• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
3
0
0

Teks penuh

(1)

xiv

DAFTAR PUSTAKA

1. Arif, F., Suryana, N., & Hussin, B. (2013). Cascade Quality Prediction Method Using Multiple PCA+ID3 for Multi-Stage Manufacturing System.

IERI Procedia, 4, 201–207. https://doi.org/10.1016/j.ieri.2013.11.029

2. Assauri. 1999. Manajemen Produksi dan Operasi, Edisi Revisi, Lembaga PenerbitFakultas Ekonomi Universitas Indonesia, Jakarta.

3. Bakhtiar, S., Tahir, S., & Hasni, R. A. (2013). Analisa Pengendalian Kualitas Dengan Menggunakan Metode Statistical Quality Control (SQC).

Malikussaleh Industrial Engineering Journal, 2(1), 29–36.

https://doi.org/2302 934X

4. Bechmann, J., Rudolph, F., Gebert, L., Schaub, J., Greulich, B., Dieterle, M.,

& Bradl, H. (2015). Process parameters impacting product quality. BMC Proceedings, 9(Suppl 9), O7. https://doi.org/10.1186/1753-6561-9-s9-o7 5. Demirbilek, E., & Gregoire, J. C. (2017). Machine learning based reduced

reference bitstream audiovisual quality prediction models for realtime communications. Proceedings - IEEE International Conference on

Multimedia and Expo, 13(2), 571–576.

https://doi.org/10.1109/ICME.2017.8019462

6. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In Data Mining: Concepts and Techniques.

https://doi.org/10.1016/C2009-0-61819-5

7. House, R. W., & Rado, T. (2013). An approach to artificial intelligence. In IEEE Transactions on Communication and Electronics (Vol. 83, Issue 70).

https://doi.org/10.1109/tcome.1964.6539575

8. Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408.

https://doi.org/10.1016/j.procir.2019.02.106

9. Juran, J. M., Godfrey, a B., Hoogstoel, R. E., & Schilling, E. G. (1999).

Juran ’ S Quality Handbook. In Training for Quality (Vol. 1, Issue 3).

(2)

xv

DAFTAR PUSTAKA

10. Kantardzic, M. (2011). Data Mining: Concepts, Models, Methods, &

Algoritms. https://doi.org/10.1007/SpringerReference_5414

11. Mauch, P. D. (2009). Quality management: Theory and application. In Quality Management: Theory and Application.

https://doi.org/10.1201/9781439813812

12. McCann, M. and Johnston, A. (2008). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/datasets/SECOM]. Irvine, CA: University of California, School of Information and Computer Science.

13. North, L., Blackmore, K., Nesbitt, K., & Mahoney, M. R. (2018). Models of coke quality prediction and the relationships to input variables: A review.

Fuel, 219(January), 446–466. https://doi.org/10.1016/j.fuel.2018.01.062 14. ReVelle, J. B. (2002). Manufacturing handbook of best practices : an

innovation, productivity, and quality focus. In St. Lucie Press/APICS series on resource management. https://doi.org/10.1201/9781420025507.ch8

15. Sauter, R. (2007). Introduction to Engineering Statistics and Six Sigma. In Technometrics (Vol. 49, Issue 2). https://doi.org/10.1198/tech.2007.s489 16. Su, T. J., Chen, Y. F., Cheng, J. C., & Chiu, C. L. (2018). An artificial neural

network approach for wafer dicing saw quality prediction. Microelectronics

Reliability, 91(October), 257–261.

https://doi.org/10.1016/j.microrel.2018.10.013

17. Thiede, S., Turetskyy, A., Kwade, A., Kara, S., & Herrmann, C. (2019). Data mining in battery production chains towards multi-criterial quality

prediction. CIRP Annals, 68(1), 463–466.

https://doi.org/10.1016/j.cirp.2019.04.066

18. Turban, E., Aronson, J., & Llang, T. (2003). Decision Support Systems and Intelligent Systems. Decision Support Systems and Intelligent Systems.

19. Wildan. (2018). Quality Prediction Model dengan Menggunakan Pendekatan Data Mining untuk Cacat Cover dan Presisi Cetak Pada Offset Printing.

Skripsi. Tidak diterbitkan. Institut Teknologi Nasional. Bandung.

(3)

xvi

DAFTAR PUSTAKA

20. Zhang, X., Kano, M., Tani, M., Mori, J., Ise, J., & Harada, K. (2020).

Control Engineering Practice Prediction and causal analysis of defects in steel products: Handling nonnegative and highly overdispersed count data.

Control Engineering Practice, 95(March 2019), 104258.

https://doi.org/10.1016/j.conengprac.2019.104258

Referensi

Dokumen terkait

Võ Xuân Vinh - Cơ quan chủ trì đề tài: Viện Nghiên cứu Đông Nam Á - Thời gian thực hiện: Từ tháng 1 - 2013 đến tháng 12 - 2014 - Thời gian nghiệm thu cấp Bộ: 11 - 05 - 2015 - Nội dung

Bài viết này tiếp tục góp bàn thêm về nguyên nhân xuất hiện của Islamism hiện nay trên cơ sở phân tích các điều kiện của đời sống xã hội liên quan đến trào lưu này như kinh tế, chính