46
Daftar Pustaka
Amherst, S., Peng, F., Schuurmans, D., & Wang, S. (2003). Augmenting Naive Bayes Classifiers with Statistical Language Models.
Anggraeni, P., & Akbar, A. (2018). Kesesuaian Rencana Pelaksanaan Pembelajaran Dan Proses Pembelajaran. Jurnal Pesona Dasar, 6(2), 55–65.
https://doi.org/10.24815/pear.v6i2.12197
Elektronik, J., Udayana, I. K., Made, A., Dewi, S. I., Bagus, I., & Dwidasmara, G. (n.d.).
Implementation Of The K-Nearest Neighbor (KNN) Algorithm For Classification Of Obesity Levels. www.kaggle.com
Ernawati, E., & Safitri, R. (2018). Analisis Kesulitan Guru Dalam Merancang Rencana
Pelaksanaan Pembelajaran Mata Pelajaran Fisika Berdasarkan Kurikulum 2013 Di Kota Banda Aceh. Jurnal Pendidikan Sains Indonesia, 5(2), 50–58.
https://doi.org/10.24815/jpsi.v5i2.9817
Geovanni N A. (2020). Coba Metode Decision Tree bagi Kamu yang Sulit Ambil Keputusan.
https://glints.com/id/lowongan/decision-tree-adalah/#.YoM_L-hBzIV
Habib, A., & Al Kindhi, B. (2018). Rancang Bangun Sistem Informasi Manajemen Keuangan Sekolah Design of School Financial Management Information System. Intensif, 2(2), 2549–
6824.
Huang, Z., Chen, H., & Zeng, D. (2004). Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering Associative Retrieval Techniques for the Sparsity Problem. In ACM Transactions on Information Systems (Vol. 22, Issue 1).
i-king-of-ml. (2019). KNN(K-Nearest Neighbour) algorithm, maths behind it and how to find the best value for K. https://medium.com/@rdhawan201455/knn-k-nearest-neighbour- algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-6ff5b0955e3d Isa, D., Lam Hong, L., Kallimani, V. P., & Rajkumar, R. (2008). Text Document Pre-Processing
Using the Bayes Formula for Classification Based on the Vector Space Model. Computer and Information Science, 1(4). https://doi.org/10.5539/cis.v1n4p79
Jufri, W. (2013). Belajar dan Pembelajaran SAINS. Bandung: Penerbit Pustaka. Reka Cipta.
1(176), 8–23.
Kementrian Pendidikan dan Kebudayaan RI. (2019). SURAT EDARAN NOMOR 14 TAHUN 2019 TENTANG PENYEDERHANAAN RENCANA PELAKSANAAN PEMBELAJARAN.
file:///C:/Users/DELL/Downloads/SURAT%20EDARAN%20NOMOR%2014%20TAHUN%202 019%20TENTANG%20PENYEDERHANAAN%20RENCANA%20PELAKSAAN%20PEMBELAJAR AN%20(1).pdf
Kurniadi, D., Farisa, S., Haviana, C., & Novianto, A. (2020). Implementasi Algoritma Cosine Similarity pada sistem arsip dokumen di Universitas Islam Sultan Agung.
TRANSFORMTIKA, 17(2), 124–132.
Lee, S. Y. (2019). Document vectorization method using network information of words. PLoS ONE, 14(7), 1–14. https://doi.org/10.1371/journal.pone.0219389
47
Maliki, A. (2021). Lima Tahapan Pembelajaran Dalam Pendekatan Saintifik.
https://ayoguruberbagi.kemdikbud.go.id/artikel/5-tahapan-pendekatan-saintifik-dalam- pembelajaran/
Models, N. L. (2021). N-gram Language Models.
Murtadho, M. A., & Wahid, F. (2016). Permasalahan Implementasi Sistem Informasi Di Perguruan Tinggi Swasta. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(1), 17.
https://doi.org/10.26594/r.v2i1.441
Pelajaran, P., Jasmani, P., & Dan, O. (2015). PIOR: Jurnal Pendidikan Olahraga. xxx(xxx), 9–13.
Pelaksanaan Pembelajaran, M., & PEMBELAJARAN Mawardi, P. (2019). Optimalisasi
Kompetensi Guru Dalam Penyusunan Rencana. In Jurnal Ilmiah DIDAKTIKA Agustus (Vol.
20, Issue 1).
Retnawati, H., Munadi, S., Arlinwibowo, J., Wulandari, N. F., & Sulistyaningsih, E. (2017).
Teachers’ difficulties in implementing thematic teaching and learning in elementary schools. New Educational Review, 48(2), 201–212.
https://doi.org/10.15804/tner.2017.48.2.16
Rusli, M. (2020). Ekstraksi Fitur Menggunakan Model Word2Vec Pada Sentiment Analysis Kolom Komentar Kuisioner Evaluasi Dosen Oleh Mahasiswa. Klik - Kumpulan Jurnal Ilmu Komputer, 7(1), 35. https://doi.org/10.20527/klik.v7i1.296
Shahmirzadi, O., Lugowski, A., & Younge, K. (2019). Text similarity in vector space models: A comparative study. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 659–666.
https://doi.org/10.1109/ICMLA.2019.00120
Singh, A. K., & Shashi, M. (2019a). Vectorization of text documents for identifying unifiable news articles. International Journal of Advanced Computer Science and Applications, 10(7), 305–310. https://doi.org/10.14569/ijacsa.2019.0100742
Singh, A. K., & Shashi, M. (2019b). Vectorization of text documents for identifying unifiable news articles. International Journal of Advanced Computer Science and Applications, 10(7), 305–310. https://doi.org/10.14569/ijacsa.2019.0100742
Soesanti, I. (2015). Design and development of Web-Based Information System for The Batik Industry. IPTEK Journal of Proceedings Series, 0(1).
https://doi.org/10.12962/j23546026.y2014i1.388
Thanaki, J. (n.d.). Python natural language processing : explore NLP with machine learning and deep learning techniques.
Thanaki, J. (2017). Python Natural Language Processing: Advanced machine learning and deep learning techniques for natural language processing.
http://nemertes.lis.upatras.gr/jspui/bitstream/10889/5243/1/Σταυλιώτης.pdf Tripathi, M. (2021). SVM - Human Activity Recognition with Smartphones.
Https://Www.Kaggle.Com/Code/Dskagglemt/Svm-Human-Activity-Recognition-with- Smartphones.
48
VIJAYSINH LENDAVE. (2021). Gini Impurity vs Information Gain vs Chi-Square – Methods for Decision Tree Split. DEVELOPERS CORNER. https://analyticsindiamag.com/gini-impurity- vs-information-gain-vs-chi-square-methods-for-decision-tree-split/
Wahyono, T. (2018). FUNDAMENTAL OF PYTHON FOR MACHINE LEARNING: Vol. I (I). GAVA MEDIA.