1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
8 8
Matrixes
By : Sonia Nurdiansa, S.Si
Today’s Lesson
1 1
3
3 8 8
4
4 9 9
7 7
5
0 5
0 6 6
2
2
Definition of Matrices
Today’s Lesson
1 1
3
3 8 8
4
4 9 9
7 7
5
0 5
0 6 6
2
2
Definition of Matrices Types of Matrices
Today’s Lesson
1 1
3
3 8 8
4
4 9 9
7 7
5
0 5
0 6 6
2
2
Definition of Matrices Types of Matrices
Adding & Subtracting Matrices
Today’s Lesson
1 1
3
3 8 8
4
4 9 9
7 7
5
0 5
0 6 6
2
2
Definition of Matrices Types of Matrices
Adding & Subtracting Matrices
Today’s Lesson
1 1
3
3 8 8
4
4 9 9
7 7
5
0 5
0 6 6
2 2
Multiplying Matrices
Definition
Definition
A matrix is a rectangular arrangement of numbers or
constants into rows and columns.
Definition
A matrix is a rectangular arrangement of numbers or constants into rows and columns.
A = [ ] a b c d e f
Definition
A matrix is a rectangular arrangement of numbers or constants into rows and columns.
rows columns
A = [ ] a b c d e f
1 1
3 3
6 6
8 8
4
4 9 9
7 7
5 5
2 2
0
0 Vocabularies
1 1
3 3
6 6
8 8
4
4 9 9
7 7
5 5
2 2
0 0
Number of rows by number of columns of a matrix.
Vocabularies
Dimension
1 1
3 3
6 6
8 8
4
4 9 9
7 7
5 5
2 2
0 0
Number of rows by number of columns of a matrix.
Vocabularies
Dimension
A = [ ] a b c d e f
dimensions 2X3 or called A
2X31 1
3 3
6 6
8 8
4
4 9 9
7 7
5 5
2 2
0 0
Number of rows by number of columns of a matrix.
Vocabularies
Dimension
A = [ ] a b c d e f
dimensions 2X3 or called A
2X3Element
Each Value in a matrix, either a
number or a constant.
1 1
3 3
6 6
8 8
4 4
7
2 7
2
9 9
5
0 5
0
Number of rows by number of columns of a matrix.
Vocabularies
Dimension
A = [ ] a b c d e f
dimensions 2X3 or called A
2X3Element
Each Value in a matrix, either a number or a constant.
A = [ ] a b c d e f
1 1
3 3
6 6
8 8
4 4
7
2 7
2
9 9
5
0 5
0
Number of rows by number of columns of a matrix.
Vocabularies
Dimension
A = [ ] a b c d e f
dimensions 2X3 or called A
2X3Element
Each Value in a matrix, either a number or a constant.
A = [ ] a b c d e f
A = a, A = b, A = c A = d, A = e, A = f
1,1 1,2 1,3
2,1 2,2 2,3
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices
Column Matrix
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices Column Matrix
A matrix with only one
column.
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices Column Matrix
A matrix with only one column.
A = [ ] d a
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices Column Matrix Row Matrix
A matrix with only one column.
A = [ ] d a
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices Column Matrix Row Matrix
A matrix with only one
column. A matrix with only one row.
A = [ ] d a
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices Column Matrix Row Matrix
A matrix with only one
column. A matrix with only one row.
A = [ ] d a A = [ ] a b c
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices
Column Matrix Row Matrix Square Matrix
A matrix with only one
column. A matrix with only one row.
A = [ ] d a A = [ ] a b c
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices
Column Matrix Row Matrix Square Matrix
A matrix with only one
column. A matrix with only one row. A matrix that has the same number of rows and
columns.
A = [ ] d a A = [ ] a b c
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Types of Matrices
Column Matrix Row Matrix Square Matrix
A matrix with only one
column. A matrix with only one row. A matrix that has the same number of rows and
columns.
A = [ ] d a A = [ ] a b c A =
[ ] d e a b
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Adding and Subtracting Matrices
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Adding and Subtracting Matrices
To add and subtract two matrices, they must have
the same dimensions.
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Adding and Subtracting Matrices
To add and subtract two matrices, they must have the same dimensions.
[ ] a b c d e f + = [ ] g h i j k l
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Adding and Subtracting Matrices
To add and subtract two matrices, they must have the same dimensions.
[ ] a b c d e f + = [ ] g h i j k l [ ] a+g b+h c+i
d+j e+k f+l
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0
Examples
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3Examples
Adding
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4Examples
Adding Subtracting
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4[ ]
1 6 3 7 2 3Examples
Adding Subtracting
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4[ ]
1 6 3 7 2 3[ ]
6 4 8 59 5- = [ ]
2 3 5 31 2Examples
Adding Subtracting
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4[ ]
1 6 3 7 2 3[ ]
6 4 8 59 5- = [ ]
2 3 5 31 2[ ]
4 1 3 28 3Examples
Adding Subtracting
8 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4[ ]
1 6 3 7 2 3[ ]
6 4 8 59 5- = [ ]
2 3 5 31 2[ ]
4 1 3 28 3- =
[ ]
2 7 1 5Examples
Adding Subtracting
[ ]
1 4 1 78 8
1 1
4 4
9 9
6 6
3 3
7 7
5 5
2
0 2
0 [ ]
2 7 41 5 3
+ = [ ]
8 3 62 1 7[ ]
4 8 11 9 8 9[ ]
2 3 5 31 2+ = [ ]
6 1 4 36 5[ ]
8 4 9 67 7[ ]
2 3 5 31 2+ =
[ ]
2 7 41 5 3[ ]
8 5 63 7 7- = [ ]
1 3 32 1 4[ ]
1 6 3 7 2 3[ ]
6 4 8 59 5- = [ ]
2 3 5 31 2[ ]
4 1 3 28 3- =
[ ]
2 7 1 5Examples
Adding Subtracting
[ ]
1 4 1 7[ ]
1 0 0 1Multiplying Matrices
Multiplying Matrices
There are 2 kinds of multiplying matrices : Multiply a matrix by a scalar
Multiply a matrix by another matrix
Multiplied by a scalar
Multiplied by a scalar
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
Multiplied by a scalar
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
[ ] nxa nxb nxc nxd nxe nxf
nxA =
Multiplied by a scalar Examples
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
[ ] nxa nxb nxc nxd nxe nxf
nxA =
A is a matrix that has 3 rows and 2
columns. The elements of A are 1 2, 3 4, 5 6. There is a scalar n = 2.
Calculate A multiplied by n !
Multiplied by a scalar Examples
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
[ ] nxa nxb nxc nxd nxe nxf
nxA =
A is a matrix that has 3 rows and 2
columns. The elements of A are 1 2, 3 4, 5 6. There is a scalar n = 2.
Calculate A multiplied by n !
Multiplied by a scalar Examples
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
[ ] nxa nxb nxc nxd nxe nxf
nxA = [ ]
2x1 2x22x3 2x4 2x5 2x6
n x A =
A is a matrix that has 3 rows and 2
columns. The elements of A are 1 2, 3 4, 5 6. There is a scalar n = 2.
Calculate A multiplied by n !
Multiplied by a scalar Examples
To multiply a matrix by a single number (n), every single element
must be multiplied by that number (n).
[ ] nxa nxb nxc nxd nxe nxf
nxA =
[ ]
10 12 2 4 6 8=
[ ]
2x1 2x2 2x3 2x42x5 2x6
n x A =
You did great.
Thank You!!!