• Tidak ada hasil yang ditemukan

Design and Implementation of Spot Welding Inspection with Image Processing

N/A
N/A
Protected

Academic year: 2023

Membagikan "Design and Implementation of Spot Welding Inspection with Image Processing"

Copied!
2
0
0

Teks penuh

(1)

DESIGN AND IMPLEMENTATION INSPECTION SPOT WELDING PART Page 55 of 62

WITH IMAGE PROCESSING

Yunanto REFERENCES

1 Ankita Bhaskar Watpade, Mansi Sunil Amrutkar, Nikita Yogesh Bagrecha, Mrs.

Archana S. Vaidya, Quality Control Using Image Processing, N. Yogesh Bagrecha et al Int. Journal of Engineering Research and Applications, ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.15-18

2 Chen Kan, Ruimin Chen, Hui Yang, Image-Guided Quality Control of Biomanufacturing Proses, 3rd CIRP Conference on BioManufacturing, Elsevier, 2017

3 Esteban Arroyo, José Lima, Paulo Leitão, Adaptive Image Pre-processing for Quality Control in Production Lines, proceeding of Polytechnic Institute of Bragança

4 Jurgen Beyerer, Fernando Puente Leon and Christian Frese, Machine Visio, Automated Visual Inspection: Theory, Practice and Applications, Springer, ISBN 978-3-662-47794-6, 2016

5 P. Banumathi and Dr. G. M. Nasira, Fabric Inspection System using Neural Artificial Network, IJCES volume 2 issues 5, ISSN : 2250:3439, may 2012

6 P. Banumathi and Dr. G. M. Nasira, Fourier Transform and Image Processing in Automated Fabric Defect Inspection System, International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013 7 P. Banumathi and Dr. G. M. Nasira, Automatic Defect Detection Algorithm for

Woven Fabric using Artificial Neural Network Techniques, International Journal of Innovative Research in Computer and Communication Engineering, 2014 8 R K Rao Ananthavaram, O.Srinivasa Rao, MHM Krishna Prasad, Automatic

Defect Detection of Patterned Fabric by using RB Method and Independent Component Analysis, International Journal of Computer Applications (0975 – 8887) Volume 39– No.18, February 2012

9 J.A.K. Suykens, H. Bersini, Neural Controal Theory: an overview, ESAT laboratory and the Interdisciplinary Center of Neural Networks ICNN of the Katholieke Universiteit Leuven

(2)

DESIGN AND IMPLEMENTATION INSPECTION SPOT WELDING PART Page 56 of 62

WITH IMAGE PROCESSING

Yunanto 10 Rafael C. Gonzales, Richard E. Woods, Steven L. Eddins, Digital Image

Processing Using Matlab, Pearson Education Inc. , 2004

11 H. Akbar, A. Prabuwono. "The Design and Development of Automated Visual Inspection System for Press Part Sorting," Int´l Conf. on Computer Science and Information Technology, pp.683-686, 2008

12 R. Thilepa, K. Sathiyasekar, (2012), “Automated Fabric Defect Recognition System using Image Processing and Artificial Neural Networks with the Support of Microcontroller”, European Journal of Scientific Research, ISSN 1450-216X Vol.67 No.4 (2012)

13 I Wayan Suartika E. P, Arya Yudhi Wijaya, dan Rully Soelaiman, Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101, JURNAL TEKNIK ITS Vol. 5, No. 1,2016

Referensi

Dokumen terkait

The system is going to use the basic concept of image processing algorithm which is going to separate spatters and welding line from the welding image that have been taken from

System pengolahan citra dilengkapi dengan empat buah modul, yaitu modul face detection untuk mendeteksi wajah seseorang, modul face recognition untuk mengenali wajah orang

Dari pengujian akurasi deteksi terhadap kasus berhimpit yang telah dilakukan, didapatkan hasil pada tabel 4.2 Hasil Pengujian Akurasi Deteksi dengan menggunakan resolusi paling

Therefore, some studies combine the capabilities of CNN into the field of fire detection, thus this algorithm can read in a collection of fire image features that

In this study, various image processing and data augmentation techniques were carried out to evaluate the performance of lung nodule detection on chest X-Ray images using YOLOv5 object

Skin cancer diagnosis using a DL algorithm-based architecture- PreProcessing Resize image Gray scale Segmentation Canny Edge Detection Feature Extraction GLCM,LBP,Color

This study mainly focuses on mitigating network attacks using the Dynamic Thresholding algorithm as a detection and mitigation system based on network automation using the Dynamic

Sudibyo, "Design and Implementation of Real-time Pothole Detection using Convolutional Neural Network for IoT Smart Environment", in Proc.. Sudibyo, "CNN-Based Hyperparameter