• Tidak ada hasil yang ditemukan

The effect of tip clearance flows on performance of axial flow compressors

N/A
N/A
Protected

Academic year: 2023

Membagikan "The effect of tip clearance flows on performance of axial flow compressors"

Copied!
65
0
0

Teks penuh

(1)

T

-

S^..ng% A '*'d -"- F: TT *. W*?. *; AdL *P ' 3 * -j t . I-' 3 2 --I- rj;.p "~;L~&BL"p&4$J;;C~~ 'yL*f-:..'" ", ,* 2 % .. i i ,*."\" --,t,.,c..--i,xn%p,PP~~ii-ii~~p, ,-+--Y1 ,4.:?.-> I y* S Z V - ; . . r T > . - 4 ----

L?:.: c. :.&i&# L>:<-*-.~- ,*i.;&"*,':a t.J.5 ,m L, ,&$.A> -- >a* .%*- * I::, td4 4*.jAS&.k~ *:.?j:;;2&3 3:2!5

(2)
(3)
(4)

2, 'Variatian wI"G:l Tip a e b r a t c s

(5)
(6)
(7)

P-2 i or ?..-sod . e S i c i e c y s$ a ;as t a r h i * e cj~cLe, it Be a.z&o.rr.atfc $&az

& t s e ~ o 6 - ~ - , 3 a r e ~ ~ ~ ; r & a % f ~ a B % i ~ I 1 e @ i ~ i e i % c y ~ & a ~ - = i r ~ ~ ; * ~ $ @ 1 ~ ~ ~ & ~ $ ~ ~ ~ f ~ ~ 6 ~ b ; ~ -7 ,

the cazTgra@oor are tE?.::cses due t o l e d c a g e Bows tCre=azzgh eke tip clearaaca.

'1, 2, 33

1% ;x?,ae @ : l o Q ~ ~ k tinat t k a var%;i+tio of tip c I e b x 8 ~8 ha@ an %r*$- portaa:t effect o i ym-fp &ad c:oi%presssr pasformai~se, P:3 ~jardieadar,

f ' 7 $

~&r.:crj""3:l%*e~~~ated fin detail the tip clesrasce Bkivg i m e c h & ~ i a ~ q eIId variatf o i fia compree;;sor p a ~ f ~ s : : : ~ a n c a with tip clear&ce;e a e t 2 1 ~ deoizs2

-

,-

~ O rS"i@, W e k e inEro&ared a perfzct

a~d&

EITW .model and correctiora~ $or real fluid af$ects to eoml2ara wit?? e : q ~ ~ ~ r i : z e n t ~ ~ 80 t h a t va?:iaa,$~ i n ~'ior~a- gzeseor pex4sri--:arLc@ could be oszirnated $ 0 ~ ~ t h a r 0;$er&3.:rg eo~-dfj;lo:~a a d other machinese

~"ile pr@oesiE invastijati9-I f e ssnesrnad with deter;i"s% %2lg the efdecl o$ tPp cf@arza:~cs; @a;. c o ~ ~ ~ g s e ~ 1 - z o s p e ~ f o m n ~ ~ c e , 2ot 0;11y a0 Bsel2.l c s ~ ~ d i - - eiafis, but also through a rn, gc sf 2 2 rate@ ~ ~from .tear @tall f=o -;..ell a h v e d ~ g i g z . ~ for the p u r p o ~ e of gaining i x o r e a ~ ~ d e r @ t a i i & , q of the t i p Bow

n ~ s c h = ~ P @ ~ = &:d to e5ztej-id the raSs' ~ e , of ~ 1 f 3 0 r n p a ~ r i m of t&@ @~~sri-b~lelrft@ with the ~ i 2 ~ " g e ~ t .fI?id. ~~~10d41 a id Q ~ i d C Q F ~ ~ C & $ ~ + , @ g i ~ e - 1 %AT FL@fere&zca 2.

(8)
(9)

-

IIYv -A a&@ " v * ^ - 4 ' " t/-'*l-gq *f_37--.

--

ago fJes.*-; esxMic%cat (> 4 3, -f$* -&I - - - 5 - Q

19 J a h ~ G % & , % C I L - L L G, &2r

" j " fi 94 ISe 20 ,, 0

~ ~ a g z e r *.* at, k k3. 4 9 Q n@ 51,yO 57,d"

Angle

(10)
(11)
(12)
(13)
(14)

EX.

RESULTS

Idk3$4ses ' k ; h r ~ u g ; ~ the i;let guidca vases should vary as t h e sguaye og

accor&,?g to the above criteria, u s i ~ l g the desig2-i flow rate value as o ba-

was n g t i i n a otrong w&@ at the d@sig;7 ,BOW ;?P&@, f$, is .felt that W&C@S

c f r c u ~ n P e r e ~ : ~ & axe raga, Tfxeref ore, ~ ~ o s e deedled sktrvayg %&en at the d a o i g ~ :

sow

rate ars ave~agsd ci~ekaderer:%i&Iy asd assurasd ts v a v oa

2 Wotar PerXorma~ce

-

Averaged R e a ~ d t ~

. -

%-- - -

- ' '

--

-=---

The aversze

a0.e.s

crjcfBcie:nt i s Q e t a r n ~ i : ~ e d by ~ n w ~ m e r i c d h;1tegr8-

The varia6:isn sf aperage presBure coe&%cisnt with average aovi

(15)

The vazk.i;-ekiar~ of average ?resoak-c cmaici@nt v ~ i t 9 tdp clearance a%

tJi'ee v a r f o ~ ~ Qrsw patee, as shwgxz i t 5 Fi~ure 23) i s @ @ B P to be B T P Q $ ~ C ~ V'd*

aeo plsetsd i x i ;%"iga%ra 6 h8we bwan referred $0 coai2?s%-n flaw rates before being eras@ -gloBed i n Figuse 8, 'r3esugh 6 ~ r z t i ~ ~ the g e s - d t ~ :*ha8iv that

$he p~essure coeBiei@nt drops .:iaarl.jr. $Il~early At$ ir.rcr;s~lltg tip clear-

c8eara:ce is seen to bs ~ r e a g ~ ~ t a% t2ihr" lo-*@st SOVJ and d e c r e a a e ~

meagcre;ne:;ts,

-

= ~ / $ ~ t z

'R ~3~

A o seen i n i p i ~ u r e 9. tilo aV@pa$@

0 0

(16)

S c e e o ~ f y oIIe eircw:&cra~atid e t a ~ o x x was s u r v ~ y a d be?k%d t LC rotor,

a small cl;ax~g~ Zn the psaosura zooEic5e~t will m-&ce z IB,XCB cUza,;ig~ $23 ef-

(17)
(18)
(19)

112 %vkLc:: &he ve;~s%ices are shed d s n y kke edges of %a sloe ~athsr~r tkwn a$

the t r a i l i r ~ g cdgu. PLmv visnrrlisaBo*- e q ~ r % n ~ e n t o by ~ a i n u ~ " h a v e ahow?

fae%s,

T . ~ B ~JOEQ the $ip cleara2ce ca:? be ei:ought of az %avl?,ia e 3 u~%forn%

V ~ Z O C ~ ~ Y &--I t!:e dSrec6on a$ the C ~ O P~+~.*lxi~'P- ~ ~ 5s cazried $hm~kgh b r m ~ ~ the praBs;.trs to snc%feall-, ~ l d s aose;r&f&ly a ~ c h a 2 g o d $or Blade@ o+f amaJB thick- ness, The vePos=fQ ger,>s.i.lae&ar &o $%@ ~ l ~ ~ r d $3

wllere p, a-.d p2 are s b t i c pressures on the pressure a d . suction side 0 4

P

file blade a%zz~q- from, tE%e kip* in i ;nerd ua v a r f d ~ &orz$ the chord,

(20)

d=sr~2p.;.eesoz, &his actio'ia te::&s to increase the pressure o ; ~ the p r e s s u r e

3, R ~ d w ~ e f i a$ ~ H a ~ k Irlput

---

'Zhe f a c t ~ ~ ~ @%a$ caaas 2 zedactiasz

o,f

work f~xpuk $Y %gge rafmr due to $1-p e$eara;~ce are:

(I)

911y~icay there be no work done by $22~

0"

Lire seduction oi Y J ~ P L %r.j<*:~t given bg the pzi.sssux& ue~sra~ca

(21)

J 'if-righ reference &Q P i p r e 23$ %& caa be ~k3~721. ,"I& doa-~g y =: 3,

(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

RaAns, D e a l A,, "'Tip Clearance Flow@ i~ 343dd Flaw G ~ n % p r ~ s -

3QFB &36 pumpli4, cds~li~1i~ xnl@$u%e of %ydfc-

dy_la=ic aad Fb",eci:&~ica E n g f n d ~ ~ P Y ~ Y LaBosa$sria o, Report No, 5, Fisi-y Conlrac:~ Hb-orl-012, ~askY9iJrrlcr 1"-4 a~d. BFZrd 9612, [s-J.;;e 1954).

P J ~ U S ~ B ti, ~ ~ ~ a p a a , , u~2:pa &SP,WLL~S L$W R C ~ ~ I O I ~ B P ~ urs ~ ~ P ~ ~ .Par$ HHa

,

maw T ~ r b o " ~ w ~ a ~ h i ? ~ t ~ @ $ ~ Z d S ~ r ~ a i a Iaati@ate 0.f

T~eFfiollkogy, Z-Py4x+adgi:-~~x:fcs axxd ldsc&Waic<a Z:;xglna@r%ag Lab-.

o r a t a x f e ~ , N a q Ca:.ztract Maaar-220$123), NR 097-0010 Rapart ITcj, 6 [Ma,reh 1957j0

(30)
(31)
(32)
(33)
(34)
(35)

i I

( 2 )

1 .-

I I

"

I

Tq. 25

/

Ra1.26. &,rnpe 2% man%

,

Eq. 27

/

~ ~ ~ w i ~ l ~ ~ - i

(36)
(37)
(38)

C i r c u m f e r e n t i a l a v e r a g e o f 4 r a d i a l s u r v e y s 7

o

Single r a d i a l s u r v e y w i t h c o r r e c t i o n f a c t o r d e t e r m i n e d

f r o m a v e r a g e

a

S i n g l e r a d i a l s u r v e y

w i t h o u t c o r r e c t i o n 1

W eu

I

0. I 0 . 2 0 . 3

-

A v e r a g e f l o w c o e f f i c i e n t ,

$I

FIG. 5 - A V E R A G E GUIDE VANE PRESSURE L O S S A S A F U N G T I Q N O F AVERAGE F L O W C O E F F I C I E N T

(39)

F I G . 6 A V E R A G E P R E S S U R E C O E F F I C I E N T V E R S U S A V E R A G E F L O W C O E F F I C I E N T F O R VARIOUS T I P C L E A R A N C E S

(40)

Average flow coefficient

, d,

FIG. 7 AVERAGE WORK C O E F F I C I E N T V E R S U S AVERAGE F L O W C O E F F I C I E N T FOR VARIOUS T I P C L E A R A N C E S

(41)

---_

i 1

-

==I- --m- --

- --

- - - C a l c u l a t e d , no scraping - - - C a l c u l a t e d with scraping

0 0.004 0.008 0.012 0.01 6 0.020 0.024

Tip clearance / b l a d e h e i g h t ,

1

F l G . 8 A V E R A G E P R E S S U R E C O E F F I C I E N T A S A F U N C T I O N O F TIP C L E A R A N C E F O R V A R I O U S F L O W R A T E S

(42)

0 0 . 3 4 3

A 0 . 4 0 0

0 . 4 5 0 ---- E x p e r i m e n t a l - 0 0 . 5 0 0

--

Calculated, Eq. 3

A 0 . 5 5 0

_ -

C a l c u l a t e d , Eq. 3 f 9

I I I I 1

0

'

I I

0 0 . 0 0 4 0.008 0.012 0.01 6 0.020 0.024 Tip clearance / b l a d e height,

k

FIG. 9 AVERAGE WORK COEFFICIENT AS A FUNCTION OF TIP CLEARANCE FOR VARIOUS FLOW RATES

(43)

1.0 5 - - - -

3 A

a

@

2

@

Q-:i

0

o m

El El

0 . 9

-

El

W

I

"

>r 0

I

C

I

.

w

- X I

I

.- U 0 0 . 0 0 2 5 I

-

0 ) I

0 . 8

-

A 0 . 0 0 6 4

L o @ 0 . 0 1 2 9

I

I

t o a 0 . 0 2 5 4

l x i

1

I

I

I

0 . 7 I I I I I

0 0. I 0.2 0.3 0.4

-

0.5 0.6

Average flow coefficient

,

FIG. I 0 ROTOR EFFICIENCY AS A FUNCTION OF AVERAGE F L O W COEFFICIENT FOR VARIOUS TIP CLEARANCES

(44)

1

0.7. I I 1 I 1 I i

0 0.004 0.008 0.012 0.016 0.020 0.024 Tip c l e a r a n c e / blade h e i g h t ,

X

FIG. I I ROTOR EFFICIENCY AS A FUNCTION OF TIP C L E A R A N E FOR VARIOUS FLOW RATES

(45)
(46)

I

I r o 0 6 a a d - O p C , O )

I I r o ob a O Q C n m

a El. a I* LC,,%,,

0

d o ; d d d

0 0 a e r l B T

CV

-

0 0 a3 r'- a

- - - 6

0 0

s

(47)
(48)
(49)

FIG. 16

-

A X I A L V E L O C I T Y S U R V E Y A H E A D O F T H E R O T O R A V E R A G E D O V E R F O U R C I R C U M F E R E N T I A L S T A T I O N S ,

=

0.0025

1.1

1.0

0.9

0.8

0.7

0.6

.

0 0 0

o

0 0 ~ 0 0 0 0 00 0 0 0 0 0 0 0

0 0

-

0

1

0

i

0 0

0 0

1

-

0 !

0

I

0

0 O

I

-

O

/

I

0

I

I 8

oi

t i

-

I

-

1 1 I

0.6 0.7 0.8 0.9 I .O

R a d i u s r a t i o

,(

(50)
(51)
(52)

ld -3 a 4

C C . C 4

(53)
(54)
(55)

. 0 -

c- at;:

(56)

4 /4

'iuai31jjao3 poaq j o i o l p a z l l o l o l o ~

4 4

a poaq l o i o j p a z l i o w ~ o ~

- -

-

J-'( 0) w

-

0

a

IX)

- -

0

- -

- 23, 0

0 - - -.- -

*

a Ow.e--- i- - --- -- - - -

Q rn

I

h

a . e

*

.Bb FJ

n~ o c ~ r , 3

D C _X. i ec 0 I3 0 A

0- QCPC) B LL

E rZl

n 1

3 5 Cr) 2

17 8 ' 0 -

i CK

5 . - G Q

,

a Q

i

sz

>

3 ag n !?$# C.

4 n f 6

i illr

s 4 n

1

w-3 4 3 0 LC

.

i

a ~7 j 3- K

i b- 6,

B

0

9 I m2 2 0 Cc:

W

s, 130 w I

k-

7 833 m

tl]

ax

Ls) 0

ir

BIglij

3

dEf; i- < 1 3

t- 2

- 4 0 m Z

a

LLJ CE

4 c

ma 5 - 2

a 1) 4 0

L ii

c 1) 40 z .s$a o a

r-

z 9 % ca& 0

a

Z:

L cW.

%'

sea,

4 z

i; ee

C @a

& G

1--

1

3 0 3 0 N

C- 2s iw

2 . a

-

.

* 3 t3

L "3. -

Lt

- - -

G

$+

L i u a ~ 3 i j j a o 3 p o a q i o j o ~ p a z l j o l u ~ o ~

(57)

/fi /4

' ( u a ! 3 ! j j a o 3 p o a q lolo4 paztlowdoN

e

-0 -'J

-

0

m

BD k

rQ '3 9

-

-

-

-

- L2J 0

6 d

-

-

a

0

z

-

9 - a

cn

W I-

a

o a 0

cr

0 B e

3

0 Q . 0 0

d LC.

m

O Q e -3

I

rn

0 q e a 0 -

0 CE

q0.a

" 3

C r

a .a0 0

L L

E 0

E O S e I-

'icp 0

.. oa "a c)e:

. 0 -

8 a0 + 0 Q D

0

% $

OD 0 I--

a e .a a g)c

cj

*

'9 d z m

0- .

- a *

cn

tE

0 , 0

E iB, 3 bK

o a m .-

-a 3

D c l o o c.3

a

cc I-

0 Q13 Z

W

-

0 am

-

C3

LL

0 - 0 CL

u r n

R h 0 b-l

5 6

d c s

PI

a d - B , d- o g

a30 dlil C U C B O J ~

x 0 0 - w

6 1 . m 0 8 0 0

==$

o d o o

-I

<

00. 0

a u 0 Q

Q + a

0 0 0

-

o Q u BPO k I -

U CJ C i W O

u .,a o

,

I

'a 0 % B

0 dl N

f'

-

6

OJ

r3 - 0 o", 00

- -

-

- a;

3 0' c3

-

LL

4 - /h

' J U ~ ! ~ ! J J ~ O ~ poaq lo(o4 paz!lourlobd

(58)

i

I X

'-

Pressure d e f i c ~ e n c y

8

' I i , "Flow s e p a r a t i o n doe to

! ( I

I

I\

1 f l o w e n t e r i n g a s h a r p

I

I\\

e d g e d o r i f i c e

I I

: 1

I 1 \ I

I

I 'w-

R e a t t a c h m e n t

I

I

I

I ' L

DEFICIENCY FROM FLOW INTO A SLOT FIG. 23

-

PRESSURE

FIG 24

-

V E L O C I T Y D I A G R A M SHOWING FLOW ENTERING A N D LEAVING THE ROTOR WITH RELATIONS TO L I F T AND @ R A G

(59)
(60)
(61)
(62)
(63)
(64)

FIG. 3 0 - G R A P H I C A L DETERMI N A T I O N O F BOUlalCikRY L A Y E R O l S P L A G E M E N T T H I C K N E S S

8*

(65)

,.

h

0

I

0 . 4 50 Rains' experimentai points

0 0.004 0.008 0.012 0.0 16 0.020 0.024

Tip clearance / blade height

, A

C

--

w

.

. - -v. -.

.g 0.95 \ w

'+-

, -*--

G I G . 31 COMPARISON OF CALCULATED AND EXPERIMENTAL

ROTOR EFFICIENCY AS A FUNCTiON

OF

TrP CLEARANCE FOR VARIOUS F L O W R A T E S

Y- w

L

0

4-

0.90.

w

a

24 0 C w

1 1.\ -.-

-

-L.

--- -v,-

- -2-- -+-i;;-----

\

'<- -

-==---

- - - --

- - - - - -

--- Experimental

P --

-1.00 - Calculated

.\- . -

Calcula t ed with scraping - - - - Rains' model with scraping

Gambar

FIG.  5  - A V E R A G E   GUIDE  VANE  PRESSURE  L O S S   A S   A  F U N G T I Q N   O F   AVERAGE  F L O W   C O E F F I C I E N T
FIG.  7  AVERAGE  WORK  C O E F F I C I E N T   V E R S U S   AVERAGE  F L O W   C O E F F I C I E N T   FOR  VARIOUS  T I P   C L E A R A N C E S
FIG.  9  AVERAGE  WORK  COEFFICIENT  AS  A  FUNCTION  OF  TIP  CLEARANCE  FOR  VARIOUS  FLOW  RATES
FIG.  I 0   ROTOR  EFFICIENCY  AS  A   FUNCTION  OF  AVERAGE  F L O W   COEFFICIENT  FOR  VARIOUS  TIP  CLEARANCES
+4

Referensi

Dokumen terkait

As-received copper foil was annealed with various temperatures, times, hydrogen flow rate for studying the change of structural and morphological

The regression coefficient value of the Work Discipline variable has a value of 0.696, meaning that if the Work Discipline value increases by 1, then Employee Performance will

1) The influence of the work environment (X) on employee performance (Y), the path coefficient has a value of 0.172 and P- values 0.385&gt; 0.05, it is concluded that the results

In that context, competency is seen as an ASN professional work capability of the HR Bureau at the BPK Secretariat General in implementing various policies, programs and human resource

Graph of reynolds number change to cold fluid flow velocity variation Figure 5 shows that the reynolds number in cold fluids increases significantly as the velocity of cold fluid flow

Pasture allowance accounted for an appreciable amount of variation in animal production between years and stocking rates; litter size, 38 to 90%; lambs weaned/ewes mated.. Pasture

First the bit error rate performance have been calculated for different coded and uncoded system, wavelength and optical bandwidth as a parameter and plotted against average signal

The indicators used for the Pearson correlation coefficient Sawarno, 2010 are as follows: Table1.Correlation Coefficient Indicator Coefficient Relationship Strength 0.00 No