi pada proses heat curing serta kuat tekan yang rendah pada ambient curing. Kehadiran GGBS meningkatkan kekuatan dalam perawatan ambient.

- - - - -

K. M. Reddy dan Kumar (2017)

SCGC berbasis fly ash diganti dengan berbagai persentase

GGBS. Hasil

penelitian

menunjukkan bahwa penambahan GGBS ke SCGC berbasis fly ash, karakteristik

kemampuan kerja menurun dan kekuatan

- - - - -

(18)

146

meningkat dengan meningkatnya konten pengikat.

K. M. Reddy dan Kumar (2017b)

Karakteristik

kemampuan kerja sifat

kekuatan dan

karakteristik daya tahan SCGC berbasis abu terbang rendah kalsium dinilai dengan penggantian yang berbeda.

- - - - -

Muttashar et al. (2017) Mechaninal properties garnet bekas SCGC sebagai pengganti agregat halus

- - - - -

Albitar et al. (2017)

- -

Perilaku geser balok beton geopolimer tanpa sengkang.

- - -

Naganur et al. (2017) Kajian SCGC dengan rasio alkaline activator dan alkaline activator yang berbeda dengan rasio pengikat semen.

- - - - -

Patel dan Shah (2018) Pengembangan beton

geopolimer pemadatan - - - - -

(19)

147

sendiri sebagai bahan konstruksi yang berkelanjutan.

Akbar et al. (2019)

-

Usulan novel strengthening, berupa RC haunch pada sambungan balok-kolom akan meningkatkan kekakuan dan kekuatan struktur dengan sudut haunch : 33.7o.

- - - -

Tena-Colunga et al.

(2020)

-

Teknik perkuatan yang digunakan adalah outer beam jacketing, terdiri dari wire mesh baja ringan yang ditutup dengan grout setebal 2 cm. Balok diuji dengan pembebanan monotonik.

- -

Pola retak diamati pada penelitian ini

-

Al Jawahery et al. (2019)

-

Investigasi perilaku dari Reinforced Concrete Haunched Beams (RCHBs) yang direhabilitasi dengan strip Carbon Fiber Reinforced Polymer (CFRP).

- -

Pola retak diamati pada penelitian ini

-

(20)

148

Akbar et al. (2019)

-

Teknik strengthening haunch beam concrete yang diusulkan mengurangi kerusakan sendi dan meningkatkan kekakuan struktural, kekuatan, dan keuletan.

- -

Sendi plastis dan pola retak diamati pada penelitian ini

-

Sawant dan Saudagar (2019)

Balok haunch dengan luas penampang yang bervariasi akan lebih efisien dan ekonomis untuk balok bentang besar. Haunch balok lebih efisien, hemat bahan, menyediakan lebih tinggi di bentang tengah, geser lebih baik tahan, dll.

Akbar, Ahmad, Rizwan, et al., (2020)

-

Solusi retrofit berupa haunch beam beton adalah memungkinkan elemen balok-kolom mengalami deformasi secara inelastis dan menghilangkan energi seismik.

- -

Sendi plastis dan pola retak diamati pada penelitian ini

-

Gülşan et al. (2018) Pengembangan beton

geopolimer self - - - - -

(21)

149

compacting berbasis fly ash/slag menggunakan nano silika dan serat baja.

Srinvas et al. (2019) Kajian Sifat Geopolimer Self Compacting Concrete dengan bahan GGBS, NaOH, Na2SiO3, Agregat (F.A + C.A), NaCl.

- - - - -

(Gülşan et al., 2018) SCGC terdiri dari 50%

fly ash (FA) dan 50%

ground granulated blast furnace slag (GGBFS) dengan alkali konstan aktivator untuk rasio pengikat 0.5. Aktivator basa digunakan Na2SiO3

dan NaOH dengan rasio (Na2SiO3/NaOH) 2.5.

Rahman dan Al-Ameri (2021)

SCGC yang baru dikembangkan dalam kondisi ambient.

- - - - -

(22)

150

Rahman dan Al-Ameri (2021)

Formulasi SCGC mortar yang diusulkan : Fly Ash = 20.93% ; Slag = 15.70% ; Micro FA = 5.23% ; Sodium Metasilicate Activator

= 4.19% ; Fine Aggregate = 33.26% ; Water = 20.70%.

Purwanto (2021)

Self Compacting Geopolymer Concrete (SCGC) Haunch sebagai Perkuatan Balok Lentur di Zona Dekat Muka Kolom”

Ditemukan komposisi SCGC untuk perkuatan balok haunch : agregat kasar 42% ; agregat halus 28% ; fly ash (FA) 19.5% ; alkaline activator (AA) 10.5% ; superplasticizer 2%

dari FA ; extra water 11.7% dari binder (FA+AA) ; extra cement 5.77% dari binder (FA+AA).

Alkaline activator (AA) terdiri dari NaOH 12 M dan Na2SiO3 Be 52 dengan

Dilakukan penelitian balok prismatis dan balok haunch beton konvensional dengan mutu beton normal (fc’= 31 MPa) dengan beban monotonik.

Dilakukan penelitian balok haunch dengan variasi sudut haunch beton geopolimer SCGC dengan mutu beton normal (fc’=31 MPa) dengan beban

monotonik.

Sendi plastis pada balok prismatis (BC) dan balok haunch BG0.5 terjadi tepat di muka kolom, sedang balok haunch

konvensional (BK1.0) maupun balok haunch geopolimer (BG1.0)

terjadinya sendi plastis bergeser di ujung balok haunch (680 mm

Peningkatan daktilitas displacement (μdBK balok haunch konvensional (BK1.0) sebesar 43.40%

dan balok haunch geopolimer (BG1.0) sebesar 25.10% serta

balok haunch

geopolimer (BG0.5) sebesar 3.91%.

Peningkatan daktilitas kurvatur (μφBK balok haunch konvensional (BK1.0) sebesar 46.89%

dan balok haunch geopolimer (BG1.0) sebesar 32.03% serta

(23)

151

perbandingan NaOH : Na2SiO3 = 1.0 : 2.5.

dari muka

kolom).

Sendi plastis (plastic hinge) dapat bergeser pada ujung haunch dengan syarat minimal sudut haunch (α sebesar 19.07o atau tinggi haunch (h) minimal sebesar 0.7 × tinggi balok prismatis (0.7×H).

Pola retak (crack pattern) balok haunch dan balok prismatis akibat beban monotonik menunjukkan bahwa pola retak balok prismatis dimulai dari propagasi retak di muka kolom dan

untuk balok haunch geopolimer (BG0.5) mengalami peningkatan sebesar 7.23%.

(24)

152

balok haunch di ujung haunch (680 mm dari muka kolom).

(25)

153 Tabel B Data beban – lendutan pengujian balok BC dan BG0.5

No. BC-01 BC-02 BG0.5-01 BG0.5-02

P (kN) Δ (mm) P (kN) Δ (mm) P (kN) Δ (mm) P (kN) Δ (mm)

1 0 0.233 0 0 0 0 0 0

2 11.365 1.167 8.493 0.726 6.061 0.262 6.465 0.250 3 19.833 2.100 17.880 1.922 14.949 1.029 16.162 0.000 4 30.084 4.200 26.599 4.051 25.455 2.798 25.051 0.499 5 41.671 6.533 37.105 6.419 35.556 4.816 34.343 1.747 6 54.819 8.867 47.835 8.320 46.465 6.586 44.040 3.494 7 59.053 9.567 53.200 9.504 57.778 8.356 54.949 4.992 8 61.950 10.267 59.011 10.690 69.091 9.877 69.899 6.988 9 63.733 14.000 56.779 12.086 80.404 11.399 84.848 8.735 10 67.298 21.233 57.901 14.894 90.909 12.918 93.737 10.483 11 68.412 28.933 59.921 20.275 96.162 14.177 98.990 17.720 12 68.858 33.367 61.939 24.956 94.141 15.420 97.374 24.709 13 69.972 41.067 61.947 30.098 99.798 20.174 98.586 31.697 14 70.641 49.467 61.509 35.238 101.414 25.918 100.202 39.933 15 71.532 57.633 63.082 40.618 102.626 33.159 100.606 50.915 16 71.755 65.567 62.867 46.461 102.626 38.400 102.626 59.651 17 72.423 74.200 63.545 51.137 106.263 48.890 105.051 71.880 18 73.092 81.667 65.117 56.050 107.475 57.378 106.667 82.612 19 73.538 88.667 65.126 61.192 108.283 65.866 106.667 88.602 20 73.983 94.267 64.462 65.163 109.091 73.854 104.242 96.589 21 74.206 99.867 66.036 71.712 108.283 81.590 104.646 105.574 22 74.652 105.700 66.939 77.324 109.495 89.329 105.051 114.060 23 75.097 112.233 67.398 85.038 110.303 96.569 105.455 122.047 24 75.097 117.600 67.185 91.114 111.919 106.056 106.263 129.784 25 75.097 124.833 68.087 96.726 113.535 114.546 107.071 135.275 26 68.991 102.572 114.747 120.788 107.475 139.767

27 69.672 109.820 115.960 127.779

28 69.458 115.428 116.768 135.018

29 69.467 120.804 117.576 139.762

30 70.593 126.650

(26)

154 No. P (kN) Δ (mm) P (kN) Δ (mm) P (kN) Δ (mm) P (kN) Δ (mm)

1 0 0 0 0 0.392 0 0 0

2 11.864 0.250 10.282 0.250 12.549 0.751 9.439 0.267 3 28.050 1.503 18.983 0.501 21.961 1.002 22.812 1.042 4 44.689 3.005 29.661 1.002 30.980 1.753 33.432 2.063 5 56.554 4.758 41.130 2.254 40.392 2.504 43.267 3.333 6 66.836 6.010 51.808 3.005 48.627 3.756 52.709 4.852 7 77.910 7.012 62.881 4.758 61.961 5.259 62.150 5.871 8 88.983 8.264 71.582 5.509 77.255 7.012 81.032 7.908 9 98.079 9.265 82.260 6.761 90.980 8.264 88.506 8.673 10 105.593 10.017 94.520 8.013 102.353 9.516 97.947 9.691 11 109.548 13.773 104.407 9.015 111.765 13.773 106.994 10.709 12 115.085 19.533 111.921 9.766 115.294 19.533 103.852 11.955 13 118.249 25.793 116.271 11.770 115.686 25.793 108.188 15.970 14 119.435 30.050 119.831 16.027 117.647 33.306 112.133 20.735 15 121.017 36.060 123.785 19.282 120.000 41.319 117.264 27.756 16 121.017 41.068 124.576 26.544 120.000 49.583 117.286 36.270 17 119.831 50.584 124.576 35.309 121.961 57.596 116.123 42.528 18 120.226 57.346 124.576 41.820 123.137 63.856 117.715 50.044 19 120.226 64.107 123.390 49.332 123.922 69.866 117.337 55.552 20 119.831 70.367 122.203 54.591 122.353 77.379 118.925 61.315 21 121.017 76.377 122.599 59.098 122.353 85.643 119.726 67.076 22 121.017 82.638 123.390 64.608 123.529 95.159 120.533 74.590 23 121.412 88.898 122.994 71.870 124.706 103.923 119.369 80.848 24 121.808 95.409 123.390 77.379 126.667 112.938 120.566 87.361 25 122.994 102.671 122.994 81.636 126.667 122.454 120.595 98.379 26 122.599 110.684 124.181 85.392 124.314 127.963 121.771 99.891 27 122.994 117.195 124.181 90.651 125.882 135.476 121.789 103.640 28 122.994 123.957 124.181 94.658 122.194 108.148 29 123.390 130.968 124.972 99.917 122.601 113.658 30 123.390 136.728 126.158 105.175 123.402 119.169 31 123.785 142.487 126.554 110.184 123.809 124.428 32 123.390 147.496 127.740 116.194 123.821 128.686

33 128.136 121.202 124.622 134.447

34 128.531 125.960 124.238 137.952

35 128.531 131.219

36 128.927 136.227

37 128.531 140.985

38 128.531 144.992

Gambar

Tabel  A State of the Art penelitian yang terkait dan kebaruan (novelty) disertasi
Tabel  G Hasil pengujian trial benda uji beton geopolimer
Tabel  I Hasil trial beton geopolimer untuk WGCS-1
Tabel  H Hasil pengujian trial benda uji beton geopolimer (lanjutan)
+2

Referensi

Dokumen terkait

Those are (1) planning various program for the school; (2) developing the school organization as necessary; (3) leading the school in empowering the resources;

a. For the XA class, the average from the pretest was 33, 60. For the XB class, the average from the pretest was 36, 90. The students’ reading skill achievement after the