• Tidak ada hasil yang ditemukan

evaluation of the implementation of waste generation

N/A
N/A
Protected

Academic year: 2023

Membagikan "evaluation of the implementation of waste generation"

Copied!
6
0
0

Teks penuh

(1)

EVALUATION OF THE IMPLEMENTATION OF WASTE GENERATION REDUCTION INTO COMPOST WITH WINDROW SYSTEM IN THE

TALANG GULO FINAL PROCESSING, JAMBI CITY

Mega Mutiara Sari, Andra Puput Marya Ani, I Wayan Koko Suryawan*

Depa rtment of Environmenta l Engineering, Fa culty of Infra structure Pla nning, Universita s Perta mina , Ja ka rta , 12220, Indonesia

* E-ma il corresponding a uthor: i.surya wa n@universita sperta mina .ac.id

ARTICLE INFO ABSTRACT

Article history:

Received: 10-11-2021 Accepted: 25-03-2022 Published: 03-04-2022

Talang Gulo Final Processing Site, Jami City will make efforts to reduce biodegradable waste consisting of leaf waste. The processing process that can be applied is by converting it into compost with an aerobic process with a windrow system. The purpose of this study was to evaluate the composting system and the results of existing waste processing. This research was conducted by direct observation and secondary data collection from the local management inventory.

The composition of biodegradable waste in Jambi City consists of 47.4% food waste and 2.1% garden waste. However, the application of food waste is quite difficult to handle because of its characteristics, therefore garden waste is a priority for reduction by the government. The results of monitoring for one month in a row mean that the waste entering the compost facility is 4086 kg/day. The percentage of waste reduction from composting activities in total can be 0.986% of the total waste generation of Jambi City, or 45.426%

of the total waste generation of Jambi City's gardens. The final measurement results of compost have met the quality standard of SNI 19-7030-2004 which has been set by the Indonesian government. The value of water content, pH, C – Organic, N – Total, C/N, P2O3, and K2O Total is 13.64%; 7,12; 4.77%; 0.42%; 11.4% 45.01%; and 0.25%, respectively. It is hoped that even though the achievement of waste reduction from this activity is still low, if it is seen from the opportunities for sustainable management and social support from the community and the government, it will reduce waste generation in Jambi City.

Keywords:

Compost Reduction Waste Windrow

EVALUASI PENERAPAN REDUKSI TIMBULAN SAMPAH MENJADI KOMPOS DENGAN SISTEM WINDROW DI TEMPAT PEMROSESAN AKHIR

TALANG GULO KOTA JAMBI

Abstrak- Tempa t Pemrosesa n Akhir Ta la ng Gulo, Kota Ja mi a ka n mela kuka n upa ya reduksi sa mpah biodegra da ble ya ng terdiri da ri sa mpa h da un. Proses pengola ha n ya ng da pa t dia plika sikan ya itu dengan konversi menja di kompos denga n proses a erob denga n sistem windrow. Tujua n da ri penelitia n ini a dalah untuk mengeva lua si sistem pengomposa n da n ha sil pengola ha n sa mpah ya ng dila kuka n seca ra eksisting.

Penelitia n ini dila kuka n denga n observa si la ngsung da n pengumpula n da ta sekunder da ri inventa risa si pengelola a setempa t. Komposisi sa mpa h biodegra da ble di Kota Ja mbi terdiri da ri 47.4% sa mpa h makanan da n 2.1% sa mpa h kebun. Aka n teta pi a plika si sa mpa h ma kanan cukup sulit untuk di ta nga ni ka rena ka ra kteristiknya , oleh ka rena itu sa mpah kebun menjadi priorita s reduksi ya ng dila kuka n pemerinta h. Ha sil pema ntauan sela ma sa tu bula n berturut-turut ra ta-rata sa mpah yang ma suk ke fa silita s kompos a dala h 4086 kg/ha ri. Persenta se reduksi sa mpa h da ri kegia ta n komposting seca ra tota l da pa t ya itu 0.986% da ri total timbula n sa mpa h Kota Ja mbi, a ta u 45,426% da ri tota l timbula n sa mpa h kebun Kota Ja mbi. Ha sil pengukura n a khir kompos suda h memenuhi ba ku mutu SNI 19 -7030-2004 ya ng tela h diteta pkan pemerinta h Indonesia . Nila i wa ter content, pH, C – Orga nic, N – Tota l, C/N, P2O3, da n K2O Tota l a da la h13,64%; 7,12; 4,77%; 0,42%; 11,4% 45,01%; da n 0,25%, ma sing-ma sing. Diha ra pka n wa lupun

(2)

penca pa in reduksi sa mpa h dari kegia ta n ini ma sih renda h, a ka n tetapi jika diliha t da ri pelua ng pengelolaan ya ng berkela njuta n dan dukunga n sosia l ma sya ra kat serta pemerinta h a ka n menurunkan timbula n sampah di Kota Ja mbi.

Kata kunci : kompos, reduksi, sa mpa h, windrow

INTRODUCTION

Ja mbi City, a s well a s other cities in Indonesia , is fa cing quite complica ted wa ste problems such a s environmenta l pollution due to uncontrolled burning a nd a ccumula tion of ga rba ge, dumping ga rba ge into rivers resulting in flooding, a nd difficulty finding la nd for fina l processing sites (Edi, 2019). One of the efforts ma de is to minimize wa ste genera tion by processing wa ste into compost.

Composting ha s a n importa nt role in wa ste recycling efforts, beca use of its a bility to convert orga nic wa ste into compost orga nic fertilizer. The high percenta ge of biodegra da ble orga nic ma tter in municipa l wa ste (Dia nda , Ma hidin a nd Muna war, 2018) ma kes municipa l wa ste very prospective for composting. The results of fina ncia l a nd externa lity a na lysis concluded tha t composting decentra liza tion is more efficient tha n composting centra liza tion (Sa hwa n, 2016; Wa hyono et al., 2016; Wa hyono, 2018). By utilizing wa ste to become compost, the potential to wa ste reduction of wa ste disposed to la ndfill a nd reduce environmental impa ct (Ra shid a nd Sha hza d, 2021; Septia riva and Surya wa n, 2021).

The urba n interna l a rea a pproach a s the basis for compost supply-dema nd analysis is a lso used as the ba sis for the concept of orga nic wa ste ma na gement beca use the urba n interna l a rea has severa l potentia l compost consumers who can a bsorb compost production from municipa l wa ste (Wa hyono, 2016). If compost products a re encoura ged to be used in the interna l a rea s of the city, then urba n wa ste ma na gement will run susta ina bly, while crea ting a cycle of soil nutrients in urba n ecosystems. One wa y to ma ke this program work properly is to choose the right technology.

The windrow composting system is suita ble for Indonesia n conditions beca use of its flexibility (Kurnia , Sumiya ti a nd Sa mudro, 2017). The a dva ntages of the windrow composting system a re tha t it is suita ble for a ll types of orga nic wa ste, has a la rge loa ding ca pa city, a nd produces good qua lity compost (Lim et al., 2017). Therefore, the windrow composting method is suita ble to be a pplied to treat composta ble wa ste in the Ta la ng Gulo La ndfill. By utilizing wa ste into compost, a nother benefit that ca n be obta ined is to help the city's wa ste ma na gement efforts. The problem of municipal wa ste is a n inexha ustible problem fa ced by cities in Indonesia (Qonita n, Surya wa n a nd Ra hman, 2021;

Sa rwono et al., 2021; Surya wa n et al., 2021; Iva Yenis Septia riva et al., 2022).

Processing of wa ste into compost is needed for a gricultura l development a nd ca n crea te jobs in Ja mbi City a nd ca n even increa se the Ja mbi City Government's income. In a ddition, government support a nd policies a re needed so tha t this effort ca n be successful in overcoming the wa ste problem in Ja mbi City (Edi, 2019). To support this, it is necessa ry to eva lua te the existing conditions so that better pla nning ca n be ca rried out. The purpose of this study is to eva lua te the biodegra da ble wa ste trea tment system using windrowing compost technology a t Ta la ng Gulo La ndfill, Ja mbi City in terms of reduction a nd fina l compost qua lity.

METHOD

At the resea rch sta ge, in a ddition to finding informa tion on litera ture studies a nd identifying problems, the process of ta king resea rch da ta is a lso ca rried out, na mely prima ry da ta a nd secondary da ta . The existing condition is a review of the field conditions of the wa ste ma na gement system at the resea rch loca tion including wa ste genera tion and the wa ste composting process. Observa tions were ca rried out by ta king documentation and observa tions a t the resea rch loca tion, especia lly at the wa ste collection point. Wa ste genera tion obta ined from existing conditions a nd eva lua tion of seconda ry da ta obta ined from the la ndfill ma na gement.

RESULT AND DISCUSSION

Ba sed on Figure 1 shows the composition of wa ste in Ja mbi City where biodegra da ble mostly consists of 47.4% food wa ste a nd rela tively low ga rden wa ste, na mely 2.1%. The reduction of biodegra da ble wa ste tha t is mostly done in Indonesia is by using a composting system.

Composting is a method of processing orga nic wa ste by a erobic decomposition of biodegra da ble ma teria ls. The compost produced ca n be used in a gricultura l a ctivities (Pergola et al., 2018). The type of biodegra da ble wa ste tha t is often processed using the composting method is ga rden wa ste beca use of the very high moisture content of food wa ste (Ghinea et al., 2019). Usua lly, food wa ste is more suita ble to be processed with bla ck soldier fly (Cheng, Chiu a nd Lo, 2017; da Silva and Hesselberg, 2020).In a ddition, the use of the bla ck soldier fly a lso a llows it to support the energy

(3)

supply (Ra ksa sa t et al., 2021). However, composting ha s wea knesses such a s the compost produced ha s a low nutrient content a nd takes a long time in the ma tura tion process.

Figure 1. Waste generation composition in Jambi City (Hutagalung, Sakinah and Rinaldi, 2020) The ma ximum a mount of wa ste tha t enters the compost a rea is 15 tons/day. Lea f litter or ga rden wa ste will be collected a t the entra nce. After the wa ste is collected, the next 14 wa stes will be put into the Shredder for enumera tion. Lea f wa ste that ha s been chopped will be combined with food wa ste a nd fermented for 4-6 weeks or ca lled Compost Turner type A. Composting a t Ta la ng Gulo La ndfill uses the Windrow Mecha nic Overturning system or mixing with hea vy equipment. The width of the window is a djusted to the hea vy equipment used, the minimum width is 1 meter, the height of the compost pile is a bout 1.75 meters, a nd the length is a djusted to the composting pla ce. During the fermenta tion process, it is necessa ry to mea sure the humidity a nd tempera ture of the compost. Compost moisture needs to be ma inta ined by regula r wa tering a nd stirring every 3 da ys. After 6 weeks, the compost will be tra nsferred to the Compost Turner type B a rea or ripening a rea with a dura tion of 6-8 weeks. Mea surement of tempera ture and humidity, wa tering a nd stirring in this process a lso needs to be done. The ripe compost will be filtered using the Mobile Rota ry Screen. Filtering is divided into 2 sizes, na mely the size of 8 mm a nd more than or equa l to 8 mm. Next, the compost will be pa cked a ccording to the sepa ra tion screen. The compost residue genera ted during the composting process

will be disposed of in the La ndfill. More deta ils can be seen in Figure 2.

Figure 2. Waste Composite Process at Talang Gulo Landfill, Jambi City

The decrea se in wa ter content during the composting process is ca used by eva pora tion into a ga s (Koya ma et al., 2019; Yua n et al., 2019). The higher the wa ter content in the wa ste pile, the grea ter the shrinka ge of the volume of wa ste. One of the key fa ctors tha t show composting runs quickly is wa ter content (Som, Lemée a nd Amblès, 2009). Moisture content is a n importa nt key in the composting process. The importa nce of wa ter content is a n importa nt fa ctor of ma turity and qua lity of compost. The windrow composting system is a system tha t is suita ble for Indonesian conditions beca use of its flexibility. Therefore, in the composting process, it is necessa ry to monitor the wa ter content, if the wa ste is too dry then lea cha te recircula tion (Ba la ga nesh et al., 2020) or a dditiona l wa ter into the compost is required.

Mea nwhile, nitrogen ha s a critica l role in composting engineering beca use of the decomposition of wa ste (Ca yuela et al., 2012).

There is a very sma ll residue produced in the composting process, so composting is considered more effective in reducing wa ste tha t enters the Ta la ng Gulo la ndfill compa red to sorting. The a mount of wa ste tha t is reduced in the composting process in one month is 100 tons. The compost produced ha s not yet been tra ded beca use it is still in the tria l pha se. Figure 3 shows da ta on wa ste entering the compost a rea with a n a verage processed of 4.086 tons/da y.

47,4%

2,1%

1,3%

13,1%

1,8%

8,2%

1,3%

20,6%

0,7%

2,0% 1,5% Food Waste

Garden waste Wood waste Paper waste Textile Nappies

Rubber and leather Plastic

Metals Glass Others

(4)

Figure 3. Composting Input Daily In the composting process, 1/3 of the ra w ma terial

(orga nic wa ste) will be obta ined (Za hrina and Yenie, 2021). If this la ndfill consistently processes 4086 kg/da y of wa ste, 1362 kg/da y of compost will

be obta ined. The net profit obta ined from the composting business is Rp. 60 – 1,060 per kg (Dja ja , 2010), so the profit to be ga ined is Rp. 81720 –.1443720 daily.

Table 1. Composting Mass Balance Calculation in Jambi City

Waste Generation

(ton/day)

Name Waste Processing Facilites1

Waste to the composting

facility (ton/year)

Waste to the composting

facility (ton/day)

Total Reduction with

Compost (ton/day)

% Total Reduction

with Compost

Total Waste Generation:

427.68

Komposting Mayang

Mangurai 7.31 0.02

0.11 0.026

Komposting JL. Ki Bajuri 18.251 0.05 Komposting Komp. Villa

Kenali 1 7.31 0.02

Komposting Jl. KH. Agus

Salim 7.31 0.02

Talang Gulo Landfill 1491.39 4.086 4.086 0.96

% Total Waste Reduction from Total Waste Generation with Composting in Jambi City 0.986 Total

Garden Waste Generation:

9

Talang Gulo Landfill 1491.39 4.086 4.086 45.4

% Total Waste Reduction from Garden Waste Generation with Composting in Jambi City 45.426

1 (Kementeria n Lingkunga n Hidup da n Kehuta nan, 2019) Along with the reshuffling process, C/N at the end incuba tion of 11.4 wa s good enough to be a pplied to the soil to improve its fertility level. The composting process in a closed sta te is more effective a nd ca n a void the loss of nutrients due to ra inwa ter wa shing. Compost tha t ha s a C/N ra tio va lue a bove 20 is not recommended or should be a voided for use on a gricultura l la nd beca use it will ha ve a n unfa vourable impa ct on pla nt growth. This

is beca use compost tha t ha s a C/N ra tio tha t is too high will ca use nitrogen immobiliza tion (Zha ng and Pa ng, 2008). This immobiliza tion occurs due to competition between pla nts a nd microbes to consume N so tha t pla nts only get a little nitrogen from the soil (Hosseini a nd Aziz, 2013). If the C/N ra tio ha s rea ched 12-20, it mea ns tha t the nutrients bound to the humus ha ve been relea sed through the minera liza tion process so tha t they ca n be used by 0

2 4 6 8 10 12 14 16

01/06/2021 02/06/2021 03/06/2021 04/06/2021 05/06/2021 06/06/2021 07/06/2021 08/06/2021 09/06/2021 10/06/2021 11/06/2021 12/06/2021 13/06/2021 14/06/2021 15/06/2021 16/06/2021 17/06/2021 18/06/2021 19/06/2021 20/06/2021 21/06/2021 22/06/2021 23/06/2021 24/06/2021 25/06/2021 26/06/2021 27/06/2021 28/06/2021 29/06/2021 30/06/2021

Composting Input (ton/day)

(5)

pla nts. However, a C/N ra tio tha t ha s a va lue of 10 is recommended for idea l results (Peng et al., 2016).

Table 1. Physical properties of fruit waste

Parameters Result

Criteria SNI 19-7030-2004

Min Maks

Colour Dark - Dark

Odour Smell of

earth

Smell of earth Water Content (%) 13.64

pH 7.12 6.80 7.49

C – Organic (%) 4.77 9.80 32

N – Total (%) 0.42 0.40 -

C/N 11.4 10 20

P2O3 (%) 45.01 0.1 -

K2O Total (%) 0.25 0.2 -

CONCLUSION

The composting process of lea f wa ste at Ta la ng Gulo La ndfill ca n process a t lea st 4,086 tons/da y or a bout 45.4% of the tota l wa ste genera tion in Ja mbi City. The result of compost processing ha s met the criteria set by SNI 19-7030- 2004. The susta ina bility of this composting progra m must be supported by a ll levels of society a nd the government from source to disposa l.

ACKNOWLEDGEMENT

The a uthor would like to tha nk the Regiona l Government of Ja mbi City, especia lly the environmenta l service. In a ddition, the a uthors a lso tha nk the officers who ha ve a ssisted in providing da ta for this resea rch.

REFERENCE

Ba la ga nesh, P. et al. (2020) ‘Improving Soil Fertility a nd Nutrient Dyna mics with Lea cha te Attributes from Sewa ge Sludge by Impoundment a nd Co-Composting’, Clean - Soil, Air, Water, 48(12), pp. 1–9. doi:

10.1002/clen.202000125.

Ca yuela , M. L. et al. (2012) ‘Biochemica l cha nges a nd GHG emissions during composting of lignocellulosic residues with different N- rich by-products’, Chemosphere, 88(2), pp.

196–203. doi:

https://doi.org/10.1016/j.chemosphere.2012 .03.001.

Cheng, J. Y. K., Chiu, S. L. H. a nd Lo, I. M. C.

(2017) ‘Effects of moisture content of food wa ste on residue sepa ra tion, la rva l growth a nd la rva l surviva l in bla ck soldier fly bioconversion’, Waste Management, 67, pp.

315–323. doi:

https://doi.org/10.1016/j.wa sman.2017.05.0 46.

Dia nda , P., Ma hidin a nd Muna wa r, E. (2018)

‘Production and characterization refuse derived fuel (RDF) from high orga nic and moisture contents of municipa l solid wa ste (MSW)’, IOP Conference Series: Materials Science and Engineering, 334, p. 12035. doi:

10.1088/1757-899x/334/1/012035.

Dja ja , W. (2010) Langkah Jitu Membuat Kompos dari Kotoran Ternak dan Sampah. Ja ka rta:

PT. Agromedia Pusta ka .

Edi, R. P. dan S. (2019) ‘Aleternatif Teknologi Pengomposa n Berba ha n Ba ku Sa mpah Perkota a n untuk Mendukung Perta nian Organik di Kota Jambi’, Journal of Chemical Information and Modeling, 53(9), pp. 1689–1699.

Ghinea , C. et al. (2019) ‘Development of a model for food waste composting’, Environmental Science and Pollution Research, 26(4), pp.

4056–4069. doi: 10.1007/s11356-018-3939- 1.

Hosseini, S. M. and Aziz, H. A. (2013) ‘Evaluation of thermochemica l pretrea tment and continuous thermophilic condition in rice straw composting process enhancement’, Bioresource Technology, 133, pp. 240–247.

doi:

https://doi.org/10.1016/j.biortech.2013.01.0 98.

Huta ga lung, W. L. C., Sa kina h, A. a nd Rina ldi, R.

(2020) ‘Estimasi Emisi Gas Rumah Kaca pa da Pengelola a n Sa mpah Domestik dengan Metode IPCC 2006 di TPA Ta la ng Gulo Kota Jambi’, Jurnal Teknik Sipil dan Lingkungan, 5(1), pp. 59–68. doi:

10.29244/jsil.5.1.59-68.

Iva Yenis Septia riva et al. (2022) ‘Municipa l Infectious Wa ste during COVID-19 Pa ndemic: Trends, Impa cts, and Management’, International Journal of Public Health Science (IJPHS).

Kementeria n Lingkunga n Hidup da n Kehutanan (2019) Sistem informasi Pengelolaan Sampah Nasional. Ava ila ble at:

http://sipsn.menlhk.go.id.

Koya ma , M. et al. (2019) ‘Effect of Ca (OH)2 dosing on thermophilic composting of a na erobic sludge to improve the NH3 recovery’, Science of The Total Environment, 670, pp. 1133–1139. doi:

https://doi.org/10.1016/j.scitotenv.2019.03.

320.

Kurnia , V. C., Sumiya ti, S. a nd Sa mudro, G. (2017)

‘Pengaruh Kadar Air Terhadap Hasil Pengomposa n Sa mpa h Orga nik Denga n Metode Open Windrow’, Jurnal Teknik Mesin, 6(2), p. 58. doi:

10.22441/jtm.v6i2.1191.

Lim, L. Y. et al. (2017) ‘Review on the Current

(6)

Composting Pra ctices a nd the Potentia l of Improvement using Two-Sta ge Composting

’, Chemical Engineering Transactions, 61, pp. 1051-1056 SE-Resea rch Articles. doi:

10.3303/CET1761173.

Peng, C. et al. (2016) ‘Effects of long term rice stra w a pplica tion on the microbia l communities of ra peseed rhizosphere in a pa ddy-upla nd rotation system’, Science of The Total Environment, 557–558, pp. 231–

239. doi:

https://doi.org/10.1016/j.scitotenv.2016.02.

184.

Pergola , M. et al. (2018) ‘Composting: The wa y for a sustainable agriculture’, Applied Soil Ecology, 123, pp. 744–750. doi:

https://doi.org/10.1016/j.apsoil.2017.10.016 .

Qonita n, F. D., Surya wa n, I. W. K. a nd Ra hman, A.

(2021) ‘Overview of Municipal Solid Waste Genera tion a nd Energy Utiliza tion Potentia l in Major Cities of Indonesia’, Journal of Physics: Conference Series, 1858(1). doi:

10.1088/1742-6596/1858/1/012064.

Ra ksa sa t, R. et al. (2021) ‘Blended sewa ge sludge–

pa lm kernel expeller to enha nce the pa la ta bility of bla ck soldier fly la rva e for biodiesel production’, Processes, 9(2), pp.

1–13. doi: 10.3390/pr9020297.

Rashid, M. I. and Shahzad, K. (2021) ‘Food waste recycling for compost production a nd its economic a nd environmenta l a ssessment as circula r economy indica tors of solid wa ste management’, Journal of Cleaner Production, 317, p. 128467. doi:

https://doi.org/10.1016/j.jclepro.2021.1284 67.

Sahwan, F. L. (2016) ‘Analisis Proses Komposting Pa da Pengelola a n Sa mpa h Berba sis Ma sya ra kat Ska la Ka wa san (Studi Ka sus Di Kota Depok)’, Jurnal Teknologi Lingkungan, 13(3), p. 253. doi:

10.29122/jtl.v13i3.1394.

Sa rwono, A. et al. (2021) ‘Municipa l Solid Wa ste Trea tment for Energy Recovery Through Therma l Wa ste-To-Energy in Depok City, Indonesia’, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85.

Septia riva , I. V. A. Y. a nd Surya wa n, I. W. K.

(2021) ‘Development Of The Water Quality Index ( Wqi ) And Hydrogen Sulfide ( H 2 S ) For Assessments Around The Suwung Landfill , Bali Island’, 16(4), pp. 137–148.

da Silva, G. D. P. and Hesselberg, T. (2020) ‘A Review of the Use of Bla ck Soldier Fly La rva e, Hermetia illucens (Diptera : Stra tiomyida e), to Compost Orga nic Wa ste

in Tropical Regions’, Neotropical Entomology, 49(2), pp. 151–162. doi:

10.1007/s13744-019-00719-z.

Som, M.-P., Lemée, L. a nd Amblès, A. (2009)

‘Stability and maturity of a green waste and biowa ste compost a ssessed on the ba sis of a molecula r study using spectroscopy, thermal a na lysis, thermodesorption and thermochemolysis’, Bioresource Technology, 100(19), pp. 4404–4416. doi:

https://doi.org/10.1016/j.biortech.2009.04.0 19.

Surya wa n, I. W. K. et al. (2021) ‘Potentia l of Energy Municipa l Solid Wa ste ( MSW ) to Become Refuse Derived Fuel ( RDF ) in Ba li Province , Indonesia’, Jurnal Bahan Alam Terbarukan, 10(200).

Wahyono, S. (2016) ‘Analisis Efektivitas Konsep Pengelola a n Sa mpa h Orga nik mela lui Teknologi Ana lisis Efektivita s Konsep Pengelola a n Sa mpa h Orga nik mela lui Teknologi Komposting The Effectiveness Ana lysis of Orga nic Wa ste Ma na gement Concept Through Technology Composting’, Jurnal Teknologi Lingkungan, 17(1), pp.

37–44.

Wa hyono, S. et al. (2016) ‘Metabolisme Pengelola a n Sa mpa h Orga nik Mela lui Teknologi Komposting Di Wila ya h Internal Perkotaan’, Jurnal Teknologi Lingkungan, 13(2), p. 179. doi: 10.29122/jtl.v13i2.1417.

Wahyono, S. (2018) ‘Konsep Pengelolaan Sampah Kota da n Ka ji Tera p Teknologi Pengelolaannya’, Prosiding Seminar Nasional dan Konsultasi Teknologi Lingkungan, (20 September 2018), pp. 58–

64.

Yua n, J. et al. (2019) ‘Effects of inocula tion a mount a nd a pplica tion method on the biodrying performa nce of municipa l solid wa ste and the odor emissions produced’, Waste Management, 93, pp. 91–99. doi:

https://doi.org/10.1016/j.wa sman.2019.05.0 29.

Zahrina, I. and Yenie, E. (2021) ‘Penerapan Teknologi Windrow Composting Ba gi Ma sya ra kat Sekita r Tpa Mua ra Fa jar Pekanbaru’, Dharmakarya, 10(2), p. 174.

doi: 10.24198/dharmakarya.v10i2.33178.

Referensi

Dokumen terkait

Waste management activities at the Integrated Waste Management Site of the Lampung University include waste collection, sorting and waste processing activities.. One of the

Table 2 Types of Management of Waste Generation in the Penatapan Doulu Area No Group Types % 1 Decompose Food waste 13,46 2 Organic Food waste, leaves, wood, fruit peels 46,01 3

Mass balance of solid waste generation with Optimal Reduction Scenario in 2022 Reduction Potential of Methane Gas Methane Gas Emission Analysis which covers the whole of the various

Solid waste management in Nigeria is characterized by inefficient collection methods, insufficient cover- age of the collection system and improper disposal Generation, characteristics

It aims to analyze the application of the regulations governing waste management, which entrusts the central government, local governments, waste producers, community, and academics to

Important parameters and criteria for the financial analysis in the model include: Capacity of solid waste input tons/day, In-plant Losses %, Tipping fee for solid waste input Rp/ton,

The community is given knowledge about the importance of utilizing household organic waste, how to manage household organic waste through the composting process, utilizing household

Miscellaneous Ashes,Dust 1.00 1,570.15 Total Waste that goes to the Suwung Final Processing Site 157.030.50 Value of Degradable Organic Carbon DOC Calculation of Degradable