• Tidak ada hasil yang ditemukan

Daftar Pustaka

N/A
N/A
Protected

Academic year: 2024

Membagikan "Daftar Pustaka"

Copied!
3
0
0

Teks penuh

(1)

46

Daftar Pustaka

Amherst, S., Peng, F., Schuurmans, D., & Wang, S. (2003). Augmenting Naive Bayes Classifiers with Statistical Language Models.

Anggraeni, P., & Akbar, A. (2018). Kesesuaian Rencana Pelaksanaan Pembelajaran Dan Proses Pembelajaran. Jurnal Pesona Dasar, 6(2), 55–65.

https://doi.org/10.24815/pear.v6i2.12197

Elektronik, J., Udayana, I. K., Made, A., Dewi, S. I., Bagus, I., & Dwidasmara, G. (n.d.).

Implementation Of The K-Nearest Neighbor (KNN) Algorithm For Classification Of Obesity Levels. www.kaggle.com

Ernawati, E., & Safitri, R. (2018). Analisis Kesulitan Guru Dalam Merancang Rencana

Pelaksanaan Pembelajaran Mata Pelajaran Fisika Berdasarkan Kurikulum 2013 Di Kota Banda Aceh. Jurnal Pendidikan Sains Indonesia, 5(2), 50–58.

https://doi.org/10.24815/jpsi.v5i2.9817

Geovanni N A. (2020). Coba Metode Decision Tree bagi Kamu yang Sulit Ambil Keputusan.

https://glints.com/id/lowongan/decision-tree-adalah/#.YoM_L-hBzIV

Habib, A., & Al Kindhi, B. (2018). Rancang Bangun Sistem Informasi Manajemen Keuangan Sekolah Design of School Financial Management Information System. Intensif, 2(2), 2549–

6824.

Huang, Z., Chen, H., & Zeng, D. (2004). Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering Associative Retrieval Techniques for the Sparsity Problem. In ACM Transactions on Information Systems (Vol. 22, Issue 1).

i-king-of-ml. (2019). KNN(K-Nearest Neighbour) algorithm, maths behind it and how to find the best value for K. https://medium.com/@rdhawan201455/knn-k-nearest-neighbour- algorithm-maths-behind-it-and-how-to-find-the-best-value-for-k-6ff5b0955e3d Isa, D., Lam Hong, L., Kallimani, V. P., & Rajkumar, R. (2008). Text Document Pre-Processing

Using the Bayes Formula for Classification Based on the Vector Space Model. Computer and Information Science, 1(4). https://doi.org/10.5539/cis.v1n4p79

Jufri, W. (2013). Belajar dan Pembelajaran SAINS. Bandung: Penerbit Pustaka. Reka Cipta.

1(176), 8–23.

Kementrian Pendidikan dan Kebudayaan RI. (2019). SURAT EDARAN NOMOR 14 TAHUN 2019 TENTANG PENYEDERHANAAN RENCANA PELAKSANAAN PEMBELAJARAN.

file:///C:/Users/DELL/Downloads/SURAT%20EDARAN%20NOMOR%2014%20TAHUN%202 019%20TENTANG%20PENYEDERHANAAN%20RENCANA%20PELAKSAAN%20PEMBELAJAR AN%20(1).pdf

Kurniadi, D., Farisa, S., Haviana, C., & Novianto, A. (2020). Implementasi Algoritma Cosine Similarity pada sistem arsip dokumen di Universitas Islam Sultan Agung.

TRANSFORMTIKA, 17(2), 124–132.

Lee, S. Y. (2019). Document vectorization method using network information of words. PLoS ONE, 14(7), 1–14. https://doi.org/10.1371/journal.pone.0219389

(2)

47

Maliki, A. (2021). Lima Tahapan Pembelajaran Dalam Pendekatan Saintifik.

https://ayoguruberbagi.kemdikbud.go.id/artikel/5-tahapan-pendekatan-saintifik-dalam- pembelajaran/

Models, N. L. (2021). N-gram Language Models.

Murtadho, M. A., & Wahid, F. (2016). Permasalahan Implementasi Sistem Informasi Di Perguruan Tinggi Swasta. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(1), 17.

https://doi.org/10.26594/r.v2i1.441

Pelajaran, P., Jasmani, P., & Dan, O. (2015). PIOR: Jurnal Pendidikan Olahraga. xxx(xxx), 9–13.

Pelaksanaan Pembelajaran, M., & PEMBELAJARAN Mawardi, P. (2019). Optimalisasi

Kompetensi Guru Dalam Penyusunan Rencana. In Jurnal Ilmiah DIDAKTIKA Agustus (Vol.

20, Issue 1).

Retnawati, H., Munadi, S., Arlinwibowo, J., Wulandari, N. F., & Sulistyaningsih, E. (2017).

Teachers’ difficulties in implementing thematic teaching and learning in elementary schools. New Educational Review, 48(2), 201–212.

https://doi.org/10.15804/tner.2017.48.2.16

Rusli, M. (2020). Ekstraksi Fitur Menggunakan Model Word2Vec Pada Sentiment Analysis Kolom Komentar Kuisioner Evaluasi Dosen Oleh Mahasiswa. Klik - Kumpulan Jurnal Ilmu Komputer, 7(1), 35. https://doi.org/10.20527/klik.v7i1.296

Shahmirzadi, O., Lugowski, A., & Younge, K. (2019). Text similarity in vector space models: A comparative study. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 659–666.

https://doi.org/10.1109/ICMLA.2019.00120

Singh, A. K., & Shashi, M. (2019a). Vectorization of text documents for identifying unifiable news articles. International Journal of Advanced Computer Science and Applications, 10(7), 305–310. https://doi.org/10.14569/ijacsa.2019.0100742

Singh, A. K., & Shashi, M. (2019b). Vectorization of text documents for identifying unifiable news articles. International Journal of Advanced Computer Science and Applications, 10(7), 305–310. https://doi.org/10.14569/ijacsa.2019.0100742

Soesanti, I. (2015). Design and development of Web-Based Information System for The Batik Industry. IPTEK Journal of Proceedings Series, 0(1).

https://doi.org/10.12962/j23546026.y2014i1.388

Thanaki, J. (n.d.). Python natural language processing : explore NLP with machine learning and deep learning techniques.

Thanaki, J. (2017). Python Natural Language Processing: Advanced machine learning and deep learning techniques for natural language processing.

http://nemertes.lis.upatras.gr/jspui/bitstream/10889/5243/1/Σταυλιώτης.pdf Tripathi, M. (2021). SVM - Human Activity Recognition with Smartphones.

Https://Www.Kaggle.Com/Code/Dskagglemt/Svm-Human-Activity-Recognition-with- Smartphones.

(3)

48

VIJAYSINH LENDAVE. (2021). Gini Impurity vs Information Gain vs Chi-Square – Methods for Decision Tree Split. DEVELOPERS CORNER. https://analyticsindiamag.com/gini-impurity- vs-information-gain-vs-chi-square-methods-for-decision-tree-split/

Wahyono, T. (2018). FUNDAMENTAL OF PYTHON FOR MACHINE LEARNING: Vol. I (I). GAVA MEDIA.

Referensi

Dokumen terkait

Data Science Using Java Data science Machine learning Supervised learning Unsupervised learning Clustering Dimensionality reduction Natural Language Processing Data science

Classification based on object detection techniques: a detection using Image processing with machine learning; b deep learning-based systems... Figure 3.Classification of vehicle

It tells about the use of information technology as artificial intelligence, machine learning, data mining, natural language processing, adaptive learning, neural network into learning

some related works that support using deep learning techniques for recognizing counterfeit currency in machine learning and image processing.. This review article is structured as

perancangan chatbot untuk menggunakan dialogflow natural language processing studi kasus: sistem pemesanan pada Coffee shop.. Pembangunan Aplikasi Brawijaya Messenger dengan menggunakan

n.d., Penerapan Natural Language Processing Dalam Aplikasi Chatbot Sebagai Media Pencarian Informasi Dengan Menggunakan React Studi Kasus : Institut Bisnis Dan Informatika Kwik Kian

A Method of Skin Disease Detection Using Image Processing and Machine Learning.. Semi-supervised learning with convolutional neural networks for UAV images automatic

Sistem chatbot dibuat menggunakan metode Natural Language Processing NLP dengan bantuan library node-nlp oleh Node.js yang mampu mengolah bahasa manusia menjadi bahasa yang dapat