SYSTEM DESIGN AND OPTIMIZATION OF HIGH TEMPERATURE NUCLEAR Page 87 of 89 REACTOR AND DESALINATION COUPLING FOR REMOTE AREAS
Faikar Achmad Luthfi REFERENCES
Ali, M. T., Fath, H. E. S., & Armstrong, P. R. (2011). A comprehensive techno- economical review of indirect solar desalination. Renewable and Sustainable Energy Reviews, 15(8), 4187–4199. https://doi.org/https://doi.org/10.1016/j.rser.2011.05.012
Alimah, S., Ariyanto, S., Dewita, E., Geni, D., Sunaryo, R., Pengembangan, P., Nuklir-Batan, E., Teknologi, P., Dan, R., Nuklir, K., & Batan, –. (2009).
PEMILIHAN TEKNOLOGI DESALINASI NUKLIR DI PROVINSI
KALIMANTAN TIMUR. JURNAL PENGEMBANGAN ENERGI NUKLIR, 11.
Bimarno, M. D., & Suparman, S. (2003). STUDI PENGARUH PERUBAHAN KONDISI UNGKUNGAN TAPAKTERHADAP HARGA LISTRIK DANAIR PADA SISTEM DESALINASI DENGAN SUMBER ENERGI NUKLIR DAN FOSIL.
BPS-Statistics Indonesia. (2018). Statistik Air Bersih 2013-2018.
Breeze, P. (2014). Power Generation Technologies 2nd Edition. Elsevierr.
Dewan Energi Nasional. (2019). Indonesia Energy Outlook 2019.
Dudek, M., Podsadna, J., & Jaszczur, M. (2016). An numerical analysis of high- temperature helium reactor power plant for co-production of hydrogen and electricity.
Journal of Physics: Conference Series, 745, 32009. https://doi.org/10.1088/1742- 6596/745/3/032009
El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. In Fundamentals of Salt Water Desalination. Elsevier.
https://doi.org/10.1016/b978-444-50810-2.x5000-3
Gougar, H. D., Ougouag, A. M., Terry, W. K., & Ivanov, K. N. (2010). Automated Design and Optimization of Pebble-Bed Reactor Cores. Nuclear Science and Engineering, 165(3), 245–269. https://doi.org/10.13182/NSE08-89
Hanna, N. L., & Hadi, W. (2016). Kelayakan Teknologi Desalinasi Sebagai Alternatif Penyediaan Air Minum Kota Surabaya (Studi Kasus: 50 Liter per detik).
IAEA. (1997). Thermodynamic and economic evaluation of co-production plants for electricity and potable water.
IAEA. (2000). Introduction to Nuclear Desalination.
IAEA. (2019a). Nuclear Power in Indonesia. https://www.world-
nuclear.org/information-library/country-profiles/countries-g-n/indonesia.aspx IAEA. (2019b). Nuclear Share of Electricity Generation in 2018.
IEA. (2019). World Energy Outlook 2019.
https://webstore.iea.org/download/summary/2467?fileName=Japanese-Summary- WEO2019.pdf
SYSTEM DESIGN AND OPTIMIZATION OF HIGH TEMPERATURE NUCLEAR Page 88 of 89 REACTOR AND DESALINATION COUPLING FOR REMOTE AREAS
Faikar Achmad Luthfi Kucera, J. (2014). Desalination Water from Water. Wiley-Scrivener.
Ritchie, H., & Roser, M. (2017). Water Use and Stress. Our World in Data.
Setiadipura, T., Bakhri, S., Sunaryo, G., & Wisnubroto, D. (2018). Cooling passive safety features of Reaktor Daya Eksperimental. In AIP Conference Proceedings (Vol.
1984). https://doi.org/10.1063/1.5046618
Setiadipura, T., Irwanto, D., Waskita, A. ., Adrial, H., Suwoto, S., & Zuhair, Z.
(2019). Design Development of PeLUIt-40 a Small Cogeneration Nuclear Power Plant.
Setiadipura, T., Irwanto, D., & Zuhair, Z. (2015). Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor. Atom Indonesia, 41, 7.
https://doi.org/10.17146/aij.2015.350
Sharon, H., & Reddy, S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080–1118.
https://doi.org/10.1016/j.rser.2014.09.002
Tanuma, T. (2016). Advances in steam turbines for modern power plants. In Advances in Steam Turbines for Modern Power Plants. Woodhead Publishing.
https://doi.org/10.1016/c2014-03636-2
Terry, W. K., Gougar, H. D., & Ougouag, A. M. (2002). Direct deterministic method for neutronics analysis and computation of asymptotic burnup distribution in a recirculating pebble-bed reactor. Annals of Nuclear Energy, 29(11), 1345–1364.
https://doi.org/https://doi.org/10.1016/S0306-4549(01)00110-4